Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (2): 67-80.DOI: 10.11686/cyxb2024101
Previous Articles Next Articles
Ning ZHANG1,2,3(), Jin-niu WANG1,2(), Dong-liang LUO4, Lin ZHANG5, Bo XU6, Yan WU1
Received:
2024-03-26
Revised:
2024-05-16
Online:
2025-02-20
Published:
2024-11-27
Contact:
Jin-niu WANG
Ning ZHANG, Jin-niu WANG, Dong-liang LUO, Lin ZHANG, Bo XU, Yan WU. Effects of seasonal snow cover thickness on biomass allocation of four dominant late flowering plants in an alpine meadow[J]. Acta Prataculturae Sinica, 2025, 34(2): 67-80.
处理 Treatment | 海拔 Elevation (m) | 形成日期 Date of formation (Month/day/year) | 消失日期 Date of disappearance (Month/day/year) | 持续时间 Duration time (d) | 最大雪厚 Maximum snow thickness (cm) |
---|---|---|---|---|---|
浅雪Shallow snow, SS | 3920 | 01/14/2012 | 04/28/2013 | 106 | 46 |
中雪Medium snow, MS | 3915 | 01/09/2012 | 05/01/2013 | 114 | 61 |
深雪Deep snow, DS | 3910 | 02/28/2012 | 05/13/2013 | 138 | 115 |
Table 1 Basic information on snow cover at the study sites
处理 Treatment | 海拔 Elevation (m) | 形成日期 Date of formation (Month/day/year) | 消失日期 Date of disappearance (Month/day/year) | 持续时间 Duration time (d) | 最大雪厚 Maximum snow thickness (cm) |
---|---|---|---|---|---|
浅雪Shallow snow, SS | 3920 | 01/14/2012 | 04/28/2013 | 106 | 46 |
中雪Medium snow, MS | 3915 | 01/09/2012 | 05/01/2013 | 114 | 61 |
深雪Deep snow, DS | 3910 | 02/28/2012 | 05/13/2013 | 138 | 115 |
Fig.2 Effect of snow cover thickness on the biomass and its biomass allocation of roots, stems, leaves and flowers of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
性状Trait | 物种效应PS | 雪被厚度效应PT | 物种×雪被厚度PS×PT | 随机效应Psite |
---|---|---|---|---|
根Root | <0.001 | 0.304 | <0.001 | 0.646 |
茎Stem | <0.001 | 0.223 | 0.166 | <0.001 |
叶Leaf | <0.001 | 0.181 | 0.020 | <0.001 |
花Flower | <0.001 | 0.044 | 0.922 | 0.951 |
营养器官生物量Vegetative organ biomass | <0.001 | 0.083 | 0.006 | 0.003 |
总生物量Total biomass | <0.001 | 0.098 | 0.031 | <0.001 |
Table 2 Analysis of mixed linear models on the impact of plant species and snow cover thickness on plant biomass of roots, stems, leaves and flowers
性状Trait | 物种效应PS | 雪被厚度效应PT | 物种×雪被厚度PS×PT | 随机效应Psite |
---|---|---|---|---|
根Root | <0.001 | 0.304 | <0.001 | 0.646 |
茎Stem | <0.001 | 0.223 | 0.166 | <0.001 |
叶Leaf | <0.001 | 0.181 | 0.020 | <0.001 |
花Flower | <0.001 | 0.044 | 0.922 | 0.951 |
营养器官生物量Vegetative organ biomass | <0.001 | 0.083 | 0.006 | 0.003 |
总生物量Total biomass | <0.001 | 0.098 | 0.031 | <0.001 |
Fig.3 Effects of snow cover thickness on allometric relationships between aboveground and belowground biomass of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
物种 Species | 协变量 Covariate | 繁殖分配 Reproductive distribution | 雪被厚度Snow cover thickness | 雪被效应PT | 植株大小效应PH/PB | 随机效应 Psite | ||
---|---|---|---|---|---|---|---|---|
浅雪SS | 中雪MS | 深雪DS | ||||||
线叶龙胆 G. farreri | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.185±0.046a | 0.247±0.037a | - | 0.687 | 0.368 | 0.911 |
繁殖分配RA | 0.233±0.022a | 0.212±0.018a | - | 0.665 | 0.531 | 0.956 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.200±0.042a | 0.257±0.034a | - | 0.638 | <0.001 | 0.937 | |
繁殖分配RA | 0.225±0.011a | 0.206±0.010a | - | 0.178 | 0.194 | 0.832 | ||
条叶垂头菊 C. lineare | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.066±0.011a | 0.065±0.020a | - | 0.551 | 0.521 | 0.969 |
繁殖分配RA | 0.082±0.017a | 0.076±0.030a | - | 0.422 | 0.540 | 0.865 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.137±0.011a | 0.114±0.024a | - | 0.867 | 0.050 | - | |
繁殖分配RA | 0.116±0.010a | 0.096±0.022a | - | 0.836 | 0.050 | - | ||
高山韭 A. sikkimense | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.025±0.005a | 0.032±0.004a | 0.623 | 0.458 | 0.714 |
繁殖分配RA | - | 0.252±0.024a | 0.227±0.017a | 0.899 | 0.053 | 0.943 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.035±0.002a | 0.030±0.001a | 0.313 | <0.001 | 0.931 | |
繁殖分配RA | - | 0.262±0.014a | 0.228±0.009a | 0.609 | 0.478 | 0.924 | ||
六叶龙胆 G. hexaphylla | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.081±0.020a | 0.117±0.016a | 0.621 | 0.266 | - |
繁殖分配RA | - | 0.209±0.022a | 0.252±0.018a | 0.480 | 0.805 | - | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.086±0.006a | 0.097±0.005a | 0.171 | <0.001 | 0.925 | |
繁殖分配RA | - | 0.211±0.013a | 0.223±0.011a | 0.515 | 0.047 | 0.925 |
Table 3 Linear mixed model analysis of reproductive distribution with different snow cover thickness of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
物种 Species | 协变量 Covariate | 繁殖分配 Reproductive distribution | 雪被厚度Snow cover thickness | 雪被效应PT | 植株大小效应PH/PB | 随机效应 Psite | ||
---|---|---|---|---|---|---|---|---|
浅雪SS | 中雪MS | 深雪DS | ||||||
线叶龙胆 G. farreri | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.185±0.046a | 0.247±0.037a | - | 0.687 | 0.368 | 0.911 |
繁殖分配RA | 0.233±0.022a | 0.212±0.018a | - | 0.665 | 0.531 | 0.956 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.200±0.042a | 0.257±0.034a | - | 0.638 | <0.001 | 0.937 | |
繁殖分配RA | 0.225±0.011a | 0.206±0.010a | - | 0.178 | 0.194 | 0.832 | ||
条叶垂头菊 C. lineare | 株高 Height (m) | 花生物量Flower (g·plant-1) | 0.066±0.011a | 0.065±0.020a | - | 0.551 | 0.521 | 0.969 |
繁殖分配RA | 0.082±0.017a | 0.076±0.030a | - | 0.422 | 0.540 | 0.865 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | 0.137±0.011a | 0.114±0.024a | - | 0.867 | 0.050 | - | |
繁殖分配RA | 0.116±0.010a | 0.096±0.022a | - | 0.836 | 0.050 | - | ||
高山韭 A. sikkimense | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.025±0.005a | 0.032±0.004a | 0.623 | 0.458 | 0.714 |
繁殖分配RA | - | 0.252±0.024a | 0.227±0.017a | 0.899 | 0.053 | 0.943 | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.035±0.002a | 0.030±0.001a | 0.313 | <0.001 | 0.931 | |
繁殖分配RA | - | 0.262±0.014a | 0.228±0.009a | 0.609 | 0.478 | 0.924 | ||
六叶龙胆 G. hexaphylla | 株高 Height (m) | 花生物量Flower (g·plant-1) | - | 0.081±0.020a | 0.117±0.016a | 0.621 | 0.266 | - |
繁殖分配RA | - | 0.209±0.022a | 0.252±0.018a | 0.480 | 0.805 | - | ||
总生物量 TB (g·plant-1) | 花生物量Flower (g·plant-1) | - | 0.086±0.006a | 0.097±0.005a | 0.171 | <0.001 | 0.925 | |
繁殖分配RA | - | 0.211±0.013a | 0.223±0.011a | 0.515 | 0.047 | 0.925 |
Fig.5 Effects of snow cover thickness on allometric relationships between vegetative organ and reproductive biomass of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
Fig.6 Response trait and effect trait to the change of environmental factors in alpine grassland of G. farreri, C. lineare, A. sikkimense and G. hexaphylla
1 | David V, Josefino C C, Ian A, et al. Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014: 317-382. |
2 | Zhang Z, Xiao P F, Zhang X L, et al. Analysis of the characteristics of snow albedo during the snowmelt period of the Qinghai-Tibet Plateau. Remote Sensing Technology and Application, 2019, 34(6): 1146-1154. |
张正, 肖鹏峰, 张学良, 等.青藏高原融雪期积雪反照率特性分析. 遥感技术与应用, 2019, 34(6): 1146-1154. | |
3 | Pauli J N, Zuckerberg B, Whiteman J P, et al. The subnivium: a deteriorating seasonal refugium. Frontiers in Ecology and the Environment, 2013, 11(5): 260-267. |
4 | Aalto J, Scherrer D, Lenoir J, et al. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environmental Research Letters, 2018, 13(7): 074003. |
5 | Jackson R B, Canadell J G, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108(3): 389-411. |
6 | Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14. |
7 | Niittynen P, Heikkinen R K, Luoto M. Snow cover is a neglected driver of Arctic biodiversity loss. Nature Climate Change, 2018, 8(11): 997-1001. |
8 | Stinson K A. Natural selection favors rapid reproductive phenology in Potentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany, 2004, 91(4): 531-539. |
9 | Christiansen C T, Lafreniére M J, Henry G H R, et al. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Global Change Biology, 2018, 24(8): 3508-3525. |
10 | Choler P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 2015, 12(12): 3885-3897. |
11 | Carlson B Z, Choler P, Renaud J, et al. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Annals of Botany, 2015, 116(6): 1023-1034. |
12 | Leinaas H P. Activity of Arthropoda in snow within a coniferous forest, with special reference to Collembola. Ecography, 1981, 4(2): 127-138. |
13 | Lucie Z, Bahar S, Florence B, et al. Microbial diversity in alpine tundra soils correlates with snow cover dynamics. The ISME Journal, 2009, 3(7): 850-859. |
14 | Weigelt A, Mommer L, Andraczek K, et al. An integrated framework of plant form and function: The belowground perspective. New Phytologist, 2021, 232(1): 42-59. |
15 | Dennis L H, Albert M G K T, Matilde R, et al. Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014: 159-254. |
16 | Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sensing of Environment, 2020, 243(1): 111781. |
17 | Bokhorst S, Pedersen S H, Brucker L, et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 2016, 45(5): 516-537. |
18 | Yang D M, Mao L C, Peng G Q. Within-twig biomass allocation in evergreen and deciduous broad-leaved species: Allometric scaling analyses. Bulletin of Botanical Research, 2011, 31(4): 472-477. |
杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究:异速生长分析. 植物研究, 2011, 31(4): 472-477. | |
19 | Kerkhoff A J, Enquist B J. Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 2006, 9(4): 419-427. |
20 | Gao J, Wang J N, Xu B, et al. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(8): 775-787. |
高景, 王金牛, 徐波, 等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究. 植物生态学报, 2016, 40(8): 775-787. | |
21 | Zhang N, Wang J N, Zhu N, et al. Plant traits of Stellera chamaejasme in the degraded grasslands of Mangco Lake, Tibet: Influences of altitudinal gradients and growth stages. Xizang Science and Technology, 2023, 45(11): 29-38. |
张宁, 王金牛, 朱牛, 等. 西藏芒康山莽措湖退化草地中瑞香狼毒的植物性状:不同海拔和发育阶段影响. 西藏科技, 2023, 45(11): 29-38. | |
22 | Bonser S P, Aarssen L W. Interpreting reproductive allometry: Individual strategies of allocation explain size dependent reproduction in plant populations. Perspectives in Plant Ecology Evolution and Systematics, 2009, 11(1): 31-40. |
23 | Fabbro T, Körner C. Altitudinal differences in flower traits and reproductive allocation. Flora-Morphology, Distribution, Functional Ecology of Plants, 2004, 199(1): 70-81. |
24 | Xue J, He J, Wang L, et al. Plant traits and biomass allocation of Gentiana hexaphylla on different slope aspects at the eastern margin of Qinghai-Tibet Plateau. Applied Ecology and Environmental Research, 2018, 16(2): 1835-1853. |
25 | Molau U. Relationships between flowering phenology and life history strategies in Tundra plants. Arctic and Alpine Research, 1993, 55(4): 391-402. |
26 | Baruah G, Molau U, Bai Y, et al. Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Scientific Reports, 2017, 7(1): 2571. |
27 | Olden J D, Poff N L, Bestgen K R. Life-history strategies predict fish invasions and extirpations in the Colorado river basin. Ecological Monographs, 2006, 76(1): 25-40. |
28 | Mouillot D, Graham N A J, Villéger S, et al. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 2013, 28(3): 167-177. |
29 | Zhang N, Wang J N, Shi N, et al. Differentiation patterns of current-year twig traits and biomass allocation of two dominant coniferous trees along an altitudinal gradient on the eastern edge of the Tibetan Plateau. Acta Eclogica Sinica, 2023, 43(23): 9814-9826. |
张宁, 王金牛, 石凝, 等. 岷江源区两种优势针叶树当年生小枝性状与生物量分配随海拔的分异规律. 生态学报, 2023, 43(23): 9814-9826. | |
30 | Wang J N, Zhou T Y, Gao J, et al. Effect of different snow depths on plant traits at individual and functional group levels in an alpine meadow. Pratacultural Science, 2019, 36(4): 1126-1136. |
王金牛, 周天阳, 高景, 等. 不同积雪厚度下的高山草地植物个体与功能群水平的性状. 草业科学, 2019, 36(4): 1126-1136. | |
31 | Li J H, Zhang R, Cheng B H, et al. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau. Land Degradation & Development, 2020, 32(3): 1467-1477. |
32 | Chen Y, Collins S L, Zhao Y, et al. Warming reduced flowering synchrony and extended community flowering season in an alpine meadow on the Tibetan Plateau. Ecology, 2022, 104(1): e3862. |
33 | Zhu J, Zhang Y J, Wang W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biology Letters, 2016, 12(7): 20150749. |
34 | Berdanier A B, Klein J A. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems, 2011, 14(6): 963-974. |
35 | Wadgymar S M, Ogilvie J E, Inouye D W, et al. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. New phytologist, 2018, 218(2): 517-529. |
36 | Zhou T Y, Wang J N, Du W T, et al. Litter decomposition of alpine meadow under seasonal snow cover. Chinese Journal of Applied & Environmental Biology, 2019, 25(1): 1-8. |
周天阳, 王金牛, 杜文涛, 等. 季节性积雪下的高山草地凋落物分解. 应用与环境生物学报, 2019, 25(1): 1-8. | |
37 | Wang L H, Gao J, Wang J N, et al. Adaptation of traits and biomass allocation of Pedicularis longiflora to different slope aspects in an alpine meadow. Chinese Journal of Applied & Environmental Biology, 2017, 23(4): 648-657. |
王丽华, 高景, 王金牛, 等. 高山草地长花马先蒿的性状和生物量分配对坡向的适应. 应用与环境生物学报, 2017, 23(4): 648-657. | |
38 | Chen W N, Wu Y, Wu N, et al. Changes of five alpine species’ individual growth along snowmelt gradient. Journal of Wuhan Botanical Research, 2009, 27(6): 629-636. |
陈文年, 吴彦, 吴宁, 等. 五种高山植物的个体生长在融雪梯度上的变化. 武汉植物学研究, 2009, 27(6): 629-636. | |
39 | Suding K N, Lavorel S, Chapin F S I, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 2008, 14(5): 1125-1140. |
40 | Hou Q Z, Wen J, Li H C, et al. Reproductive allocation of three Gentianaceae species. Pratacultural Science, 2017, 34(5): 1017-1023. |
侯勤正, 文静, 李昊聪, 等. 3种龙胆科植物的资源分配对策. 草业科学, 2017, 34(5): 1017-1023. | |
41 | Fan Y, Miguez-Macho G, Jobbágy E G, et al. Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10572-10577. |
42 | Slatyer R A, Umbers K D L, Arnold P A. Ecological responses to variation in seasonal snow cover. Conservation Biology, 2021, 36(1): e13727. |
43 | Wang X, Wang T, Guo H, et al. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biology, 2017, 24(4): 1651-1662. |
44 | Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature, 1993, 361(6408): 140-142. |
45 | Sun J, Ma B, Lu X. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 2018, 29(2): 337-348. |
46 | Diggle P K, Meixner M A, Carroll A B, et al. Barriers to sexual reproduction in Polygonum viviparum: A comparative developmental analysis of P. viviparum and P. bistortoides. Annals of Botany, 2002, 89(2): 145-156. |
47 | Gadgil M, Solbrig O T. The concept of r- and K-selection: Evidence from wild flowers and some theoretical considerations. American Naturalist, 1972, 106(947): 14-31. |
48 | Vorkauf M, Kahmen A, Körner C, et al. Flowering phenology in alpine grassland strongly responds to shifts in snowmelt but weakly to summer drought. Alpine Botany, 2021, 131(1): 73-88. |
49 | Austen E J, Rowe L, Stinchcombe J R, et al. Explaining the apparent paradox of persistent selection for early flowering. New Phytologist, 2017, 215(3): 929-934. |
50 | Iwasa Y, Cohen D. Optimal growth schedule of a perennial plant. The American Naturalist, 1989, 133(4): 480-505. |
51 | Wang Y, Hu L J, Duan Y W, et al. Altitudinal variations in reproductive allocation of Bergenia purpurascens (Saxifragaceae). Plant Diversity, 2010, 32(3): 270-280. |
52 | Jongejans E, de Kroon H, Berendse F. The interplay between shifts in biomass allocation and costs of reproduction in four grassland perennials under simulated successional change. Oecologia, 2006, 147(2): 369-378. |
53 | Hemborg A M, Karlsson P S. Altitudinal variation in size effects on plant reproductive effort and somatic costs of reproduction. Ecoscience, 1998, 5(4): 517-525. |
54 | Worley A C, Harder L D. Size-dependent resource allocation and costs of reproduction in Pinguicula vulgaris (Lentibulariaceae). Journal of Ecology, 1996, 84(2): 195-206. |
[1] | Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12. |
[2] | Peng WANG, Zheng JIN, Ting YU, Kang-qiang QIN, Xin-ya SANG, Jian-ping TAO, Wei-xue LUO. Prediction of the potential distribution of Curcuma in China under current and future climate scenarios [J]. Acta Prataculturae Sinica, 2024, 33(10): 14-27. |
[3] | Zi-jing LI, Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN. Research status and suggestions for grassland carbon sequestration and emission reduction in China [J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. |
[4] | Xiao-min FAN, Xin JING, Bo-wen XIAO, Xiao-liang MA, Jin-sheng HE. Climate and land-use change jointly determine the spatial-temporal changes of ecosystem services in Hainan and Haibei Tibetan Autonomous Prefectures, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(12): 17-30. |
[5] | Wen-hui GUO, Run-yuan GU, Feng DING. Spring phenological characteristics of dandelion and plantain in Shandong Province and their responses to climate change [J]. Acta Prataculturae Sinica, 2021, 30(12): 27-38. |
[6] | Hui-long LIN, Di FAN, Qi-sheng FENG, Tian-gang LIANG. New focus for the study of the Comprehensive Sequential Classification System for grassland: A review from 2008 to 2020 and prospects for future research [J]. Acta Prataculturae Sinica, 2021, 30(10): 201-213. |
[7] | GUO Qiang, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of meteorological factors on the population of plateau zokor [J]. Acta Prataculturae Sinica, 2020, 29(8): 188-194. |
[8] | Qian-qian MA, Tong LIU, He-gan DONG, Han-yue WANG, Wen-xuan ZHAO, Rui-li WANG, Yan LIU, Le CHEN. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change [J]. Acta Prataculturae Sinica, 2020, 29(12): 73-85. |
[9] | ZHANG Zhi-qi, ZHANG Li-xu, XU Wei, WANG Hao, WANG Jin-zhou, WANG Wei, HE Jin-sheng. Several important issues of soil respiration under climate warming [J]. Acta Prataculturae Sinica, 2019, 28(9): 164-173. |
[10] | WANG Duo-bin, JI Chang-ting, LIN Hui-long. A ‘denitrification-decomposition’ (DNDC) model evaluation of alpine meadow soil carbon response to climate change [J]. Acta Prataculturae Sinica, 2019, 28(12): 197-204. |
[11] | WANG Ying-xin, CHEN Xian-jiang, LOU Shan-ning, HU An, REN Jin-fei, HU Jun-qi, ZHANG Jing, HOU Fu-jiang. Woody-plant encroachment in grasslands: a review of mechanisms and aftereffects [J]. Acta Prataculturae Sinica, 2018, 27(5): 219-227. |
[12] | GUO Ding, GUO Wen-fei, ZHAO Jian, Temuqiletu, LI Xu-dong, FU Hua, LUO Yi-qi. Modeled effects of precipitation, temperature, and CO2 changes on carbon dynamics in grassland and cropland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(2): 1-14. |
[13] | CHEN Lin, LI Yue?fei, SU Ying, SONG Nai?ping, YANG Xin?guo, WANG Lei,BIAN Ying?ying, YANG Li?na. Size?dependent reproductive allocation of Artemisia scoparia in different habitats on the desert steppe [J]. Acta Prataculturae Sinica, 2018, 27(12): 79-93. |
[14] | GENG Yuan-bo, WANG Song, HU Xue-di. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model [J]. Acta Prataculturae Sinica, 2018, 27(1): 1-13. |
[15] | ZHANG Ying, ZHANG Chao-Bin, WANG Zhao-Qi, YANG Yue, ZHANG Yan-Zhen, LI Jian-Long, AN Ru. Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China [J]. Acta Prataculturae Sinica, 2017, 26(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||