Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 15-29.DOI: 10.11686/cyxb2022147
Previous Articles Next Articles
Rui GUO1(), Shuai FU1, Meng-jing HOU1, Jie LIU1, Chun-li MIAO1, Xin-yue MENG1, Qi-sheng FENG1, Jin-sheng HE1,2, Da-wen QIAN3, Tian-gang LIANG1()
Received:
2022-03-31
Revised:
2022-04-28
Online:
2023-04-20
Published:
2023-01-29
Contact:
Tian-gang LIANG
Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data[J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29.
年份 Year | 卫星成像时间 Satellite ingestion period | 地面观测时间 Ground observation time | 成像卫星 Imaging satellite | 轨道号 Track number | 云量百分比 Cloud cover percentage (%) | 云影百分比 Cloud shadow percentage (%) |
---|---|---|---|---|---|---|
2019 | 05-28 | 05-29 | 2B | T47SQB | 6.27 | 0.30 |
06-30 | 06-27-06-28 | 2B | T47SQB | 48.71 | 1.01 | |
07-25 | 07-28-07-29 | 2A | T47SQB | 17.36 | 0.64 | |
08-29 | 08-27-08-28 | 2B | T47SQB | 37.02 | 0.75 | |
09-20 | 09-20-09-22 | 2A | T47SQB | 5.90 | 1.09 | |
2020 | 07-06 | 07-07-07-08 | 2A | T47SQB | 27.12 | 0.30 |
09-04 | 09-02-09-03 | 2A | T47SQB | 2.95 | 0.48 | |
2021 | 07-06 | 07-07 | 2B | T47SQB | 42.49 | 0.44 |
07-31 | 08-04 | 2A | T47SQB | 12.34 | 1.89 | |
09-09 | 09-03 | 2A | T47SQB | 18.14 | 1.99 | |
09-29 | 09-28-09-29 | 2A | T47SQB | 6.41 | 0.12 |
Table 1 Parameters of Sentinel-2 satellite images of the study area from 2019 to 2021
年份 Year | 卫星成像时间 Satellite ingestion period | 地面观测时间 Ground observation time | 成像卫星 Imaging satellite | 轨道号 Track number | 云量百分比 Cloud cover percentage (%) | 云影百分比 Cloud shadow percentage (%) |
---|---|---|---|---|---|---|
2019 | 05-28 | 05-29 | 2B | T47SQB | 6.27 | 0.30 |
06-30 | 06-27-06-28 | 2B | T47SQB | 48.71 | 1.01 | |
07-25 | 07-28-07-29 | 2A | T47SQB | 17.36 | 0.64 | |
08-29 | 08-27-08-28 | 2B | T47SQB | 37.02 | 0.75 | |
09-20 | 09-20-09-22 | 2A | T47SQB | 5.90 | 1.09 | |
2020 | 07-06 | 07-07-07-08 | 2A | T47SQB | 27.12 | 0.30 |
09-04 | 09-02-09-03 | 2A | T47SQB | 2.95 | 0.48 | |
2021 | 07-06 | 07-07 | 2B | T47SQB | 42.49 | 0.44 |
07-31 | 08-04 | 2A | T47SQB | 12.34 | 1.89 | |
09-09 | 09-03 | 2A | T47SQB | 18.14 | 1.99 | |
09-29 | 09-28-09-29 | 2A | T47SQB | 6.41 | 0.12 |
变量属性Variable attributes | 计算公式Calculation formula |
---|---|
比值植被指数Ratio vegetation index (RVI) | |
差值植被指数Difference vegetation index (DVI) | |
权重差值植被指数Weighted difference vegetation index (WDVI) | |
红外植被指数Infrared vegetation index (IPVI) | |
红边位置指数Red edge position index (REP) | |
垂直植被指数Perpendicular vegetation index (PVI) | |
增强植被指数Enhanced vegetation index (EVI) | |
增强植被指数-2 Enhanced vegetation index-2 (EVI2) | |
多时相植被指数-2 Multitemporal vegetation index-2 (MTVI2) | |
归一化差值植被指数Normalized difference vegetation index (NDVI) | |
再归一化差植被指数Renormalization the vegetation index (RDVI) | |
B4和B5归一化差值植被指数NDVI with band4 and band5 (NDVI45) | |
绿波归一化差值植被指数NDVI of green band (GNDVI) | |
反红边叶绿素指数Inverted red edge chlorophyll index (IRECI) | |
三角形植被指数Triangle vegetation index (TVI) | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | |
优化型土壤调节植被指数Optimized soil regulates vegetation index (OSAVI) | |
转化土壤调节植被指数Transformed soil adjusted vegetation index (TSAVI) | |
修正型土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | |
二次修正型土壤调节植被指数Secondly modified soil adjusted vegetation index (MASVI2) | |
大气阻抗植被指数Atmospherically resistant vegetation index (ARVI) | |
叶绿素吸收比值指数Chlorophyll absorption ratio index (CARI) | CARI =( |
改进红边比值植被指数Modified red-edge simple ratio index (MSR) | |
特定色素简单比值植被指数Pigment specific simple ratio chlorophyll index (PSSRa) | |
Meris陆地叶绿素指数Meris terrestrial chlorophyll index (MTCI) | |
修正型叶绿素吸收比值指数Modified chlorophyll absorption ratio index (MCARI) | |
“哨兵2号”红边位置指数Sentinel-2 red edge position index (S2REP) | |
红边感染点指数Red edge infection point index (REIP) | |
全球环境监测指数Global environmental monitoring index (GEMI) |
Table 2 Parameters of 29 common vegetation index
变量属性Variable attributes | 计算公式Calculation formula |
---|---|
比值植被指数Ratio vegetation index (RVI) | |
差值植被指数Difference vegetation index (DVI) | |
权重差值植被指数Weighted difference vegetation index (WDVI) | |
红外植被指数Infrared vegetation index (IPVI) | |
红边位置指数Red edge position index (REP) | |
垂直植被指数Perpendicular vegetation index (PVI) | |
增强植被指数Enhanced vegetation index (EVI) | |
增强植被指数-2 Enhanced vegetation index-2 (EVI2) | |
多时相植被指数-2 Multitemporal vegetation index-2 (MTVI2) | |
归一化差值植被指数Normalized difference vegetation index (NDVI) | |
再归一化差植被指数Renormalization the vegetation index (RDVI) | |
B4和B5归一化差值植被指数NDVI with band4 and band5 (NDVI45) | |
绿波归一化差值植被指数NDVI of green band (GNDVI) | |
反红边叶绿素指数Inverted red edge chlorophyll index (IRECI) | |
三角形植被指数Triangle vegetation index (TVI) | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | |
优化型土壤调节植被指数Optimized soil regulates vegetation index (OSAVI) | |
转化土壤调节植被指数Transformed soil adjusted vegetation index (TSAVI) | |
修正型土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | |
二次修正型土壤调节植被指数Secondly modified soil adjusted vegetation index (MASVI2) | |
大气阻抗植被指数Atmospherically resistant vegetation index (ARVI) | |
叶绿素吸收比值指数Chlorophyll absorption ratio index (CARI) | CARI =( |
改进红边比值植被指数Modified red-edge simple ratio index (MSR) | |
特定色素简单比值植被指数Pigment specific simple ratio chlorophyll index (PSSRa) | |
Meris陆地叶绿素指数Meris terrestrial chlorophyll index (MTCI) | |
修正型叶绿素吸收比值指数Modified chlorophyll absorption ratio index (MCARI) | |
“哨兵2号”红边位置指数Sentinel-2 red edge position index (S2REP) | |
红边感染点指数Red edge infection point index (REIP) | |
全球环境监测指数Global environmental monitoring index (GEMI) |
指标 Indicators | 月份 Month | |||||
---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | |
平均值 Mean value (kg·hm-2) | 716.411 | 1999.937 | 2701.109 | 3161.746 | 2926.367 | 2750.452 |
最大值 Maximum value (kg·hm-2) | 1220.000 | 4666.700 | 6160.600 | 5930.000 | 5509.200 | 4647.333 |
最小值 Minimum value (kg·hm-2) | 187.200 | 744.700 | 1368.700 | 1398.933 | 716.800 | 904.667 |
标准差 Standard deviation (kg·hm-2) | 240.516 | 909.195 | 732.878 | 998.728 | 891.322 | 1139.032 |
变异系数 Coefficient variable | 0.336 | 0.455 | 0.271 | 0.316 | 0.305 | 0.414 |
Table 3 Descriptive statistical analysis of grassland above ground biomass from 2019 to 2021 (n=325)
指标 Indicators | 月份 Month | |||||
---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | |
平均值 Mean value (kg·hm-2) | 716.411 | 1999.937 | 2701.109 | 3161.746 | 2926.367 | 2750.452 |
最大值 Maximum value (kg·hm-2) | 1220.000 | 4666.700 | 6160.600 | 5930.000 | 5509.200 | 4647.333 |
最小值 Minimum value (kg·hm-2) | 187.200 | 744.700 | 1368.700 | 1398.933 | 716.800 | 904.667 |
标准差 Standard deviation (kg·hm-2) | 240.516 | 909.195 | 732.878 | 998.728 | 891.322 | 1139.032 |
变异系数 Coefficient variable | 0.336 | 0.455 | 0.271 | 0.316 | 0.305 | 0.414 |
月份 Month | 项目 Item | 波段Band | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B9 | B11 | B12 | ||
5 | Max | 0.059 | 0.086 | 0.123 | 0.140 | 0.195 | 0.300 | 0.334 | 0.358 | 0.373 | 0.363 | 0.390 | 0.259 |
Min | 0.051 | 0.073 | 0.109 | 0.123 | 0.182 | 0.279 | 0.309 | 0.327 | 0.345 | 0.342 | 0.365 | 0.246 | |
Mean | 0.055 | 0.080 | 0.117 | 0.131 | 0.187 | 0.287 | 0.319 | 0.340 | 0.356 | 0.350 | 0.377 | 0.253 | |
STD | 0.00280 | 0.00286 | 0.00333 | 0.00404 | 0.00321 | 0.00454 | 0.00533 | 0.00671 | 0.00569 | 0.00407 | 0.00462 | 0.00338 | |
6 | Max | 0.019 | 0.032 | 0.070 | 0.038 | 0.116 | 0.364 | 0.438 | 0.462 | 0.466 | 0.445 | 0.220 | 0.101 |
Min | 0.016 | 0.025 | 0.060 | 0.031 | 0.104 | 0.329 | 0.392 | 0.394 | 0.418 | 0.418 | 0.202 | 0.091 | |
Mean | 0.018 | 0.029 | 0.066 | 0.034 | 0.109 | 0.346 | 0.411 | 0.425 | 0.438 | 0.429 | 0.211 | 0.096 | |
STD | 0.00074 | 0.00175 | 0.00252 | 0.00151 | 0.00299 | 0.00939 | 0.01061 | 0.01247 | 0.01050 | 0.00730 | 0.00427 | 0.00245 | |
7 | Max | 0.016 | 0.026 | 0.066 | 0.036 | 0.120 | 0.381 | 0.463 | 0.482 | 0.496 | 0.490 | 0.199 | 0.088 |
Min | 0.013 | 0.019 | 0.052 | 0.029 | 0.100 | 0.337 | 0.406 | 0.432 | 0.445 | 0.449 | 0.174 | 0.073 | |
Mean | 0.014 | 0.022 | 0.059 | 0.030 | 0.109 | 0.364 | 0.441 | 0.458 | 0.474 | 0.466 | 0.184 | 0.078 | |
STD | 0.00075 | 0.00191 | 0.00329 | 0.00242 | 0.00521 | 0.01266 | 0.01403 | 0.01331 | 0.01332 | 0.01069 | 0.00581 | 0.00381 | |
8 | Max | 0.024 | 0.051 | 0.086 | 0.062 | 0.141 | 0.349 | 0.418 | 0.440 | 0.461 | 0.443 | 0.229 | 0.111 |
Min | 0.016 | 0.026 | 0.061 | 0.040 | 0.107 | 0.287 | 0.344 | 0.357 | 0.386 | 0.383 | 0.186 | 0.084 | |
Mean | 0.019 | 0.036 | 0.072 | 0.049 | 0.124 | 0.319 | 0.381 | 0.397 | 0.423 | 0.410 | 0.208 | 0.098 | |
STD | 0.00209 | 0.00559 | 0.00663 | 0.00563 | 0.00893 | 0.01754 | 0.02161 | 0.02279 | 0.02296 | 0.02074 | 0.01259 | 0.00730 | |
9 | Max | 0.018 | 0.033 | 0.075 | 0.067 | 0.137 | 0.277 | 0.317 | 0.346 | 0.358 | 0.353 | 0.268 | 0.144 |
Min | 0.012 | 0.018 | 0.053 | 0.042 | 0.109 | 0.240 | 0.278 | 0.304 | 0.318 | 0.333 | 0.219 | 0.104 | |
Mean | 0.014 | 0.024 | 0.062 | 0.052 | 0.121 | 0.262 | 0.303 | 0.331 | 0.343 | 0.343 | 0.239 | 0.121 | |
STD | 0.00197 | 0.00475 | 0.00628 | 0.00688 | 0.00896 | 0.00907 | 0.00971 | 0.01111 | 0.01001 | 0.00651 | 0.01513 | 0.01224 |
Table 4 Spectral reflectance values of nature grassland in different months
月份 Month | 项目 Item | 波段Band | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B9 | B11 | B12 | ||
5 | Max | 0.059 | 0.086 | 0.123 | 0.140 | 0.195 | 0.300 | 0.334 | 0.358 | 0.373 | 0.363 | 0.390 | 0.259 |
Min | 0.051 | 0.073 | 0.109 | 0.123 | 0.182 | 0.279 | 0.309 | 0.327 | 0.345 | 0.342 | 0.365 | 0.246 | |
Mean | 0.055 | 0.080 | 0.117 | 0.131 | 0.187 | 0.287 | 0.319 | 0.340 | 0.356 | 0.350 | 0.377 | 0.253 | |
STD | 0.00280 | 0.00286 | 0.00333 | 0.00404 | 0.00321 | 0.00454 | 0.00533 | 0.00671 | 0.00569 | 0.00407 | 0.00462 | 0.00338 | |
6 | Max | 0.019 | 0.032 | 0.070 | 0.038 | 0.116 | 0.364 | 0.438 | 0.462 | 0.466 | 0.445 | 0.220 | 0.101 |
Min | 0.016 | 0.025 | 0.060 | 0.031 | 0.104 | 0.329 | 0.392 | 0.394 | 0.418 | 0.418 | 0.202 | 0.091 | |
Mean | 0.018 | 0.029 | 0.066 | 0.034 | 0.109 | 0.346 | 0.411 | 0.425 | 0.438 | 0.429 | 0.211 | 0.096 | |
STD | 0.00074 | 0.00175 | 0.00252 | 0.00151 | 0.00299 | 0.00939 | 0.01061 | 0.01247 | 0.01050 | 0.00730 | 0.00427 | 0.00245 | |
7 | Max | 0.016 | 0.026 | 0.066 | 0.036 | 0.120 | 0.381 | 0.463 | 0.482 | 0.496 | 0.490 | 0.199 | 0.088 |
Min | 0.013 | 0.019 | 0.052 | 0.029 | 0.100 | 0.337 | 0.406 | 0.432 | 0.445 | 0.449 | 0.174 | 0.073 | |
Mean | 0.014 | 0.022 | 0.059 | 0.030 | 0.109 | 0.364 | 0.441 | 0.458 | 0.474 | 0.466 | 0.184 | 0.078 | |
STD | 0.00075 | 0.00191 | 0.00329 | 0.00242 | 0.00521 | 0.01266 | 0.01403 | 0.01331 | 0.01332 | 0.01069 | 0.00581 | 0.00381 | |
8 | Max | 0.024 | 0.051 | 0.086 | 0.062 | 0.141 | 0.349 | 0.418 | 0.440 | 0.461 | 0.443 | 0.229 | 0.111 |
Min | 0.016 | 0.026 | 0.061 | 0.040 | 0.107 | 0.287 | 0.344 | 0.357 | 0.386 | 0.383 | 0.186 | 0.084 | |
Mean | 0.019 | 0.036 | 0.072 | 0.049 | 0.124 | 0.319 | 0.381 | 0.397 | 0.423 | 0.410 | 0.208 | 0.098 | |
STD | 0.00209 | 0.00559 | 0.00663 | 0.00563 | 0.00893 | 0.01754 | 0.02161 | 0.02279 | 0.02296 | 0.02074 | 0.01259 | 0.00730 | |
9 | Max | 0.018 | 0.033 | 0.075 | 0.067 | 0.137 | 0.277 | 0.317 | 0.346 | 0.358 | 0.353 | 0.268 | 0.144 |
Min | 0.012 | 0.018 | 0.053 | 0.042 | 0.109 | 0.240 | 0.278 | 0.304 | 0.318 | 0.333 | 0.219 | 0.104 | |
Mean | 0.014 | 0.024 | 0.062 | 0.052 | 0.121 | 0.262 | 0.303 | 0.331 | 0.343 | 0.343 | 0.239 | 0.121 | |
STD | 0.00197 | 0.00475 | 0.00628 | 0.00688 | 0.00896 | 0.00907 | 0.00971 | 0.01111 | 0.01001 | 0.00651 | 0.01513 | 0.01224 |
LASSO ID | 变量Variables |
---|---|
LASSO 1 | B2, B6, B11, IRECI, PSSRa |
LASSO 2 | B2, B8A, B11, EVI, TVI, REP, CARI, IRECI, PSSRa |
LASSO 3 | B2, B11, EVI, CARI, IRECI, PSSRa |
LASSO 4 | B2, B8A, B11, EVI, TVI, B11, IRECI, PSSRa |
LASSO 5 | B2, B6, B11, EVI, IRECI, PSSRa |
Table 5 Results of important characteristic variables were selected by LASSO method
LASSO ID | 变量Variables |
---|---|
LASSO 1 | B2, B6, B11, IRECI, PSSRa |
LASSO 2 | B2, B8A, B11, EVI, TVI, REP, CARI, IRECI, PSSRa |
LASSO 3 | B2, B11, EVI, CARI, IRECI, PSSRa |
LASSO 4 | B2, B8A, B11, EVI, TVI, B11, IRECI, PSSRa |
LASSO 5 | B2, B6, B11, EVI, IRECI, PSSRa |
LASSO ID | 模型 Models | 训练集 Training set | 验证集 Validation set | ||
---|---|---|---|---|---|
T-R2 | T-RMSE (kg·hm-2) | V-R2 | V-RMSE (kg·hm-2) | ||
LASSO 1 | RF | 0.93 | 316.937 | 0.72 | 622.616 |
SVM | 0.69 | 656.276 | 0.66 | 698.271 | |
ANN | 0.73 | 601.837 | 0.63 | 730.676 | |
LASSO 2 | RF | 0.95 | 284.129 | 0.72 | 624.594 |
SVM | 0.71 | 638.798 | 0.68 | 685.008 | |
ANN | 0.83 | 477.670 | 0.67 | 686.136 | |
LASSO 3 | RF | 0.94 | 296.973 | 0.71 | 625.002 |
SVM | 0.69 | 655.849 | 0.66 | 691.631 | |
ANN | 0.78 | 546.190 | 0.66 | 686.613 | |
LASSO 4 | RF | 0.94 | 295.179 | 0.71 | 627.529 |
SVM | 0.71 | 642.576 | 0.67 | 681.942 | |
ANN | 0.81 | 501.278 | 0.67 | 695.866 | |
LASSO 5 | RF | 0.94 | 294.397 | 0.72 | 632.793 |
SVM | 0.69 | 659.055 | 0.66 | 691.451 | |
ANN | 0.76 | 561.079 | 0.63 | 729.430 |
Table 6 Model accuracy evaluation of five combinations of LASSO variables
LASSO ID | 模型 Models | 训练集 Training set | 验证集 Validation set | ||
---|---|---|---|---|---|
T-R2 | T-RMSE (kg·hm-2) | V-R2 | V-RMSE (kg·hm-2) | ||
LASSO 1 | RF | 0.93 | 316.937 | 0.72 | 622.616 |
SVM | 0.69 | 656.276 | 0.66 | 698.271 | |
ANN | 0.73 | 601.837 | 0.63 | 730.676 | |
LASSO 2 | RF | 0.95 | 284.129 | 0.72 | 624.594 |
SVM | 0.71 | 638.798 | 0.68 | 685.008 | |
ANN | 0.83 | 477.670 | 0.67 | 686.136 | |
LASSO 3 | RF | 0.94 | 296.973 | 0.71 | 625.002 |
SVM | 0.69 | 655.849 | 0.66 | 691.631 | |
ANN | 0.78 | 546.190 | 0.66 | 686.613 | |
LASSO 4 | RF | 0.94 | 295.179 | 0.71 | 627.529 |
SVM | 0.71 | 642.576 | 0.67 | 681.942 | |
ANN | 0.81 | 501.278 | 0.67 | 695.866 | |
LASSO 5 | RF | 0.94 | 294.397 | 0.72 | 632.793 |
SVM | 0.69 | 659.055 | 0.66 | 691.451 | |
ANN | 0.76 | 561.079 | 0.63 | 729.430 |
年份 Year | 最小值 Minimum value (kg·hm-2) | 最大值 Maximum value (kg·hm-2) | 均值 Mean value (kg·hm-2) | 标准差 Standard deviation (kg·hm-2) | 总和 Sum ( |
---|---|---|---|---|---|
2019 | 1035 | 5071 | 3471.49 | 517.13 | 1.41 |
2020 | 1158 | 5073 | 3544.00 | 512.41 | 1.44 |
2021 | 1154 | 5085 | 3360.26 | 425.35 | 1.37 |
Table 7 Nature grassland biomass in Menyuan County from 2019 to 2021
年份 Year | 最小值 Minimum value (kg·hm-2) | 最大值 Maximum value (kg·hm-2) | 均值 Mean value (kg·hm-2) | 标准差 Standard deviation (kg·hm-2) | 总和 Sum ( |
---|---|---|---|---|---|
2019 | 1035 | 5071 | 3471.49 | 517.13 | 1.41 |
2020 | 1158 | 5073 | 3544.00 | 512.41 | 1.44 |
2021 | 1154 | 5085 | 3360.26 | 425.35 | 1.37 |
1 | Su D X. Rangeland resources decreases fast and its protection strategy in China//The 2nd symposium in the sixth term of Chinese grassland society and international grassland workshop. Chinese grassland society, Inner Mongolia autonomous region people’s government, national natural science foundation of China: Chinese grassland society, 2004: 48-51. |
苏大学. 我国草地资源快速消失与保护对策//中国草学会第六届二次会议暨国际学术研讨会论文集. 中国草学会、内蒙古自治区人民政府、国家自然科学基金委员会: 中国草学会, 2004: 48-51. | |
2 | Liu J, Yang J. Prediction and evaluation method of high cold meadow in Haibei area of Qinghai Province. Qinghai Prataculture, 2020, 29(4): 2-8. |
刘洁, 杨静. 青海省海北地区高寒草甸最高产量预测及评估方法研究. 青海草业, 2020, 29(4): 2-8. | |
3 | Jing X Q, Wang R H, Ren D Z, et al. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei Region, Qinghai Province. Acta Agrestia Sinica, 2017, 25(1): 190-194. |
井向前, 王瑞红, 任德智, 等. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194. | |
4 | Fu J J, Zhou H K, Zhao X Q, et al. Clonal plants and their importance of different alpine grasslands in Haibei Region, Qinghai Province. Acta Agrestia Sinica, 2013, 21(6): 1065-1072. |
付京晶, 周华坤, 赵新全, 等. 青海海北不同类型高寒草地的克隆植物及其重要性. 草地学报, 2013, 21(6) : 1065-1072. | |
5 | Zheng Y, Wu B F, Zhang M. Estimating the above ground biomass of winter wheat using the Sentinel-2 data. National Remote Sensing Bulletin, 2017, 21(2): 318-328. |
郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价. 遥感学报, 2017, 21(2): 318-328. | |
6 | Bretas I L, Valente D S M, Silva F F, et al. Prediction of aboveground biomass and dry-matter content in brachiaria pastures by combining meteorological data and satellite imagery. Grass and Forage Science, 2021, 76(3): 340-352. |
7 | Tian X M, Zhang X L. Estimation of forest aboveground biomass by remote sensing. Journal of Beijing Forestry University, 2021, 43(8): 137-148. |
田晓敏, 张晓丽. 森林地上生物量遥感估算方法. 北京林业大学学报, 2021, 43(8): 137-148. | |
8 | Wang X Y, Li J, Xing L T. Comparative agricultural drought monitoring based on three machine learning methods. Arid Zone Research, 2022, 39(1): 322-332. |
王晓燕, 李净, 邢立亭. 基于3种机器学习方法的农业干旱监测比较. 干旱区研究, 2022, 39(1): 322-332. | |
9 | Xu M, Zhao Y X, Zhang G, et al. Method for forecasting winter wheat first flowering stage based on machine learning algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 162-171. |
徐敏, 赵艳霞, 张顾, 等. 基于机器学习算法的冬小麦始花期预报方法. 农业工程学报, 2021, 37(11): 162-171. | |
10 | Wang N Y, Yu F H, Xu T Y, et al. Hyperspectral retrieval modelling for chlorophyll contents of japonica-rice leaves based on machine learning. Acta Agriculturae Zhejiangensis, 2020, 32(2): 359-366. |
王念一, 于丰华, 许童羽, 等. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模. 浙江农业学报, 2020, 32(2): 359-366. | |
11 | Huang F, Gao S, Yao X, et al. Estimation of winter wheat leaf nitrogen concentration using machine learning algorithm and multi-color space. Journal of Nanjing Agricultural University, 2020, 43(2): 364-371. |
黄芬, 高帅, 姚霞, 等. 基于机器学习和多颜色空间的冬小麦叶片氮含量估算方法研究. 南京农业大学学报, 2020, 43(2): 364-371. | |
12 | Drusch M, Del B U, Carlier S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 2012, 120: 25-36. |
13 | SUHET. Sentinel-2 user handbook. Paris: European Space Agency, 2015. |
14 | Han B, Gao Y N, Guo Y, et al. Modeling aboveground biomass of alpine grassland in the three-river headwaters region based on remote sensing data. Research of Environmental Sciences, 2017, 30(1): 67-74. |
韩波, 高艳妮, 郭杨, 等. 三江源区高寒草地地上生物量遥感反演模型研究. 环境科学研究, 2017, 30(1): 67-74. | |
15 | Huang J X, Wu J, Li C B, et al. Remote sensing retrieval of grassland above-ground biomass in Tianzhu County based on Sentinel-2 and Landsat 8 data. Acta Agrestia Sinica, 2021, 29(9): 2023-2030. |
黄家兴, 吴静, 李纯斌, 等. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演. 草地学报, 2021, 29(9): 2023-2030. | |
16 | Qin Q, Xu D W, Hou L L, et al. Comparing vegetation indices from Sentinel-2 and Landsat 8 under different vegetation gradients based on a controlled grazing experimen. Ecological Indicators, 2021, 133: 108363. |
17 | Chen Y, Guerschman J, Shendryk Y, et al. Estimating pasture biomass using sentinel-2 imagery and machine learning. Remote Sensing, 2021, 13(603): 1-20. |
18 | Marildo G F, Tatiana M K, Fernando D Q. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing, 2020, 41(8): 2861-2876. |
19 | Morais T G, Teixeira R F M, Figueiredo M, et al. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecological Indicators, 2021, 130: 108081 . |
20 | Bao X Y, Wang Y, Feng Q S, et al. Spatial distribution extraction of alfalfa based on Sentinel-2 and GF-1 images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 153-160. |
包旭莹, 王燕, 冯琦胜, 等. Sentinel-2和GF-1影像结合提取苜蓿空间分布. 农业工程学报, 2021, 37(16): 153-160. | |
21 | Yu H, Wu Y F, Niu L T, et al. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau. Ecological Indicators, 2021, 125: 107450. |
22 | Zhao Y H, Hou P, Jiang J B, et al. Progress in quantitative inversion of vegetation ecological remote sensing parameters. National Remote Sensing Bulletin, 2021, 25(11): 2173-2197. |
赵燕红, 侯鹏, 蒋金豹, 等. 植被生态遥感参数定量反演研究方法进展. 遥感学报, 2021, 25(11): 2173-2197. | |
23 | Guo Z Q, Zhang X L, Wang Y T. Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables. Journal of Beijing Forestry University, 2020, 42(11): 27-38. |
郭正齐, 张晓丽, 王月婷. Sentinel-2A多特征变量反演针叶林地上生物量能力评估. 北京林业大学学报, 2020, 42(11): 27-38. | |
24 | Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107. |
25 | Zhou X S. Urban vegetation classification and biomass inversion based on Sentinel-2A data in Xuzhou. Xuzhou: China University of Mining and Technology, 2019. |
周希胜. 基于Sentinel-2A数据的徐州城市植被分类及生物量反演研究. 徐州: 中国矿业大学, 2019. | |
26 | Li C H, Zhou L Z, Xu W B. Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake wetland, China. Remote Sensing, 2021, 13: 1595. |
27 | Xing X Y, Yang X C, Xu B, et al. Remote sensing estimation of grassland aboveground biomass based on random forest. Journal of Geo-information Science, 2021, 23(7): 1312-1324. |
邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究. 地球信息科学学报, 2021, 23(7): 1312-1324. | |
28 | Lei X D. Applications of machine learning algorithms in forest growth and yield prediction. Journal of Beijing Forestry University, 2019, 41(12): 23-36. |
雷相东. 机器学习算法在森林生长收获预估中的应用. 北京林业大学学报, 2019, 41(12): 23-36. | |
29 | Xiu X M, Zhou S F, Chen Q, et al. Above-ground biomass estimation of provincial scattered grassland based on Google Earth Engine and machine learning. Bulletin of Surveying and Mapping, 2019, 504(3): 46-52. |
修晓敏, 周淑芳, 陈黔, 等. 基于Google Earth Engine与机器学习的省级尺度零散分布草地生物量估算. 测绘通报, 2019, 504(3): 46-52. | |
30 | Baret F, Guyot G, Major D J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Geoscience and Remote Sensing Symposium, 1989. IGARSS’89. 12th Canadian Symposium on Remote Sensing, 1989 International. |
31 | Yang B, Li D, Wang L, et al. Retrieval of surface vegetation biomass information and analysis of vegetation feature based on Sentinel-2A in the upper of Minjiang River. Science & Technology Review, 2017, 35(21): 74-80. |
杨斌, 李丹, 王磊, 等. 基于Sentinel-2A岷江上游地表生物量反演与植被特征分析. 科技导报, 2017, 35(21): 74-80. | |
32 | Zhang G F, Yue C R, Zhang W Q. Above-ground biomass estimation in Kunming Dianchi lake wetland using Sentinel imagery. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(1): 142-149. |
张国飞, 岳彩荣, 章皖秋. 基于Sentinel数据的滇池湖滨湿地地上生物量反演. 太赫兹科学与电子信息学报, 2020, 18(1): 142-149. | |
33 | Schwieder M, Buddeberg M, Kowalski K, et al. Estimating grassland parameters from Sentinel-2: A model comparison study. Pfg-Journal of Photogrammetry Remote Sensing and Geoinformation Science, 2020, 88(5): 379-390. |
34 | Xu X J, Zhang J Y, Chao M N, et al. Study on soybean biomass forecasting model based on canopy reflectance spectra. Heilongjiang Agricultural Sciences, 2017(9): 119-123. |
徐新娟, 张晋玉, 晁毛妮, 等. 基于冠层反射光谱的大豆生物量预测模型研究. 黑龙江农业科学, 2017(9): 119-123. | |
35 | Xu H, Bao Y H, Bao G, et al. Typical grassland of Inner Mongolia hay biomass hyper-spectral remote sensing estimation research. Yinshan Academic Journal (Natural Science Edition), 2014, 28(4): 22-27. |
胥慧, 包玉海, 包刚, 等. 内蒙古典型草原干草生物量高光谱遥感估算研究. 阴山学刊(自然科学版), 2014, 28(4): 22-27. | |
36 | Jiang H L, Yang H, Chen X P, et al. Research on accuracy and stability of inversing vegetation chlorophyll content by spectral index method. Spectroscopy and Spectral Analysis, 2015, 35(4): 975-981. |
姜海玲, 杨杭, 陈小平, 等. 利用光谱指数反演植被叶绿素含量的精度及稳定性研究. 光谱学与光谱分析, 2015, 35(4): 975-981. | |
37 | Fang C Y, Wang L, Xu H Q. A comparative study of different red edge indices for remote sensing detection of Urban grassland health status. Journal of Geo-Information Science, 2017, 19(10): 1382-1392. |
方灿莹, 王琳, 徐涵秋. 不同植被红边指数在城市草地健康判别中的对比研究. 地球信息科学学报, 2017, 19(10): 1382-1392. | |
38 | Zhao J S, Li W, Wang W S, et al. Analysis on saturation of Suaeda salsa vegetation index based on DART model. Journal of Central China Normal University (Natural Sciences), 2021, 55(1): 121-127. |
赵健顺, 李微, 王文硕, 等. 基于DART模型的盐地碱蓬植被指数饱和问题分析. 华中师范大学学报(自然科学版), 2021, 55(1): 121-127. | |
39 | Xia Y, Fan J R, Zhang X Y, et al. Application of composite vegetation index in remote sensing inversion of sparse fractional vegetation cover in alpine steppe. Pratacultural Science, 2017, 34(9): 1767-1777. |
夏颖, 范建容, 张茜彧, 等. 复合植被指数在稀疏高寒草原植被盖度遥感反演中的应用. 草业科学, 2017, 34(9): 1767-1777. | |
40 | Shuai S, Zhang Z, Lv X B, et al. Remote sensing monitoring of vegetation phenological characteristics and vegetation health status in mine restoration areas. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 224-234. |
帅爽, 张志, 吕新彪, 等. 矿山恢复治理区植被物候与健康状况遥感监测. 农业工程学报, 2021, 37(4): 224-234. | |
41 | Xu Z Y, Li Y C, Li M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image. Journal of Central South University of Forestry & Technology, 2020, 40(11): 147-155. |
许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演. 中南林业科技大学学报,2020,40(11): 147-155. | |
42 | Ramoelo A, Cho M A, Mathieu R, et al. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International journal of applied earth observation and geoinformation, 2015, 43: 43-54. |
43 | Wu F, Li Y X, Zhang Y Y et al. Hyperspectral estimation of biomass of winter wheat at difference growth stages based on machine learning algorithms. Journal of Triticeae Crops, 2019, 39(2): 217-224. |
吴芳, 李映雪, 张缘园, 等. 基于机器学习算法的冬小麦不同生育时期生物量高光谱估算. 麦类作物学报, 2019, 39(2): 217-224. | |
44 | Gao H Y, Hou M J, Ge J, et al. Hyperspectral estimation of aboveground biomass of alpine grassland based on random forest algorithm. Acta Agrestia Sinica, 2021, 29(8): 1757-1768. |
高宏元, 侯蒙京, 葛静, 等. 基于随机森林的高寒草地地上生物量高光谱估算. 草地学报, 2021, 29(8): 1757-1768. |
[1] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[2] | Yi-han ZHAO, Meng-jing HOU, Qi-sheng FENG, Hong-yuan GAO, Tian-gang LIANG, Jin-sheng HE, Da-wen QIAN. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach [J]. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
[3] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[4] | Zhe-ren JIN, Qi-sheng FENG, Rui-jing WANG, Tian-gang LIANG. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning [J]. Acta Prataculturae Sinica, 2022, 31(10): 1-17. |
[5] | Jing-jing MA, Yun-hua LIU, Jian-dong SHENG, Ning LI, Hong-qi WU, Hong-tao JIA, Zong-jiu SUN, Jun-hui CHENG. Changes of relationships between dominant species and their relative biomass along elevational gradients in Xinjiang grasslands [J]. Acta Prataculturae Sinica, 2021, 30(8): 25-35. |
[6] | Yi-ran ZHANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Yu-chen WU. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm [J]. Acta Prataculturae Sinica, 2021, 30(4): 1-12. |
[7] | Dian-dai ZHANG, Xue-mei WANG, Mei ZAN. Estimation of vegetation aboveground biomass in the Wei-Ku Oasis based on Landsat 8 OLI images [J]. Acta Prataculturae Sinica, 2021, 30(11): 1-12. |
[8] | Hui-fang ZHAO, Xiao-dong LI, Dong ZHANG, Rui-xiang XIAO. Aboveground biomass in grasslands in Qinghai Province estimated from MODIS data and its influencing factors [J]. Acta Prataculturae Sinica, 2020, 29(12): 5-16. |
[9] | WANG Chun-yan, YAN Xia, GU Meng-he. The interaction effects of vegetation and soil nutrients on vegetation succession in abandoned farmland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(11): 26-35. |
[10] | ZHAO Jie, LI Wei, JING Guang-Hua, WEI Lin, CHENG Ji-Min. Responses of species diversity and aboveground biomass to nitrogen addition in fenced and grazed grassland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2017, 26(8): 54-64. |
[11] | GE Jing, MENG Bao-Ping, YANG Shu-Xia, GAO Jin-Long, YIN Jian-Peng, ZHANG Ren-Ping, FENG Qi-Sheng, LIANG Tian-Gang. Monitoring of above-ground biomass in alpine grassland based on agricultural digital camera and MODIS remote sensing data: A case study in the Yellow River Headwater Region [J]. Acta Prataculturae Sinica, 2017, 26(7): 23-34. |
[12] | JING Mei-Ling, MA Yu-Shou, LI Shi-Xiong, WANG Yan-Long. Initial assessment of sixteen perennial grass species in the upper Datong River [J]. Acta Prataculturae Sinica, 2017, 26(6): 76-88. |
[13] | GE Jing, MENG Bao-Ping, YANG Shu-Xia, GAO Jin-Long, FENG Qi-Sheng, LIANG Tian-Gang, HUANG Xiao-Dong, GAO Xin-Hua, LI Wen-Long, ZHANG Ren-Ping, WANG Yun-Long. Dynamic monitoring of alpine grassland coverage based on UAV technology and MODIS remote sensing data-A case study in the headwaters of the Yellow River [J]. Acta Prataculturae Sinica, 2017, 26(3): 1-12. |
[14] | SUN Yong-Xiu, YAN Cheng, XU Hai-Liang, YAO Yan-Li. Grassland community species diversity and aboveground biomass responses to difference in cover soil thickness in restoration after mining damage [J]. Acta Prataculturae Sinica, 2017, 26(1): 54-62. |
[15] | YANG Shu-Xia, ZHANG Wen-Juan, FENG Qi-Sheng, MENG Bao-Ping, GAO Jin-Long, LIANG Tian-Gang. Monitoring of grassland herbage accumulation by remote sensing using MODIS daily surface reflectance data in the Qingnan Region [J]. Acta Prataculturae Sinica, 2016, 25(8): 14-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||