Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (10): 191-200.DOI: 10.11686/cyxb2021117
Hui WANG1(), Hao-qi TIAN1(), Pei-sheng MAO2, Wen-hui LIU3, Zhi-feng JIA3, Lu-ping WEI1, Qing-ping ZHOU1()
Received:
2021-03-29
Revised:
2021-05-17
Online:
2021-09-16
Published:
2021-09-16
Contact:
Qing-ping ZHOU
Hui WANG, Hao-qi TIAN, Pei-sheng MAO, Wen-hui LIU, Zhi-feng JIA, Lu-ping WEI, Qing-ping ZHOU. Progress in research on the photosynthetic characteristics of green non-leaf organs in plants[J]. Acta Prataculturae Sinica, 2021, 30(10): 191-200.
1 | USCB. World population 1950-2050. (2012.1.5) [2021.6.22]. http://www.census.gov/population/international/data/idb/worldpopgraph.php. |
2 | FAO. Global agriculture towards 2050//Briefing paper for FAO high-level expert forum on “How to feed the world 2050”. Rome: The Food and Agriculture Organization, 2009: 21-23. |
3 | Tilman D, Christian B, Jason H, et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Ences of the United States of America, 2011, 108(50): 20260-20264. |
4 | Li X, Liu N, You L, et al. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security.PLoS One, 2016, 11(7): 1-18. |
5 | Ray D K, Navin R, Nathaniel D M, et al. Recent patterns of crop yield growth and stagnation. Nature Communication, 2012, 3(1): 1-7. |
6 | Long S, Marshall-Colon A, Zhu X. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161(1): 56-66. |
7 | Simkin A J, López-Calcagno P E, Raines C A. Feeding the world: Improving photosynthetic effciency for sustainable crop production. Journal of Experimental Botany, 2019, 70(4): 1119-1140. |
8 | Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118. |
9 | Loomis R S, Williams W A. Maximum crop poductivity: An extimate. Crop Science, 1963, 1(3): 67-72. |
10 | Simkin A J, Faralli M, Ramamoorthy S, et al. Photosynthesis in non‐foliar tissues: Implications for yield. Plant Journal, 2020, 101(4): 1001-1015. |
11 | Brazel A J, Ó’Maoiléidigh D S. Photosynthetic activity of reproductive organs. Journal of Experimental Botany, 2019, 70(6): 1734-1754. |
12 | Aschan G, Pfanz H. Non-foliar photosynthesis-a strategy of additional carbon acquisition. Flora, 2003, 198(2): 81-97. |
13 | Hu L, Zhang Y, Xia H, et al. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiologia Plantarum, 2019, 166(1): 226-239. |
14 | Wang H, Hou L, Mao P. Contribution of the pod wall to seed grain filling in alfalfa. Scientific Reports, 2016, 6(26586): 1-7. |
15 | Zhang C, Zhan D, Luo H, et al. Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica, 2016, 54(1): 12-18. |
16 | Lu Z, Pan Y, Hu W, et al. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency.BMC Plant Biology, 2017, 17(1): 240. |
17 | AuBuchon-Elder T, Coneva V, Goad D M, et al. Sterile spikelets contribute to yield in sorghum and related grasses. The Plant Cell, 2020, 32(11): 3500-3518. |
18 | Ávila-Lovera E, Zerpa A J, Santiago L S. Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist, 2017, 216(4): 1119-1129. |
19 | Kitaya Y, Yabuki K, Kiyota M, et al. Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species. Trees, 2002, 16(2/3): 155-158. |
20 | Noodén L D, Jessica P. Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 2001, 52(364): 2151-2159. |
21 | Tambussi E A, Salvador N, José L A. Ear of durum wheat under water stress. Planta, 2005, 221(1): 446-458. |
22 | Martinez D E, Luquez V M, Bartoli C G, et al. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum). Physiologia Plantarum, 2010, 119(4): 519-525. |
23 | Hein J A, Mark E S, Kirk P M, et al. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress. BMC Plant Biology, 2016, 16(1): 1-12. |
24 | Allen E J, Morgan D G, Ridgman W J. A physiological analysis of the growth of oilseed rape. Journal of Agricultural Science, 1971, 77(2): 339-341. |
25 | Rut S B, Molero G, Reynolds P, et al. Photosynthetic contribution of the ear to grain filling in wheat: A comparison of different methodologies for evaluation. Journal of Experimental Botany, 2016, 67(9): 2787-2798. |
26 | Zhang Y P, Wang Z M, Wang P, et al. Photosynthetic characteristics of population of winter wheat in water-saving and high-yielding cultivation. Scientia Agricultura Sinica, 2003, 36(10): 1143-1149. |
张永平, 王志敏, 王璞, 等. 冬小麦节水高产栽培群体光合特征. 中国农业科学, 2003, 36(10): 1143-1149. | |
27 | Wang C. The relationship between photosynthetic organs and grain yield and protein content in different wheat varieties. Tai’an: Shandong Agriculture University, 2011. |
王超. 小麦不同光合器官与籽粒产量及蛋白质含量的关系. 泰安: 山东农业大学, 2011. | |
28 | Araus J L, Brown H R, Febrero A, et al. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell and Environment, 2006, 16(4): 383-392. |
29 | Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica, 2001, 39(2): 239-244. |
30 | Urs F, Iwona A, Tadahiko M. Rubiscolytics: Fate of rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 2007, 59(7): 1615-1624. |
31 | Lopes M S, Cortadellas N, Kichey T, et al. Wheat nitrogen metabolism during grain filling: Comparative role of glumes and the flag leaf. Planta, 2006, 225(1): 165-181. |
32 | Maydup M L, Antonietta M, Graciano C, et al. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Research, 2014, 167(10): 102-111. |
33 | Ishihara K, Takada A, Imaizumi N. On the contribution of panicle photosynthesis to grain yield in rice plants. Japanese Journal of Crop Science, 1991, 60(1): 122-123. |
34 | Imaizumi N, Usuda H, Nakamoto H, et al. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell and Physiology, 1990, 31(6): 835-844. |
35 | Hu Y, Zhang Y, Luo H, et al. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2012, 235(2): 325-336. |
36 | Zhang J X, Xue L H, Yin L, et al. Effect of pod shading on pod and seed matter accumulation at soybean seed formation stage. Agricultural Research in Arid Areas, 2008, 26(3): 128-132. |
章建新, 薛丽华, 伊力, 等. 大豆始粒期荚遮光对荚粒物质积累的影响. 干旱地区农业研究, 2008, 26(3): 128-132. | |
37 | Yang Y, Cang J, Wang X D, et al. Photosynthetic characteristics of soybean pod and its contribution to yield.Journal of Northeast Agricultural University, 2008, 39(12): 51-56. |
杨阳, 苍晶, 王学东, 等. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12): 51-56. | |
38 | Li J X, Zhang J X, Lv S P. Photosynthetic characteristics in pod and leaves of high-yield spring soybean. Soybean Science, 2009, 28(6): 1026-1030. |
李金霞, 章建新, 吕淑萍. 高产春大豆豆荚与叶片的光合性能研究. 大豆科学, 2009, 28(6): 1026-1030. | |
39 | Liu H M, Li Y, Bu G J, et al. Effects of photosynthate transportation and distribution in soybean pods on the development of soybean seeds. Journal of Nuclear Agricultural Sciences, 2008, 22(4): 519-523. |
刘洪梅, 李英, 卜贵军, 等. 豆荚光合物质转运与分配对籽粒发育的影响. 核农学报, 2008, 22(4): 519-523. | |
40 | Hetherington S E, Smillie R M, Davies W J. Photosynthetic activities of vegetative and fruiting tissues of tomato. Journal of Experimental Botany, 1998, 49(324): 1173-1181. |
41 | Birkhold K T, Koch K E, Darnell R L. Carbon and nitrogen economy of developing rabbiteye blueberry fruit. Journal of the American Society for Horticultural Science, 1992, 117(1): 139-145. |
42 | Chen J, Zhang S, Zhang L, et al. Fruit photosynthesis and assimilate translocation and partitioning: Their characteristics and role in sugar accumulation in developing Citrus unshiu fruit.Acta Botanica Sinica, 2002, 44(2): 158-163. |
43 | Wang W J, Zu Y G, Meng Q H, et al. CO2 exchange characteristics of Eupatorium adenophorum Spreng. Acta Ecological Sinica, 2005, 25(8): 1898-1907. |
王文杰, 祖元刚, 孟庆焕, 等. 紫茎泽兰的CO2交换特性. 生态学报, 2005, 25(8): 1898-1907. | |
44 | Zu Y G, Zhang Z H, Wang W J, et al. Different characteristics of photosynthesis in stems and leaves of Mikania micranth. Chinese Journal of Plant Ecology, 2006, 30(6): 998-1004. |
祖元刚, 张衷华, 王文杰, 等. 薇甘菊叶和茎的光合特性. 植物生态学报, 2006, 30(6): 998-1004. | |
45 | Esteban R, Olascoaga B, Becerril J M, et al. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiologia Plantarum, 2010, 140(1): 69-78. |
46 | Tinoco-Ojanguren C. Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert. Journal of Arid Environments, 2008, 72(3): 127-140. |
47 | Marshall C, Sagar G R. The distribution of assimilates in Lolium multiflorum Lam. following differential defoliation. Annals of Botany, 1968, 32(4): 715-719. |
48 | Hodgkinson K C. Influence of partial defoliation on photosynthesis, photorespiration and transpiration by lucerne leaves of different ages. Functional Plant Biology, 1974, 1(4): 561-578. |
49 | Heichel G H, Turner N C. CO2 assimilation of primary and regrowth foliage of red maple (Acer rubrum L.) and red oak (Quercus rubra L.): Response to defoliation. Oecologia, 1983, 57(1): 14-19. |
50 | Leng S H, Zhu G R. The effects of leaves during flowering and pod formation on rape seed yield. Chinese Journal of Oil Crop Science, 1989, 5(3): 25-29. |
冷锁虎, 朱耕如. 油菜花角期叶片对产量的影响. 中国油料作物学报, 1989, 5(3): 25-29. | |
51 | Liu W D, Yin J, Li L. Effect of leaf removal on photosynthetic rate and yield per stem in different spike-type wheat varieties. Journal of Triticeae Crops, 2007, 27(2): 318-322. |
刘万代, 尹钧, 李磊. 剪叶对不同穗型小麦品种光合速率及单茎产量的影响. 麦类作物学报, 2007, 27(2): 318-322. | |
52 | Frioni T, Acimovic D, Tombesi S, et al. Changes in within-shoot carbon partitioning in Pinot noir grapevines subjected to early basal leaf removal. Frontiers in Plant Science, 2018, 9: 1122. |
53 | Liu H, Chu W K, Teng A D, et al. The influence of defoliation on tuber biomass and matter allocation in Jerusalem artichoke. Acta Agrestia Sinica, 2016, 24(5): 1114-1118. |
刘辉, 初文凯, 滕爱娣, 等. 去叶对菊芋块茎产量及物质分配规律的相关性研究. 草地学报, 2016, 24(5): 1114-1118. | |
54 | Maydup M L, Antonietta M, Guiamet J J, et al. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Research, 2010, 119(1): 48-58. |
55 | Saeidi M, Moradi F, Jalali-Honarmand S. The effect of post anthesis source limitation treatments on wheat cultivars under water deficit. Australian Journal of Crop Science, 2012, 6(7): 1179-1187. |
56 | Gebbing T, Schnyder H. 13C labeling kinetics of sucrose in glumes indicates significant refixation of respiratory CO2 in the wheat ear. Functional Plant Biology, 2001, 28(10): 1047-1053. |
57 | Kriedemann P. The photosynthetic activity of the wheat ear. Annals of Botany, 1966, 30(3): 349-363. |
58 | Cernusak L A, Tcherkez G, Keitel C, et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants?Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36(3): 199-213. |
59 | Robert C, Bancal M O, Ney B, et al. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytologist, 2005, 165(1): 227-241. |
60 | Tiedemann A V, Firsching K H. Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environmental Polluttion, 2000, 108(3): 357-363. |
61 | Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63(5): 635-674. |
62 | Vicente R, Vergara-Díaz O, Medina S, et al. Durum wheat ears perform better than the flag leaves under water stress: Gene expression and physiological evidence. Environmental and Experimental Botany, 2018, 153(1): 271-285. |
63 | Tambussi E A, Bort J, Guiamet J J, et al. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. Critical Reviews in Plant Sciences, 2007, 26(1): 1-16. |
64 | Wardlaw I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Annals of Botany, 2002, 90(4): 469-476. |
65 | Jia S, Lv J, Jiang S, et al. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 2015, 53(1): 95-109. |
66 | Abebe T, Melmaiee K, Berg V, et al. Drought response in the spikes of barley: Gene expression in the lemma, palea, awn, and seed. Functional and Integrative Genomics, 2010, 10(2): 191-205. |
67 | Li X, Wang H, Li H, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 2006, 127(4): 701-709. |
68 | Bort J, Brown R H, Araus J L. Refixation of respiratory CO2 in the ears of C3 cereals. Journal of Experimental Botany, 1996, 47(10): 1567-1575. |
69 | Zhan D X. Spatial cariation of photosynthetic capacity and physiological mechanism of water response of leaf and non-leaf green organs in cotton canopy. Shihezi: Shihezi University, 2014. |
占东霞.棉花冠层叶片与非叶绿色器官光合能力的空间变化及对水分响应的生理机制. 石河子: 石河子大学, 2014. | |
70 | Zhang Y P, Zhang Y H, Wang Z M. Photosynthetic diurnal variation characteristics of leaf and non-leaf organs in winter wheat under different irrigation regimes. Acta Ecologica Sinica, 2011, 31(5): 1312-1322. |
张永平, 张英华, 王志敏. 不同供水条件下冬小麦与非叶绿色器官光合日变化特征. 生态学报, 2011, 31(5): 1312-1322. | |
71 | Zhang Y P, Wang ZM, Huang Q, et al. Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agronomica Sinica, 2008, 34(7): 1213-1219. |
张永平, 王志敏, 黄琴, 等. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008, 34(7): 1213-1219. | |
72 | Kong L, Si J, Zhang B, et al. Environmental modification of wheat grain protein accumulation and associated processing quality: A case study of China. Australian Journal of Crop Science, 2013, 7(2): 173-181. |
73 | Wang X, Dinler B S, Vignjevic M, et al. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science, 2015, 230(10): 33-50. |
74 | Ehleringer J, Pearcy R W. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology, 1983, 73(3): 555-559. |
75 | Kong L, Sun M, Xie Y, et al. Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Frontiers in Plant Science, 2015, 6(358): 1-10. |
76 | Zhang Y H, Yang Y M, Cao L, et al. Effect of high temperature on photosynthetic capability and antioxidant enzyme activity of flag leaf and non-leaf organs in wheat. Acta Agronomica Sinica, 2015, 41(1): 136-144. |
张英华, 杨佑明, 曹莲, 等. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响. 作物学报, 2015, 41(1): 136-144. | |
77 | Bolin B. The greenhouse effect, climate change, and ecosystems. SCOPE, 1986, 29(541): 35-96. |
78 | Ward J Y K, Tissue D T, Thomas R B, et al. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biology, 1999, 5(8): 857-867. |
79 | Baluar N, Badicean D, Peterhaensel C, et al. The peculiarities of carbon metabolism in the ears of C3 cereals CO2 exchange kinetics, chloroplasts structure and ultra-structure in the cells from photosynthetic active components of the ear. Journal of Tissue Culture and Bioengineering, 2018, 2018(1): 1-14. |
80 | Rangan P, Furtado A, Henry R J. New evidence for grain specific C4 photosynthesis in wheat. Scientific Reports, 2016, 6(1): 1-12. |
81 | Guliyev N, Bayramov S, Babayev H. Effect of water deficit on RUBISCO and carbonic anhydrase activities in different wheat genotypes//Allen J F, Gantt E, Golbeck J H, et al. Photosynthesis. Dordrecht: Springer, 2008: 1465-1468. |
82 | Wei A L, Wang Z M, Zhai Z X, et al. Effect of soil drought on C4 photosynthesis enzyme activities of flag leaf and ear in wheat.Scientia Agricultura Sinica, 2003, 36(5): 508-512. |
魏爱丽, 王志敏, 翟志席, 等. 土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响. 中国农业科学, 2003, 36(5): 508-512. | |
83 | Ziegler-Jöns A. Gas-exchange of ears of cereals in response to carbon dioxide and light: II. Occurrence of a C3-C4 intermediate type of photosynthesis. Planta, 1989, 178(2): 164-175. |
84 | Sage R F. C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends in Plant Science, 2002, 7(7): 283-285. |
85 | Bort J, Brown R H, Araus J L. Lack of C4 photosynthetic metabolism in ears of C3 cereals. Plant Cell and Environment, 1995, 18(6): 697-702. |
86 | Wirth E, Kelly G J, Fischbeck G, et al. Enzyme activities and products of CO2 fixation in various photosynthetic organs of wheat and oat. Zeitschrift für Pflanzenphysiologie, 1977, 82(1): 78-87. |
87 | Huo R, Feng C Y, Lv M C, et al. Dynamic changes in stomatal density and stomatal index during the flower opening of Hibiscus rosa-sinensis L. Ecological Science, 2015, 34(3): 49-52. |
霍然, 冯婵莹, 吕梦骋, 等. 扶桑花展开过程中气孔密度和气孔指数的动态变化. 生态科学, 2015, 34(3): 49-52. | |
88 | Li H B, Bai K Z, Hu Y X, et al. Stomatal frequency on some non-leaf organs of four crop species and their significance in photosynthesis. Chinese Journal of Plant Ecology, 2002, 26(3): 351-354. |
李寒冰, 白克智, 胡玉熹, 等. 4种作物部分非叶器官气孔频度及其在光合作用中的意义. 植物生态学报, 2002, 26(3): 351-354. | |
89 | Constable G A, Rawson H M. Carbon production and utilization in cotton: Inferences from a carbon budget. Functional Plant Biology, 1980, 7(5): 539-553. |
90 | Hiratsuka S, Suzuki M, Nishimura H, et al. Fruit photosynthesis in Satsuma mandarin. Plant Science, 2015, 241(10): 65-69. |
91 | Sui X, Shan N, Hu L, et al. The complex character of photosynthesis in cucumber fruit. Journal of Experimental Botany, 2017, 68(7): 1625-1637. |
92 | Puthur J T, Shackira A M, Saradhi P P, et al. Chloroembryos: A unique photosynthesis system. Journal of Plant Physiology, 2013, 170(13): 1131-1138. |
93 | Ruuska S A, Schwender J, Ohlrogge J B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiology, 2004, 136(1): 2700-2709. |
94 | Zhang J Y, Liu J X, Ju G S, et al. Chloroplast photosynthetic characteristics of non-leaf photosynthetic tissues (cortex) of Salix matsudana. Forest Science, 2014, 50(11): 30-35. |
张金尧, 刘俊祥, 巨关升, 等. 旱柳非叶光合组织(皮层)叶绿体光合特性. 林业科学, 2014, 50(11): 30-35. | |
95 | Pfanz H, Aschan G, Langenfeld-Heyser R, et al. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften, 2002, 89(4): 147-162. |
[1] | Li-qing ZHAO, Xiang-yong PENG, Jun-xiang LIU, Jin-mei MAO, Zhen-yuan SUN. Effects of reduced glutathione on the growth and photosynthesis of perennial ryegrass under lead stress [J]. Acta Prataculturae Sinica, 2021, 30(9): 97-104. |
[2] | WANG Yong-chao, ZHANG Ying-lei, YAN Dong-liang, HE Ling-zhi, LI Zhuo, YAN Bo-wen, SHAO Rui-xin, GUO Jia-meng, YANG Qing-hua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
[3] | HUANG Xi-ye, HE Lin-jiang, LIU Jin-ping, YOU Ming-hong, LIU Hang-jiang. Gender differences in water relations, photosynthetic characteristics and cold resistance metabolites in Humulus scandens in response to winter cooling [J]. Acta Prataculturae Sinica, 2020, 29(2): 103-113. |
[4] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[5] | WANG Ri-ming, WANG Zhi-qiang, XIANG Zuo-xiang. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2019, 28(2): 168-178. |
[6] | LI Zhou, PENG Yan, YIN Shu-xia, HAN Lie-bao. Effects of exogenous mannose application on drought tolerance, sugars, and sugar alcohol accumulation in white clover [J]. Acta Prataculturae Sinica, 2019, 28(12): 85-93. |
[7] | ZHAO Ying, YI Qin, WEI Xiao-hong, XIN Xia-qing, HAN Ting, YUE Kai, WANG Fang-lin. Role of NO-mediated Ca2+ signaling in regulation of photosynthesis and resistance to osmotic stress in alfalfa seedlings [J]. Acta Prataculturae Sinica, 2018, 27(5): 130-140. |
[8] | GUO Hai-Yan, DUAN Jing, LIU Jin-Ping, YOU Ming-Hong, XIE Rui-Juan. Effects of temperature on flower bud differentiation, pigment contents, and photosynthesis of male and female Humulus scandens [J]. Acta Prataculturae Sinica, 2017, 26(8): 104-112. |
[9] | ZHANG Li-Xia, CHANG Qing-Shan, HOU Xiao-Gai, LIU Wei, LI Xiao-Peng, GAO Yu-Hang, ZHANG Xiu-Li, DING Sheng-Yun, XIAO Rui-Xue, ZHANG Yao, DENG Yong-Heng. Effects of NaCl stress on antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings [J]. Acta Prataculturae Sinica, 2017, 26(11): 167-175. |
[10] | FAN Qin, LI Yan-Zhong. The effect of Phoma medicaginis on the photosynthetic physiology of Medicago sativa [J]. Acta Prataculturae Sinica, 2017, 26(1): 112-121. |
[11] | WANG Yu-Ping, CHANG Hong, LI Cheng, LIANG Yan-Chao, LU Xiao. Effects of exogenous Ca2+ on growth, photosynthetic characteristics and photosystem II function of maize seedlings under cadmium stress [J]. Acta Prataculturae Sinica, 2016, 25(5): 40-48. |
[12] | HAN Wen-Jiao, BAI Lin-Li, LI Chang-Xiao. Effects of flooding on photosynthesis, growth and nutrient content of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2016, 25(5): 49-59. |
[13] | KOU Jiang-Tao, KANG Wen-Juan, MIAO Yang-Yang, SHI Shang-Li. Effect of exogenous 2,4-epibrassinolide on the uptake, transport, and disputation of ions, and photosynthetic characteristics of Medicago sativa seedlings under NaCl stress [J]. Acta Prataculturae Sinica, 2016, 25(4): 91-103. |
[14] | YAN Yu-Long, ZHANG Li-Xin, WAN Zhi-Qiang, GU Rui, SU Li-De, YANG Jie, GAO Qing-Zhu. Effects of simulated warming and precipitation enhancement on photosynthesis of Stipa krylovii [J]. Acta Prataculturae Sinica, 2016, 25(2): 240-250. |
[15] | LIU Ying, BAI Long, LEI Jia-Jun. Photosynthetic responses of Arundinella hirta populations to light intensity and CO2 concentration [J]. Acta Prataculturae Sinica, 2016, 25(1): 254-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||