Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (3): 1-12.DOI: 10.11686/cyxb2023146
Zhi-yuan YOU1(), Shu-juan MA1(), Chang-ting WANG1(), Lu-ming DING1, Xiao-yan SONG1, Gao-fei YIN2, Jun MAO1
Received:
2023-05-08
Revised:
2023-07-24
Online:
2024-03-20
Published:
2023-12-27
Contact:
Chang-ting WANG
Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau[J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12.
模型评估指标Model evaluation metrics | 矮嵩草K. humilis | 垂穗披碱草E. nutans | 鹅绒委陵菜P. anserina | 异叶米口袋G. diversifolia |
---|---|---|---|---|
训练集AUC值Training AUC | 0.9462 | 0.9503 | 0.9128 | 0.9082 |
测试集AUC值Testing AUC | 0.9309 | 0.9365 | 0.8701 | 0.8967 |
AUC标准偏差AUC standard deviation (SD) | 0.0178 | 0.0187 | 0.0344 | 0.0311 |
Table 1 AUC values and standard deviations of 4 study species
模型评估指标Model evaluation metrics | 矮嵩草K. humilis | 垂穗披碱草E. nutans | 鹅绒委陵菜P. anserina | 异叶米口袋G. diversifolia |
---|---|---|---|---|
训练集AUC值Training AUC | 0.9462 | 0.9503 | 0.9128 | 0.9082 |
测试集AUC值Testing AUC | 0.9309 | 0.9365 | 0.8701 | 0.8967 |
AUC标准偏差AUC standard deviation (SD) | 0.0178 | 0.0187 | 0.0344 | 0.0311 |
环境因子Variables | 矮嵩草K. humilis | 垂穗披碱草E. nutans | 鹅绒委陵菜P. anserina | 异叶米口袋G. diversifolia |
---|---|---|---|---|
年均温Annual mean temperature | 13.4 | 13.2 | 15.1 | 17.8 |
等温性Isothermality | 31.5 | 15.8 | 27.2 | 40.3 |
气温年较差Temperature annual range | 49.1 | 63.7 | 48.0 | 33.8 |
年均降水量Annual mean precipitation | 1.6 | 6.7 | 6.2 | 4.8 |
降水季节性变异系数Precipitation seasonality | 3.8 | 0.2 | 3.4 | 2.4 |
海拔Elevation | 0.7 | 0.4 | 0.2 | 0.9 |
Table 2 Contribution rate of environmental factors (%)
环境因子Variables | 矮嵩草K. humilis | 垂穗披碱草E. nutans | 鹅绒委陵菜P. anserina | 异叶米口袋G. diversifolia |
---|---|---|---|---|
年均温Annual mean temperature | 13.4 | 13.2 | 15.1 | 17.8 |
等温性Isothermality | 31.5 | 15.8 | 27.2 | 40.3 |
气温年较差Temperature annual range | 49.1 | 63.7 | 48.0 | 33.8 |
年均降水量Annual mean precipitation | 1.6 | 6.7 | 6.2 | 4.8 |
降水季节性变异系数Precipitation seasonality | 3.8 | 0.2 | 3.4 | 2.4 |
海拔Elevation | 0.7 | 0.4 | 0.2 | 0.9 |
1 | The Intergovernmental Panel on Climate Change. Climate change 2022: impacts, adaptation, and vulnerability. Cambridge, UK and New York, USA: Cambridge University Press, 2022. |
2 | Jiang T, Zhai J Q, Luo Y, et al. Understandings of assessment reports on climate change impacts, adaptation and vulnerability: progress from IPCC AR5 to AR6. Transactions of Atmospheric Sciences, 2022, 45(4): 502-511. |
姜彤, 翟建青, 罗勇, 等. 气候变化影响适应和脆弱性评估报告进展: IPCC AR5到AR6的新认知. 大气科学学报, 2022, 45(4): 502-511. | |
3 | Chen D L, Xu B Q, Yao T D, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3025-3035. |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 2015, 60(32): 3025-3035. | |
4 | Yao T D. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Science Bulletin, 2019, 64(7): 417. |
5 | Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2022, 416(6879): 389-395. |
6 | Piao S L, Zhang X Z, Wang T, et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 2019, 64(27): 2842-2855. |
朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈. 科学通报, 2019, 64(27): 2842-2855. | |
7 | Han M L, Bai S Q, Sun S N, et al. Simulation of Elymus sibiricus L. distribution in Tibetan Plateau based on MaxEnt model. Acta Agrestia Sinica, 2021, 29(2): 374-382. |
韩梦丽, 白史且, 孙盛楠, 等. 基于MaxEnt模型青藏高原老芒麦适生区模拟预测. 草地学报, 2021, 29(2): 374-382. | |
8 | Zhao W L, Chen H G, Yuan Y Y, et al. The impact of climate change on the distribution pattern of the suitable growing region for Tibetan medicine Lamiophlomis rotata. Acta Agrestia Sinica, 2021, 29(5): 956-964. |
赵文龙, 陈红刚, 袁永亚, 等. 气候变化对藏药独一味适生区分布格局的影响. 草地学报, 2021, 29(5): 956-964. | |
9 | Dong R, Chu B, Hua R, et al. Geographical distribution prediction of Stellera chamaejasme in the Qinghai-Tibet Plateau under future climate change scenarios. Chinese Journal of Grassland, 2022, 44(4): 10-20. |
董瑞, 楚彬, 花蕊, 等. 未来气候情景下青藏高原瑞香狼毒(Stellera chamaejasme)的地理分布预测. 中国草地学报, 2022, 44(4): 10-20. | |
10 | Geng Y B, Wang S, Hu X D. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model. Acta Prataculturae Sinica, 2018, 27(1): 1-13. |
耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟. 草业学报, 2018, 27(1): 1-13. | |
11 | Zhang F W, Li Y Q, Li Y N, et al. Short-term response of functional plant groups abundance to simulated climate change in alpine meadow ecosystems. Acta Prataculturae Sinica, 2010, 19(6): 72-78. |
张法伟, 李跃清, 李英年, 等. 高寒草甸不同功能群植被盖度对模拟气候变化的短期响应. 草业学报, 2010, 19(6): 72-78. | |
12 | Bengtsson J. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Applied Soil Ecology, 1998, 10(3): 191-199. |
13 | Wang C T, Long R J, Ding L M. The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities. Biodiversity Science, 2004, 12(4): 403-409. |
王长庭, 龙瑞军, 丁路明. 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响. 生物多样性, 2004, 12(4): 403-409. | |
14 | Yang X H, Bao Y J, Han G D, et al. Plant functional groups and their applications in ecology research. Journal of Dalian Minzu University, 2009, 11(5): 397-400, 409. |
杨晓慧, 鲍雅静, 韩国栋, 等. 植物功能群及其在生态学研究中的应用. 大连民族学院学报, 2009, 11(5): 397-400, 409. | |
15 | Yang Y J, Zhou H K, Yao B Q, et al. Effects of long-term simulated warming on soil physicochemical properties and plant chemical components of Kobresia humilis meadow. Chinese Journal of Ecology, 2015, 34(3): 781-789. |
杨月娟, 周华坤, 姚步青, 等. 长期模拟增温对矮嵩草草甸土壤理化性质与植物化学成分的影响. 生态学杂志, 2015, 34(3): 781-789. | |
16 | Jiang Y B, Fan M, Zhang Y J. Effect of short-term warming on plant community features of alpine meadow in Northern Tibet. Chinese Journal of Ecology, 2017, 36(3): 616-622. |
姜炎彬, 范苗, 张扬建. 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 2017, 36(3): 616-622. | |
17 | Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, 37(12): 4302-4315. |
18 | Fan X W, Miao C Y, Duan Q Y, et al. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. Journal of Geophysical Research: Atmospheres, 2020, 125(18): 1-16. |
19 | Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (Scenario MIP). Climate Change Research, 2019, 15(5): 519-525. |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(Scenario MIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525. | |
20 | Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 2013, 21(1): 90-98. |
朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 2013, 21(1): 90-98. | |
21 | Guo Y L, Zhao Z F, Qiao H J, et al. Challenges and development trend of species distribution model. Advances in Earth Science, 2020, 35(12): 1292-1305. |
郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势. 地球科学进展, 2020, 35(12): 1292-1305. | |
22 | Xiong Q L, He Y L, Deng F Y, et al. Assessment of alpine mean response to climate change in Southwest China based on MaxEnt Model. Acta Ecologica Sinica, 2019, 39(24): 9033-9043. |
熊巧利, 何云玲, 邓福英, 等. 基于MaxEnt模型西南地区高山植被对气候变化的响应评估. 生态学报, 2019, 39(24): 9033-9043. | |
23 | Pan S A, Li X H, Feng Q H, et al. Response of Abies faxoniana to future climate change and its potential distribution patterns in Sichuan Province. Acta Ecologica Sinica, 2022, 42(10): 4055-4064. |
潘少安, 李旭华, 冯秋红, 等. 四川省岷江冷杉对气候变化的响应及其潜在分布格局. 生态学报, 2022, 42(10): 4055-4064. | |
24 | Myers N, Mittermeier R A, Mittermeier C G. Biodiversity hotspots for conservation priorities. Nature, 2000, 403(6772): 853-858. |
25 | Zhang Y X, Li Y, Zhu G R. The effects of altitude on temperature, precipitation and climatic zone in the Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 2019, 41(3): 505-515. |
张宇欣, 李育, 朱耿睿. 青藏高原海拔要素对温度、降水和气候型分布格局的影响. 冰川冻土, 2019, 41(3): 505-515. | |
26 | Yang X Q, Kushwaha S P S, Saran S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 2013, 51: 83-87. |
27 | Yan W B, Wang Q, Wang C. Evaluation of potential breeding habitat distribution with Maxent model for crested ibis in the Qinling-Bashan region. Chinese Journal of Zoology, 2015, 50(2): 185-193. |
颜文博, 王琦, 王超. 应用Maxent模型分析秦巴地区朱鹮适宜繁殖地的分布. 动物学杂志, 2015, 50(2): 185-193. | |
28 | Swanepoel L H, Lindsey P, Somers M J, et al. Extent and fragmentation of suitable leopard habitat in South Africa. Animal Conservation, 2013, 16(1): 41-50. |
29 | Wang B Z, Zhu Y J, Liu Y S, et al. Potential distribution patterns of Stipa bungeana in China and the major factors influencing distribution. Acta Prataculturae Sinica, 2019, 28(7): 3-13. |
王百竹, 朱媛君, 刘艳书, 等. 典型草原建群种长芒草(Stipa bungeana)在中国的潜在分布范围预测及主要影响因子分析. 草业学报, 2019, 28(7): 3-13. | |
30 | Li W Q, Xu Z F, Shi M M, et al. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios. Acta Ecologica Sinica, 2019, 39(9): 3224-3234. |
李文庆, 徐洲锋, 史鸣明, 等. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测. 生态学报, 2019, 39(9): 3224-3234. | |
31 | Zhang M G, Slik J W F, Ma K P. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Scientific Reports, 2016, 6(1): 22400. |
32 | Wu S J, Zhu T H, Qiao T M. Projections of Yunnan pine moth Dendrolimus houi in Sichuan Province under future climate change based on species distribution model. Journal of Plant Protection, 2021, 48(4): 882-890. |
吴思俊, 朱天辉, 谯天敏. 基于物种分布模型对未来气候变化下云南松毛虫在四川省适生区的预测. 植物保护学报, 2021, 48(4): 882-890. | |
33 | Wu T W, Lu Y X, Fang Y J, et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development, 2019, 12(4): 1573-1600. |
34 | Xin X G, Wu T W, Zhang J, et al. Introduction of BCC models and its participation in CMIP6. Climate Change Research, 2019, 15(5): 533-539. |
辛晓歌, 吴统文, 张洁, 等. BCC模式及其开展的CMIP6试验介绍. 气候变化研究进展, 2019, 15(5): 533-539. | |
35 | Jin C X, Jiang C, Zhang X Y. Evaluation and projection of temperature in southwestern China by CMIP6 models. Chinese Journal of Agrometeorology, 2022, 43(8): 597-611. |
晋程绣, 姜超, 张曦月. CMIP6模式对中国西南地区气温的模拟与预估. 中国农业气象, 2022, 43(8): 597-611. | |
36 | Zhang J Y, Lun Y R, Liu L, et al. CMIP6 evaluation and projection of climate change in Tibetan Plateau. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 77-89. |
张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89. | |
37 | Phillips S J, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31(2): 161-175. |
38 | Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40(7): 887-893. |
39 | Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240(4857): 1285-1293. |
40 | Liu C, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 2013, 40(4): 778-789. |
41 | Yu X, Chen J C, Wang B, et al. Population density estimation and habitat suitability assessment of Lophophorus lhuysii during breeding season in Xiaozhaizigou National Nature Reserve, Sichuan Province. Sichuan Journal of Zoology, 2017, 36(4): 361-367. |
余翔, 陈俊橙, 王彬, 等. 四川小寨子沟国家级自然保护区绿尾虹雉种群密度调查与栖息地评价. 四川动物, 2017, 36(4): 361-367. | |
42 | Pearson R G, Dawson T P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 2003, 12(5): 361-371. |
43 | Li J L, Li X L. Research progress on environmental adaptability of Kobresia humilis in alpine meadow. Ecological Science, 2016, 35(2): 156-165. |
李积兰, 李希来. 高寒草甸矮嵩草的环境适应性研究进展. 生态科学, 2016, 35(2): 156-165. | |
44 | Dandois J P, Olano M, Ellis E C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing, 2015, 7(10): 13895-13920. |
45 | Li M J, He Z S, Jiang L, et al. Distribution pattern and driving factors of species diversity and phylogenetic diversity along altitudinal gradient on the south slope of Daiyun Mountain. Acta Ecologica Sinica, 2021, 41(3): 1148-1157. |
李梦佳, 何中声, 江蓝, 等. 戴云山物种多样性与系统发育多样性海拔梯度分布格局及驱动因子. 生态学报, 2021, 41(3): 1148-1157. | |
46 | Pan X, Qiu Q, Li J Y, et al. Physiological indexes of six plant species from the Tibetan plateau under drought stress. Acta Ecologica Sinica, 2014, 34(13): 3558-3567. |
潘昕, 邱权, 李吉跃, 等. 干旱胁迫对青藏高原6种植物生理指标的影响. 生态学报, 2014, 34(13): 3558-3567. | |
47 | Xu X K, Chen H, Levy J K. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chinese Science Bulletin, 2008, 53(6): 915-922. |
48 | Qu T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 73(2): 126-135. |
曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 73(2): 126-135. | |
49 | Fan Q S, Sha Z J, Cao G C, et al. Assessment of ecology and environments on climate changing of Qinghai-Tibet Plateau. Journal of Salt Lake Research, 2005, 13(1): 12-18. |
樊启顺, 沙占江, 曹广超, 等.气候变化对青藏高原生态环境的影响评价. 盐湖研究, 2005, 13(1): 12-18. | |
50 | Liu W S, You J L, Zeng W B, et al. Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model. Chinese Journal of Grassland, 2018, 40(5): 43-49. |
刘文胜, 游简舲, 曾文斌, 等. 气候变化下青藏苔草地理分布的预测. 中国草地学报, 2018, 40(5): 43-49. | |
51 | Cai W T, Lai L M, Li H Y, et al. Progress of research on shrub encroachment in grassland. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 531-537. |
蔡文涛, 来利明, 李贺祎, 等. 草地灌丛化研究进展. 应用与环境生物学报, 2016, 22(4): 531-537. | |
52 | Ma W M, Liu J, Zhou Q P, et al. Stability of soil aggregates and soil organic carbon under shrub encroachment sites in alpine meadow. Chinese Journal of Soil Science, 2019, 50(5): 1108-1115. |
马文明, 刘军, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及有机碳分布特征的影响. 土壤通报, 2019, 50(5): 1108-1115. |
[1] | Yuan MA, Xiao-li WANG, Yu-shou MA, De-gang ZHANG. Effects of the degree of alpine meadow degradation on the rhizosphere soil fungal community and the ecological network of dominant species [J]. Acta Prataculturae Sinica, 2024, 33(2): 125-137. |
[2] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[3] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[4] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[5] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[6] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[7] | Zi-jing LI, Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN. Research status and suggestions for grassland carbon sequestration and emission reduction in China [J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. |
[8] | Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê [J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46. |
[9] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[10] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[11] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[12] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[13] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[14] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
[15] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||