Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (1): 122-130.DOI: 10.11686/cyxb2021500
Hao-yu XU1,2(), Ying ZHAO1,2, Qian RUAN1,2, Xiao-lin ZHU1,2, Bao-qiang WANG1,2, Xiao-hong WEI1,2()
Received:
2021-12-28
Revised:
2022-03-28
Online:
2023-01-20
Published:
2022-11-07
Contact:
Xiao-hong WEI
Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels[J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130.
处理组 Treatment | 盐分组成及摩尔比 Salt composition and molar ratio | pH | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
A | 1 | 1 | 0 | 0 | 7.62 |
B | 1 | 2 | 1 | 0 | 8.98 |
C | 1 | 9 | 9 | 1 | 9.18 |
D | 1 | 1 | 1 | 1 | 9.75 |
E | 9 | 1 | 1 | 9 | 10.53 |
Table 1 Salts composition, molar ratio and pH of solutions for mixed salt-alkali treatment
处理组 Treatment | 盐分组成及摩尔比 Salt composition and molar ratio | pH | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
A | 1 | 1 | 0 | 0 | 7.62 |
B | 1 | 2 | 1 | 0 | 8.98 |
C | 1 | 9 | 9 | 1 | 9.18 |
D | 1 | 1 | 1 | 1 | 9.75 |
E | 9 | 1 | 1 | 9 | 10.53 |
基因名称Gene symbol | 正向引物Forward primer sequences (5′-3′) | 反向引物Reverse primer sequences (5′-3′) |
---|---|---|
H2A | GTCAAGAGCACTGCCGGAAGAG | CAGCAGCGAGATACTCAAGGACAG |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
Table 2 Primers sequences for Na+ compartmentalization related genes of qRT-PCR
基因名称Gene symbol | 正向引物Forward primer sequences (5′-3′) | 反向引物Reverse primer sequences (5′-3′) |
---|---|---|
H2A | GTCAAGAGCACTGCCGGAAGAG | CAGCAGCGAGATACTCAAGGACAG |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
1 | Yan F, Li Q Q, Dong Y, et al. Industry status and development countermeasures of Chenopodium quinoa. Heilongjiang Agricultural Sciences, 2021(9): 98-100. |
闫锋, 李清泉, 董扬, 等. 藜麦产业现状及发展对策. 黑龙江农业科学, 2021(9): 98-100. | |
2 | Bai L L, Shi J H, Liu M X, et al. Review of research progress on quinoa properties. Plant Doctor, 2020, 33(5): 22-27. |
白丽丽, 史军辉, 刘茂秀, 等. 藜麦特性研究进展综述. 植物医生, 2020, 33(5): 22-27. | |
3 | Wang Z H, Xu Z W, Zhou W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033-1042. |
王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价. 中国生态农业学报, 2020, 28(7): 1033-1042. | |
4 | Lin C, Liu Z J, Dong Y M, et al. Domesticated cultivation and genetic breeding of Chenopodium quinoa. Hereditas, 2019, 41(11): 1009-1022. |
林春, 刘正杰, 董玉梅, 等. 藜麦的驯化栽培与遗传育种. 遗传, 2019, 41(11): 1009-1022. | |
5 | Farinazzi-Machado F, Barbalho S M, Oshiiwa M, et al. Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Science & Technology, 2012, 32(2): 239-244. |
6 | Zhou H T, Liu H, Yao Y, et al. Evaluation of agronomic and quality characters of quinoa cultivated in Zhangjiakou. Journal of Plant Genetic Resources, 2014, 15(1): 222-227. |
周海涛, 刘浩, 么杨, 等. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014, 15(1): 222-227. | |
7 | Ren G X, Yang X S, Yao Y. Current situation of quinoa industry in China. Crops, 2015(5): 1-5. |
任贵兴, 杨修仕, 么杨. 中国藜麦产业现状. 作物杂志, 2015(5): 1-5. | |
8 | Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3): 645-663. |
9 | Wei L Z, Guo X N, Chai W W, et al. Effects of high altitude breeding on the salt tolerance of quinoa. Barley and Cereal Sciences, 2020, 37(5): 8-15. |
韦良贞, 郭晓农, 柴薇薇, 等. 高海拔繁育对藜麦耐盐性的影响. 大麦与谷类科学, 2020, 37(5): 8-15. | |
10 | Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684. |
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684. | |
11 | Chen M, Li H Y, Lv F T. Research advances in mechanisms of plant salinity tolerance. Journal of Liaocheng University, 2011, 24(3): 47-50. |
陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报, 2011, 24(3): 47-50. | |
12 | Yuan F M, Quan Y J, Chen Z G. Effects of sodium stress on seed germination of Chenopodium quinoa Willd. Journal of Arid Land Resources and Environment, 2018, 32(11): 182-187. |
袁飞敏, 权有娟, 陈志国. 不同钠盐胁迫对藜麦种子萌发的影响. 干旱区资源与环境, 2018, 32(11): 182-187. | |
13 | Qiu L. The physiological response of Chenopodium quinoa Willd. to saline alkaline stress in the early stage of growth. Changchun: Northeast Normal University, 2018. |
邱璐. 藜麦生长初期对盐碱胁迫的生理响应. 长春: 东北师范大学, 2018. | |
14 | Cai Z Q, Gao Q. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology, 2020, 20(1): 70. |
15 | Ruiz-Carrasco K, Antognoni F, Coulibaly A K, et al. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology & Biochemistry, 2011, 49: 1333-1341. |
16 | Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 2010, 68(1): 66-74. |
17 | Du X J, Hu S W. Research progress of saline-alkali land at home and abroad over the past 30 years based on bibliometric analysis. Journal of Anhui Agricultural Science, 2021, 49(18): 236-239, 242. |
杜学军, 胡树文. 基于文献计量分析的近30年国内外盐碱地研究进展. 安徽农业科学, 2021, 49(18): 236-239, 242. | |
18 | Läuchli A, Lüttge U. Salinity: Environment-plants-molecules. Dordrecht: Kluwer Academic Publishers, 2002. |
19 | Hu A S, Zhang X D, Guo W J, et al. Ion absorption, transportation and distribution of Malus micromalus strains under salt stress. Plant Physiology Journal, 2021, 57(9): 1829-1838. |
胡爱双, 张小栋, 郭文静, 等. 盐胁迫下八棱海棠株系的离子吸收、运输与分配. 植物生理学报, 2021, 57(9): 1829-1838. | |
20 | Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2): 437-448. |
21 | Zhao Y, Wei X H, He Y L, et al. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa. Acta Prataculturae Sinica, 2019, 28(2): 156-167. |
赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响. 草业学报, 2019, 28(2): 156-167. | |
22 | Chen J X, Wang X F. Guide of plant physiological experiments. Guangzhou: South China University of Technology Press, 2006. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. | |
23 | Bates L S, Waldren R P, Teare I D. Rapid determination of free proline in water stress studies. Plant and Soil, 1973, 39(1): 205-207. |
24 | Hou F L. Plant physiology experiment. Beijing: Science Press, 2015. |
侯福林. 植物生理学实验教程. 北京: 科学出版社, 2015. | |
25 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1980, 22(5): 867-880. |
26 | Shi P B, Wang J, Fei Y Y, et al. Effects of salt stress on the seedling growth and CqNHX1 gene expression of different quinoa varieties. Chinese Agricultural Science Bulletin, 2020, 36(33): 19-24. |
时丕彪, 王军, 费月跃, 等. 盐胁迫对不同藜麦品种幼苗生长及CqNHX1基因表达的影响. 中国农学通报, 2020, 36(33): 19-24. | |
27 | Zhang H B, Cui J Z, Cao T T, et al. Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Acta Ecologica Sinica, 2011, 31(10): 2805-2812. |
张海波, 崔继哲, 曹甜甜, 等. 大豆出苗期和苗期对盐胁迫的响应及耐盐指标评价. 生态学报, 2011, 31(10): 2805-2812. | |
28 | Jia Y, Xiang Y F, Wang L L, et al. Effects of salt stress on the growth and physiological characteristics of Primula forbesii. Acta Prataculturae Sinica, 2020, 29(10): 119-128. |
贾茵, 向元芬, 王琳璐, 等. 盐胁迫对小报春生长及生理特性的影响. 草业学报, 2020, 29(10): 119-128. | |
29 | Tan S X. Research on physiological characteristics of Chenopodium quinoa Willd. under salt-alkali stress. Changchun: Northeast Normal University, 2017. |
谭舒心. 混合盐胁迫下藜麦生理特性的研究. 长春: 东北师范大学, 2017. | |
30 | Shi L X. Study in photosynthetic and stress ecophysiology of Leymus chinensis along the salinity-alkalinity gradients on the Songnen grassland in northeastern China. Changchun: Northeast Normal University, 2017. |
石连旋. 松嫩不同盐碱化羊草草甸草原羊草光合及逆境生理生态特性研究. 长春: 东北师范大学, 2007. | |
31 | Zhao Y, Wei X H, Li T T. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响. 草业学报, 2020, 29(4): 92-101. | |
32 | Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 2005, 16(2): 123-132. |
33 | Shabala L, Mackay A, Tian Y, et al. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 2012, 146(1): 26-38. |
34 | Chen Y Q, Su K Q, Chen T X, et al. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
陈雅琦, 苏楷淇, 陈泰祥, 等. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响. 草业学报, 2021, 30(3): 137-157. | |
35 | Liu W Y. Plant adversity and gene. Beijing: Beijing Institute of Technology Press, 2015. |
刘文英. 植物逆境与基因. 北京: 北京理工大学出版社, 2015. | |
36 | Zheng S Y, Shang X F, Wang J P. Determination of antioxidant enzyme activity and contents of MDA in maize seedlings under salt stress with visible spectrophotometry. Biotechnology Bulletin, 2010(7): 106-109. |
郑世英, 商学芳, 王景平. 可见分光光度法测定盐胁迫下玉米幼苗抗氧化酶活性及丙二醛含量. 生物技术通报, 2010(7): 106-109. | |
37 | Yao Y T, Zhang G X, Ding S P, et al. Effects of salt stress on strawberry seedling growth and antioxidant system. Northern Horticulture, 2021(17): 22-29. |
姚玉涛, 张国新, 丁守鹏, 等. 盐胁迫对草莓苗期生长及氧化还原系统的影响. 北方园艺, 2021(17): 22-29. | |
38 | Hao D F. Introduction of Na+/H+ transporter gene NHX from native halophyte salicornia spp in Xinjiang into Brassica napus and its salt tolerance. Urumqi: Xinjiang University, 2006. |
郝东风. 新疆盐生植物耐盐基因NHX转化甘蓝型油菜及其耐盐性的初步研究. 乌鲁木齐: 新疆大学, 2006. |
[1] | Li-yuan HOU, Ju-qing JIA, Xiao-dong JIANG, Yu-chuan WANG, Jing ZHAO, Yu-huai CHEN, Sheng-xiong HUANG, Shen-jie WU, Yan-hui DONG. The evolution, characterization and transcriptional responses to multiple stresses of the WRKY genes in Chenopodium quinoa [J]. Acta Prataculturae Sinica, 2022, 31(9): 168-182. |
[2] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[3] | Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines [J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233. |
[4] | Duo ZHANG, Lan-tao LI, Di LIN, Long-hui ZHENG, Sai-nan GENG, Wen-xuan SHI, Kai SHENG, Yu-hong MIAO, Yi-lun WANG. Effects of P fertilization rate on tuber yield, quality, plant physiological attributes and P use efficiency of Helianthus tuberosus [J]. Acta Prataculturae Sinica, 2022, 31(6): 139-149. |
[5] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
[6] | Li-qing ZHAO, Zhi-gang HAO, Xiao-yan CUI, Xiang-yong PENG. Effects of gibberellin and its inhibitors on growth and gene expression in Poa pratensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 85-91. |
[7] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
[8] | Ning ZHAO, Hui-ling MA, Ran ZHANG, Jin-qing ZHANG, Yi SHI. Regulatory effects of butanediol on the expression level of endogenous hormones and related genes in creeping bentgrass under heat stress [J]. Acta Prataculturae Sinica, 2022, 31(12): 118-132. |
[9] | Peng ZHANG, Xi REN, Si-yu MENG, Xiao-xing WEI, Gen-sheng BAO. Effects of Epichloё endophyte on seed germination and seedling growth of Stipa purpurea under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(10): 110-121. |
[10] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[11] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[12] | Hui-fang YAN, Juan SUN. Effect of seed moisture content and deterioration time on seed vigor and seedling growth of Sorghum bicolor×Sorghum sudanense [J]. Acta Prataculturae Sinica, 2021, 30(12): 152-160. |
[13] | Qian MA, Qi YAN, Zheng-she ZHANG, Fan WU, Ji-yu ZHANG. Identification, evolution and expression analysis of the CCoAOMT family genes in Medicago sativa [J]. Acta Prataculturae Sinica, 2021, 30(11): 144-156. |
[14] | Yu-lian GAO, Jing CHANG, Yi-hui WANG, Feng LI, Hai-ping LI, Chong-yong MA. Allelopathic effects of Stellera chamaejasme on seed germination and growth of three crops [J]. Acta Prataculturae Sinica, 2021, 30(10): 83-91. |
[15] | LI Feng-lan, WU Jia-wen, YAO Shu-kuan, ZHAO Zi-yi, ZHAO Xiao-can, HE Fu-meng, ZHU Yuan-fang, SHI Qi-hai, ZHOU Lei, XU Yong-qing. A study of the allelopathic effect of extracts from different parts of Iva xanthiifolia on five native species [J]. Acta Prataculturae Sinica, 2020, 29(9): 169-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||