Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 135-148.DOI: 10.11686/cyxb2023477
Xiao-xiao LI(), Pan ZHANG, Yuan LU, Ting LI, Na ZHAO, Jia-wen WU()
Received:
2023-12-13
Revised:
2024-01-31
Online:
2024-11-20
Published:
2024-09-09
Contact:
Jia-wen WU
Xiao-xiao LI, Pan ZHANG, Yuan LU, Ting LI, Na ZHAO, Jia-wen WU. Abiotic stress priming affects the responses of maize (Zea mays) plants to cadmium stress[J]. Acta Prataculturae Sinica, 2024, 33(11): 135-148.
处理 Treatment | 总根长 Total root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根尖数 Number of root tips | 根直径 Root diameter (mm) |
---|---|---|---|---|---|
-Cd | |||||
CK | 1819±404a | 880±141a | 244±88a | 1674±230a | 1.5±0.4ab |
-Fe | 1168±372b | 573±194b | 155±61b | 1110±397bc | 1.0±0.4b |
Na | 1093±307b | 595±42b | 171±45ab | 1109±279bc | 1.1±0.2b |
PEG | 1082±258b | 704±128ab | 223±45ab | 984±129c | 1.7±0.5a |
Cdp | 1525±243ab | 660±128b | 155±49b | 1465±220ab | 1.0±0.3b |
+Cd | |||||
CK | 945±141c | 559±57a | 169±54a | 803±122c | 1.3±0.3a |
-Fe | 1093±51bc | 536±15a | 131±12ab | 1050±148bc | 1.0±0.0ab |
Na | 1363±426ab | 648±104a | 149±48a | 1220±386ab | 1.1±0.4ab |
PEG | 849±120c | 415±130b | 85±39b | 860±135c | 0.8±0.4b |
Cdp | 1536±224a | 646±20a | 132±10ab | 1434±252a | 0.9±0.1ab |
-Cd v.s. +Cd (P值P value) | |||||
CK | 0.002** | 0.005** | 0.151ns | 0.000*** | 0.466ns |
-Fe | 0.674ns | 0.695ns | 0.432ns | 0.766ns | 0.804ns |
Na | 0.287ns | 0.337ns | 0.491ns | 0.618ns | 0.936ns |
PEG | 0.119ns | 0.007** | 0.001*** | 0.176ns | 0.010** |
Cdp | 0.947ns | 0.815ns | 0.371ns | 0.838ns | 0.317ns |
Table 1 Effects of abiotic stress priming on root morphology of maize under Cd stress
处理 Treatment | 总根长 Total root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根尖数 Number of root tips | 根直径 Root diameter (mm) |
---|---|---|---|---|---|
-Cd | |||||
CK | 1819±404a | 880±141a | 244±88a | 1674±230a | 1.5±0.4ab |
-Fe | 1168±372b | 573±194b | 155±61b | 1110±397bc | 1.0±0.4b |
Na | 1093±307b | 595±42b | 171±45ab | 1109±279bc | 1.1±0.2b |
PEG | 1082±258b | 704±128ab | 223±45ab | 984±129c | 1.7±0.5a |
Cdp | 1525±243ab | 660±128b | 155±49b | 1465±220ab | 1.0±0.3b |
+Cd | |||||
CK | 945±141c | 559±57a | 169±54a | 803±122c | 1.3±0.3a |
-Fe | 1093±51bc | 536±15a | 131±12ab | 1050±148bc | 1.0±0.0ab |
Na | 1363±426ab | 648±104a | 149±48a | 1220±386ab | 1.1±0.4ab |
PEG | 849±120c | 415±130b | 85±39b | 860±135c | 0.8±0.4b |
Cdp | 1536±224a | 646±20a | 132±10ab | 1434±252a | 0.9±0.1ab |
-Cd v.s. +Cd (P值P value) | |||||
CK | 0.002** | 0.005** | 0.151ns | 0.000*** | 0.466ns |
-Fe | 0.674ns | 0.695ns | 0.432ns | 0.766ns | 0.804ns |
Na | 0.287ns | 0.337ns | 0.491ns | 0.618ns | 0.936ns |
PEG | 0.119ns | 0.007** | 0.001*** | 0.176ns | 0.010** |
Cdp | 0.947ns | 0.815ns | 0.371ns | 0.838ns | 0.317ns |
组织 Organ | 处理 Treatment | 细胞壁 Cell wall | 细胞器 Organelle | 细胞可溶性部分 Cell soluble fraction |
---|---|---|---|---|
叶 Leaves | Cd | 50.97±4.22a | 11.23±0.98a | 37.80±4.21bc |
-Fe+Cd | 48.04±10.70a | 12.34±4.66a | 39.62±10.10bc | |
Na+Cd | 45.35±5.37ab | 8.98±3.81a | 45.68±3.89ab | |
PEG+Cd | 35.45±8.07b | 10.50±2.75a | 54.04±6.48a | |
Cdp+Cd | 52.85±8.17a | 12.60±2.27a | 34.56±6.26c | |
根 Roots | Cd | 35.21±4.70ab | 16.12±4.88a | 48.67±0.92ab |
-Fe+Cd | 41.93±4.29ab | 17.97±3.83a | 40.10±5.60b | |
Na+Cd | 42.11±8.60ab | 12.65±1.32ab | 45.23±9.39ab | |
PEG+Cd | 33.19±5.26b | 9.03±1.48b | 57.77±5.50a | |
Cdp+Cd | 46.59±12.50a | 14.67±4.93ab | 38.74±14.20b |
Table 2 Effects of abiotic stress priming on subcellular distribution proportions of Cd in leaves and roots of maize under Cd stress (%)
组织 Organ | 处理 Treatment | 细胞壁 Cell wall | 细胞器 Organelle | 细胞可溶性部分 Cell soluble fraction |
---|---|---|---|---|
叶 Leaves | Cd | 50.97±4.22a | 11.23±0.98a | 37.80±4.21bc |
-Fe+Cd | 48.04±10.70a | 12.34±4.66a | 39.62±10.10bc | |
Na+Cd | 45.35±5.37ab | 8.98±3.81a | 45.68±3.89ab | |
PEG+Cd | 35.45±8.07b | 10.50±2.75a | 54.04±6.48a | |
Cdp+Cd | 52.85±8.17a | 12.60±2.27a | 34.56±6.26c | |
根 Roots | Cd | 35.21±4.70ab | 16.12±4.88a | 48.67±0.92ab |
-Fe+Cd | 41.93±4.29ab | 17.97±3.83a | 40.10±5.60b | |
Na+Cd | 42.11±8.60ab | 12.65±1.32ab | 45.23±9.39ab | |
PEG+Cd | 33.19±5.26b | 9.03±1.48b | 57.77±5.50a | |
Cdp+Cd | 46.59±12.50a | 14.67±4.93ab | 38.74±14.20b |
Fig.5 Effects of abiotic stress priming on H2O2 contents, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in leaves of maize under Cd stress
Fig.6 Effects of abiotic stress priming on H2O2 contents, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in roots of maize under Cd stress
Fig.7 Correlation relationship of Cd accumulation with plant growth (A),Cd distribution (B) and antioxidant defense system (C) in maize under abiotic stress priming
1 | Wu J W, Li R J, Lu Y, et al. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. Journal of Environmental Management, 2021, 295: 113081. |
2 | Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238. |
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展. 农业环境科学学报, 2019, 38(10): 2219-2238. | |
3 | Wu J W, Geilfus C M, Pitann B, et al. Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat. Environmental and Experimental Botany, 2016, 131: 10-18. |
4 | Zhou X Y. Development and future development trend of corn feed industry in China. Feed Research, 2023, 46(9): 178-181. |
周新莹. 我国玉米饲粮产业发展情况及未来发展趋势. 饲料研究, 2023, 46(9): 178-181. | |
5 | Zhang Q Y, Wang L, Xiao Y X, et al. Migration and transformation of Cd in four crop rotation systems and their potential for remediation of Cd-contaminated farmland in southern China. Science of the Total Environment, 2023, 885: 163893. |
6 | Hechmi N, Aissa N B, Abdennaceur H, et al. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. International Journal of Phytoremediation, 2013, 15(7): 703-713. |
7 | Wang X, Cai J, Zhou Q, et al. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. |
王笑, 蔡剑, 周琴, 等. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54(11): 2287-2301. | |
8 | Li H J, Ming L L, Zhang W S. Uptake, translocation and tolerance mechanism of cadmium in plants: A review. Asian Journal of Ecotoxicology, 2022, 17(2): 86-95. |
李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展. 生态毒理学报, 2022, 17(2): 86-95. | |
9 | Clemens S, Aarts M G M, Thomine S, et al. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013, 18(2): 92-99. |
10 | Bai X J, Liu L J, Zhang C H, et al. Effect of H2O2 pretreatment on Cd tolerance of different rice cultivars. Chinese Journal of Rice Science, 2010, 24(4): 391-397. |
白晓娟, 刘丽娟, 张春华, 等. H2O2预处理对不同水稻品种Cd耐性的影响. 中国水稻科学, 2010, 24(4): 391-397. | |
11 | Zhang S, Tan X, Zhou Y H, et al. Effects of a heavy metal (cadmium) on the responses of subtropical coastal tree species to drought stress. Environmental Science and Pollution Research, 2023, 30(5): 12682-12694. |
12 | Bashir W, Anwar S, Zhao Q, et al. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 2019, 175: 90-101. |
13 | Liu X R, Chen L H, Zhang J, et al. Effects of drought and cadmium pollution on the physiology and cadmium enrichment of Pennisetum sinese. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(2): 277-284. |
刘选茹, 陈良华, 张健, 等. 干旱及镉污染对巨菌草生理和镉富集特征的影响. 西北植物学报, 2019, 39(2): 277-284. | |
14 | Shi G R, Xia S L, Ye J, et al. PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 2015, 111: 127-134. |
15 | Wang S Q, Dai H P, Cui S, et al. The effects of salinity and pH variation on hyperaccumulator Bidens pilosa L. accumulating cadmium with dynamic and real-time uptake of Cd2+ influx around its root apexes. Environmental Science and Pollution Research, 2023, 30(14): 41435-41444. |
16 | Zou R, Wang L, Li Y C, et al. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. Environmental Pollution, 2020, 256: 113410. |
17 | Afzal M, Yu M J, Tang C X, et al. The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environment International, 2019, 129: 451-460. |
18 | Xiao A W, Chen D T, Li W C, et al. Root morphology and anatomy affect cadmium translocation and accumulation in rice. Rice Science, 2021, 28(6): 594-604. |
19 | Yi Z R, Zhuge Y P, Lou Y H, et al. Effects of spermidine on growth and physiological characteristics of Salix integra under cadmium stress. Journal of Agro-Environment Science, 2019, 38(10): 2306-2312. |
20 | Zacchini M, Pietrini F, Scarascia M G, et al. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 2009, 197: 23-34. |
21 | Weigel H J, Jäger H J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology, 1980, 65(3): 480-482. |
22 | Bai Z Q, Li D, Zhu L, et al. Nitrate increases cadmium accumulation in sweet sorghum for improving phytoextraction efficiency rather than ammonium. Frontiers in Plant Science, 2021, 12: 643116. |
23 | Wu J W, Guo J, Hu Y H, et al. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 2015, 6: 453. |
24 | Karimi F, Hamidian Y, Behrouzifar F, et al. An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food and Chemical Toxicology, 2022, 164: DOI: 10.1016/j.fct.2022.113053. |
25 | Liu S P, Pang X L, Cao J Y, et al. Measurement of SOD in fresh jujube fruit and analysis of its content. Hunan Agricultural Sciences, 2012(15): 36-38. |
刘世鹏, 庞小亮, 曹娟云, 等. 鲜枣果实中超氧化物歧化酶的测定及含量的分析. 湖南农业科学, 2012(15): 36-38. | |
26 | Huang Z, Dai S H, Ma L K, et al. Changes of peroxidase activity in the seed germination of watermelon. Hunan Agricultural Sciences, 2010(9): 43-45. |
黄智, 戴思慧, 马凌珂, 等. 西瓜种子萌发过氧化物酶活性变化的研究. 湖南农业科学, 2010(9): 43-45. | |
27 | Yang X, Li J C, Zheng Y Z, et al. Salinity elevates Cd bioaccumulation of sea rice cultured under co-exposure of cadmium and salt. Journal of Environmental Sciences, 2023, 126: 602-611. |
28 | Xia S L, Wang X M, Su G Q, et al. Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil. Environmental Science and Pollution Research, 2015, 22: 18707-18717. |
29 | Yang J S, Dai Y, Liu Y, et al. Reduced cadmium accumulation in tobacco by sodium chloride priming. Environmental Science and Pollution Research, 2020, 27(30): 37410-37418. |
30 | Yi L P, Wang Z W. Effects of three salts to oilseed rape (Brassica napus) accumulating cadmium in Cd-contaminated soil. Ecology and Environmental Sciences, 2010, 19(4): 798-802. |
弋良朋, 王祖伟. 土壤中三种盐对油菜富集镉的影响. 生态环境学报, 2010, 19(4): 798-802. | |
31 | Chen C, Cao Q Q, Jiang Q, et al. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC Plant Biology, 2019, 19(1): 1-14. |
32 | Liu D Q, Chen X, Ge Y. Adsorption of iron and cadmium in rhizosphere and their uptake and translocation in rice pretreated with iron deficiency. Journal of Agro-Environment Science, 2014, 33(2): 224-230. |
刘丹青, 陈雪, 葛滢. 缺Fe预处理对Fe、Cd根际吸附与水稻吸收和转运的影响. 农业环境科学学报, 2014, 33(2): 224-230. | |
33 | Ji Y J, Wan Y N, Wang Q, et al. Effects of root characteristics and transpiration on cadmium uptake by cucumber seedlings under varied iron levels. Acta Scientiae Circumstantiae, 2017, 37(5): 1939-1946. |
季玉洁, 万亚男, 王琪, 等. 不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响. 环境科学学报, 2017, 37(5): 1939-1946. | |
34 | Li S Z, Song Z Z, Liu X Q, et al. Mediation of zinc and iron accumulation in maize by ZmIRT2, a novel iron-regulated transporter. Plant and Cell Physiology, 2022, 63(4): 521-534. |
35 | Chen Y M, Huang J N, Wei J Q, et al. Low-level cadmium exposure influences rice resistance to herbivores by priming jasmonate signaling. Environmental and Experimental Botany, 2022, 194: 104741. |
36 | Chakrabarti M, Mukherjee A. Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicology and Environmental Safety, 2021, 209: 111817. |
37 | Wu J W, Shi Y, Zhu Y X, et al. Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere, 2013, 23(6): 815-825. |
38 | Wu J W, Mock H P, Giehl R F H, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials, 2019, 364: 581-590. |
39 | Shi X D, Fang Y, Jiao F, et al. Research on the dynamics of leaf cytoderm expansin accumulation under drought stress in flue-cured tobacco. Acta Tabacaria Sinica, 2010, 16(1): 41-44. |
时向东, 方圆, 焦枫, 等. 干旱胁迫下烤烟叶片细胞壁expansin积累动态研究. 中国烟草学报, 2010, 16(1): 41-44. | |
40 | Xian J P, Wang Y, Zhang J Y. Effects of PEG pretreatment on physiological metabolism of Lolium perenne under salt and cadmium stress. Journal of Soil and Water Conservation, 2019, 33(3): 358-364. |
鲜靖苹, 王勇, 张家洋. PEG预处理对盐及镉胁迫下黑麦草生理代谢的影响. 水土保持学报, 2019, 33(3): 358-364. | |
41 | Zhang S W, Mei Y X, Wei W, et al. Influence of PEG pretreatment on antioxdant enzyme activties of rice seedling to subsequent Cd stress. Journal of Shenyang Normal University (Natural Science Edition), 2015, 33(3): 437-441. |
张诗婉, 梅映学, 魏玮, 等. PEG对Cd胁迫下水稻幼苗抗氧化酶活性的影响. 沈阳师范大学学报(自然科学版), 2015, 33(3): 437-441. | |
42 | McInturf S A, Khan M A, Gokul A, et al. Cadmium interference with iron sensing reveals transcriptional programs sensitive and insensitive to reactive oxygen species. Journal of Experimental Botany, 2022, 73(1): 324-338. |
43 | Zhang B L, Shang S H, Zhang H T, et al. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. Environmental Toxicology and Chemistry, 2013, 32(6): 1420-1425. |
44 | Mohammad A H, Soumen B, Saed-Moucheshi A, et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 2015, 6: 420. |
45 | Wu J W, Sagervanshi A, Mühling K H. Sulfate facilitates cadmium accumulation in leaves of Vicia faba L. at flowering stage. Ecotoxicology and Environmental Safety, 2018, 156: 375-382. |
[1] | Rong GUO, Hai-fei JING, Yi YANG, Guo-sheng XIN, Ting YANG. Effects of nano selenium on growth performance, blood biochemistry and metabolome of Tan sheep [J]. Acta Prataculturae Sinica, 2024, 33(9): 199-213. |
[2] | Li-ping HONG, Xiao-dong LI, Er-ru YU, Cheng-jiang PEI, Yi-shun SHANG, Jin-hong LUO, Guang SUN, Yun-hao ZHOU, Shi-ge LI, Hang YANG, Feng-dan LIU. Effects of different perilla (Perilla frutescens) materials on serum antioxidant enzyme activity, rumen fermentation parameters and microflora of Guizhou black goats [J]. Acta Prataculturae Sinica, 2024, 33(9): 214-226. |
[3] | Chun-jiao MI, Liu HONG, Wen MA, Pei-sheng MAO. Effects of glutathione priming on the mitochondrial antioxidant characteristics of aged oat seed embryos [J]. Acta Prataculturae Sinica, 2024, 33(9): 51-59. |
[4] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
[5] | Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress [J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132. |
[6] | Bang-yin HE, Jing-hong PEI, Qi-rui YE, Jia-jia HU, Cai-xue ZHENG, Jiang-wen LI. Allelopathic effects of different artificial economic forest litter extracts on Fabaceae and Poaceae species [J]. Acta Prataculturae Sinica, 2024, 33(8): 199-208. |
[7] | Zheng WANG, Wei CHANG, Jun-cheng LI, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effects of alfalfa green manure on the yield, nitrogen absorption, and nitrogen translocation of feed maize [J]. Acta Prataculturae Sinica, 2024, 33(8): 63-73. |
[8] | Zhao-ben QI, Xiao-yan REN, Yi-tong LI, Jin-yun MA, Quan LIU. Enzyme extraction method and antioxidant activity of polysaccharides from red clover [J]. Acta Prataculturae Sinica, 2024, 33(6): 105-115. |
[9] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[10] | Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
[11] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[12] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[13] | Hai-wang YUE, Jian-wei WEI, Guang-cai WANG, Peng-cheng LIU, Shu-ping CHEN, Jun-zhou BU. Comprehensive evaluation of silage maize hybrids in the Huanghuaihai plain based on mega-environments delineated using envirotyping techniques [J]. Acta Prataculturae Sinica, 2024, 33(3): 120-138. |
[14] | Chao-nan MENG, Yu-jie ZHAO, Jia-xin CHEN, Yi-lu ZHANG, Yan-jia WANG, Li-rong FENG, Yu-gang SUN, Chang-hong GUO. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion [J]. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
[15] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||