Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 198-212.DOI: 10.11686/cyxb2022409
Yi-nan JI(), Xue-feng REN, Tian-tian GOU, Guo-zhang ZANG, Yi-qi ZHENG()
Received:
2022-10-17
Revised:
2023-01-11
Online:
2023-09-20
Published:
2023-07-12
Contact:
Yi-qi ZHENG
Yi-nan JI, Xue-feng REN, Tian-tian GOU, Guo-zhang ZANG, Yi-qi ZHENG. A study of genetic diversity in centipedegrass populations in Henan based on SSR markers[J]. Acta Prataculturae Sinica, 2023, 32(9): 198-212.
编号 Codes | 样本数量 Number of samples (No.) | 采集地点 Collection sites | 临近河流 Nearby rivers | 经度 Longitudes (E) | 纬度 Latitudes (N) | 海拔 Altitudes (m) |
---|---|---|---|---|---|---|
C1 | 5 | 河南省信阳市固始县王湾Wangwan, Gushi County, Xinyang City, Henan Province | 史河Shi River | 115°36′31″ | 32°10′11″ | 40 |
C2 | 20 | 河南省信阳市商城县涂寨Tuzhai, Shangcheng County, Xinyang City, Henan Province | 灌河Guan River | 115°23′46″ | 31°51′31″ | 70 |
C3 | 20 | 河南省信阳市光山县韩家贩Hanjiafan, Guangshan County, Xinyang City, Henan Province | 白露河Bailu River | 115°05′34″ | 31°45′53″ | 80 |
C4 | 20 | 河南省信阳市新县邱店村Qiudian Village, Xin County, Xinyang City, Henan Province | 潢河Huang River | 114°48′00″ | 31°45′20″ | 70 |
C5 | 20 | 河南省信阳市罗山县钱大湾Qiandawan, Luoshan County, Xinyang City, Henan Province | 竹竿河Zhugan River | 114°31′04″ | 31°53′18″ | 60 |
C6 | 16 | 河南省信阳市浉河区马家湾Majiawan, Shihe District, Xinyang City, Henan Province | 浉河Shi River | 114°08′29″ | 31°59′49″ | 90 |
C7 | 20 | 河南省驻马店市泌阳县西关台Xiguantai, Biyang County, Zhumadian City, Henan Province | 汝河Ru River | 113°30′01″ | 32°59′51″ | 120 |
C8 | 20 | 河南省南阳市桐柏县板桥村Banqiao Village, Tongbai County, Nanyang City, Henan Province | 三夹河Sanjia River | 113°12′56″ | 32°27′50″ | 150 |
Table 1 General situation of collecting areas of centipedegrass
编号 Codes | 样本数量 Number of samples (No.) | 采集地点 Collection sites | 临近河流 Nearby rivers | 经度 Longitudes (E) | 纬度 Latitudes (N) | 海拔 Altitudes (m) |
---|---|---|---|---|---|---|
C1 | 5 | 河南省信阳市固始县王湾Wangwan, Gushi County, Xinyang City, Henan Province | 史河Shi River | 115°36′31″ | 32°10′11″ | 40 |
C2 | 20 | 河南省信阳市商城县涂寨Tuzhai, Shangcheng County, Xinyang City, Henan Province | 灌河Guan River | 115°23′46″ | 31°51′31″ | 70 |
C3 | 20 | 河南省信阳市光山县韩家贩Hanjiafan, Guangshan County, Xinyang City, Henan Province | 白露河Bailu River | 115°05′34″ | 31°45′53″ | 80 |
C4 | 20 | 河南省信阳市新县邱店村Qiudian Village, Xin County, Xinyang City, Henan Province | 潢河Huang River | 114°48′00″ | 31°45′20″ | 70 |
C5 | 20 | 河南省信阳市罗山县钱大湾Qiandawan, Luoshan County, Xinyang City, Henan Province | 竹竿河Zhugan River | 114°31′04″ | 31°53′18″ | 60 |
C6 | 16 | 河南省信阳市浉河区马家湾Majiawan, Shihe District, Xinyang City, Henan Province | 浉河Shi River | 114°08′29″ | 31°59′49″ | 90 |
C7 | 20 | 河南省驻马店市泌阳县西关台Xiguantai, Biyang County, Zhumadian City, Henan Province | 汝河Ru River | 113°30′01″ | 32°59′51″ | 120 |
C8 | 20 | 河南省南阳市桐柏县板桥村Banqiao Village, Tongbai County, Nanyang City, Henan Province | 三夹河Sanjia River | 113°12′56″ | 32°27′50″ | 150 |
编号 Codes | 年平均温 Annual mean temperature (Bio 1, ℃) | 等温性 Isothermality (×100,Bio 3, ℃) | 最热月最高温度 Max temperature of warmest month (Bio 5, ℃) | 温度年变化范围 Temperature annual range (Bio 7, ℃) | 最干燥季平均气温 Mean temperature of driest quarter (Bio 9, ℃) | 年降水量 Annual precipitation (Bio 12, mm) | 最干旱月份的降水量 Precipitation of driest month (Bio 14, mm) |
---|---|---|---|---|---|---|---|
C1 | 15.80 | 26.35 | 31.40 | 32.80 | 4.13 | 1071.00 | 22.00 |
C2 | 15.90 | 27.17 | 31.50 | 32.70 | 4.42 | 1144.00 | 24.00 |
C3 | 15.87 | 27.62 | 31.50 | 32.80 | 4.37 | 1151.00 | 23.00 |
C4 | 15.77 | 26.79 | 31.40 | 32.60 | 4.28 | 1136.00 | 21.00 |
C5 | 15.73 | 26.93 | 31.40 | 32.80 | 4.20 | 1109.00 | 20.00 |
C6 | 15.40 | 27.23 | 31.00 | 32.90 | 3.92 | 1083.00 | 18.00 |
C7 | 15.21 | 29.03 | 31.30 | 34.30 | 3.30 | 888.00 | 14.00 |
C8 | 15.14 | 27.79 | 30.80 | 33.10 | 3.62 | 955.00 | 14.00 |
Table 2 Environmental variables extracted from the populations of centipedegrass
编号 Codes | 年平均温 Annual mean temperature (Bio 1, ℃) | 等温性 Isothermality (×100,Bio 3, ℃) | 最热月最高温度 Max temperature of warmest month (Bio 5, ℃) | 温度年变化范围 Temperature annual range (Bio 7, ℃) | 最干燥季平均气温 Mean temperature of driest quarter (Bio 9, ℃) | 年降水量 Annual precipitation (Bio 12, mm) | 最干旱月份的降水量 Precipitation of driest month (Bio 14, mm) |
---|---|---|---|---|---|---|---|
C1 | 15.80 | 26.35 | 31.40 | 32.80 | 4.13 | 1071.00 | 22.00 |
C2 | 15.90 | 27.17 | 31.50 | 32.70 | 4.42 | 1144.00 | 24.00 |
C3 | 15.87 | 27.62 | 31.50 | 32.80 | 4.37 | 1151.00 | 23.00 |
C4 | 15.77 | 26.79 | 31.40 | 32.60 | 4.28 | 1136.00 | 21.00 |
C5 | 15.73 | 26.93 | 31.40 | 32.80 | 4.20 | 1109.00 | 20.00 |
C6 | 15.40 | 27.23 | 31.00 | 32.90 | 3.92 | 1083.00 | 18.00 |
C7 | 15.21 | 29.03 | 31.30 | 34.30 | 3.30 | 888.00 | 14.00 |
C8 | 15.14 | 27.79 | 30.80 | 33.10 | 3.62 | 955.00 | 14.00 |
引物名称 Primer name | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5′-3′) | 反向引物碱基序列 Reverse primers sequence (5′-3′) |
---|---|---|---|
TJIB.EO-51 | (TTG)11 | TGTAGTGCCGAGCAATTGAG | GCTGGCCAACCTGTAGAGAG |
TJIB.EO-82 | (TTC)13 | AGAGCAGTACTAGGCCGCAC | GCTCATCTCCATGGTTCGAT |
TJIB.EO-06 | (GCC)5 | GGTGGCGTTGTTTGCTATCT | CTGCTTCTTCTGCTTTCCGT |
TJIB.EO-66 | (ATC)14 | GCGCCTTCTCCTCTAACTCT | TTCTGTTGCGGAACTCCTCT |
TJIB.EO-31 | (CAC)13 | GCGACGAGATGAGAATGAGA | CTAGGTGGGAGGATGCGAG |
TJIB.EO-40 | (CGT)5 | CACCTGCTCAAGCACCATC | TCAAGGAACGAAACGAAACC |
TJIB.EO-90 | (CTAC)18 | GGCCACACTGCTTTAACCAT | TCGCGGTAAATCTTTTCGAC |
TJIB.EO-65 | (CCT)7 | TGAGAGAACCCTCATAACACAGA | GGAAAGGCTGTCTATGCTGC |
TJIB.EO-29 | (CAA)5 | AACAACAGCAACAGCAGCAG | ATTTTCGACCGGGTTAGCTT |
TJIB.EO-92 | (TCC)10 | CTGGCATCTCTTCTGGCAC | GAGGAGGAGGAGGAGGACAG |
Table 3 Sequences of SSR primers used in the study
引物名称 Primer name | 重复基元 Repeat the primitive | 正向引物碱基序列 Forward primer sequence (5′-3′) | 反向引物碱基序列 Reverse primers sequence (5′-3′) |
---|---|---|---|
TJIB.EO-51 | (TTG)11 | TGTAGTGCCGAGCAATTGAG | GCTGGCCAACCTGTAGAGAG |
TJIB.EO-82 | (TTC)13 | AGAGCAGTACTAGGCCGCAC | GCTCATCTCCATGGTTCGAT |
TJIB.EO-06 | (GCC)5 | GGTGGCGTTGTTTGCTATCT | CTGCTTCTTCTGCTTTCCGT |
TJIB.EO-66 | (ATC)14 | GCGCCTTCTCCTCTAACTCT | TTCTGTTGCGGAACTCCTCT |
TJIB.EO-31 | (CAC)13 | GCGACGAGATGAGAATGAGA | CTAGGTGGGAGGATGCGAG |
TJIB.EO-40 | (CGT)5 | CACCTGCTCAAGCACCATC | TCAAGGAACGAAACGAAACC |
TJIB.EO-90 | (CTAC)18 | GGCCACACTGCTTTAACCAT | TCGCGGTAAATCTTTTCGAC |
TJIB.EO-65 | (CCT)7 | TGAGAGAACCCTCATAACACAGA | GGAAAGGCTGTCTATGCTGC |
TJIB.EO-29 | (CAA)5 | AACAACAGCAACAGCAGCAG | ATTTTCGACCGGGTTAGCTT |
TJIB.EO-92 | (TCC)10 | CTGGCATCTCTTCTGGCAC | GAGGAGGAGGAGGAGGACAG |
位点 Locus | 多态性信息含量 PIC | 观测等位基因数Observed number of alleles | 有效等位基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity |
---|---|---|---|---|---|---|---|
TJIB.EO-51 | 0.88 | 12.00 | 8.75 | 2.31 | 0.89 | 0.72 | 0.89 |
TJIB.EO-82 | 0.72 | 9.00 | 4.20 | 1.62 | 0.76 | 0.89 | 0.77 |
TJIB.EO-06 | 0.87 | 10.00 | 8.16 | 2.17 | 0.88 | 0.77 | 0.88 |
TJIB.EO-66 | 0.84 | 10.00 | 7.05 | 2.09 | 0.86 | 0.48 | 0.86 |
TJIB.EO-31 | 0.80 | 10.00 | 5.66 | 1.88 | 0.82 | 0.99 | 0.83 |
TJIB.EO-40 | 0.53 | 6.00 | 2.54 | 1.11 | 0.61 | 0.99 | 0.61 |
TJIB.EO-90 | 0.83 | 12.00 | 6.64 | 2.07 | 0.85 | 0.37 | 0.85 |
TJIB.EO-65 | 0.80 | 9.00 | 5.60 | 1.93 | 0.82 | 0.97 | 0.83 |
TJIB.EO-29 | 0.69 | 11.00 | 3.59 | 1.70 | 0.72 | 0.26 | 0.72 |
TJIB.EO-92 | 0.88 | 10.00 | 8.96 | 2.24 | 0.89 | 0.62 | 0.89 |
平均值Mean value | 0.78 | 9.90 | 6.12 | 1.91 | 0.81 | 0.71 | 0.81 |
标准差Standard deviation | 0.10 | 1.64 | 2.20 | 0.36 | 0.09 | 0.27 | 0.09 |
Table 4 Primers amplification results
位点 Locus | 多态性信息含量 PIC | 观测等位基因数Observed number of alleles | 有效等位基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity |
---|---|---|---|---|---|---|---|
TJIB.EO-51 | 0.88 | 12.00 | 8.75 | 2.31 | 0.89 | 0.72 | 0.89 |
TJIB.EO-82 | 0.72 | 9.00 | 4.20 | 1.62 | 0.76 | 0.89 | 0.77 |
TJIB.EO-06 | 0.87 | 10.00 | 8.16 | 2.17 | 0.88 | 0.77 | 0.88 |
TJIB.EO-66 | 0.84 | 10.00 | 7.05 | 2.09 | 0.86 | 0.48 | 0.86 |
TJIB.EO-31 | 0.80 | 10.00 | 5.66 | 1.88 | 0.82 | 0.99 | 0.83 |
TJIB.EO-40 | 0.53 | 6.00 | 2.54 | 1.11 | 0.61 | 0.99 | 0.61 |
TJIB.EO-90 | 0.83 | 12.00 | 6.64 | 2.07 | 0.85 | 0.37 | 0.85 |
TJIB.EO-65 | 0.80 | 9.00 | 5.60 | 1.93 | 0.82 | 0.97 | 0.83 |
TJIB.EO-29 | 0.69 | 11.00 | 3.59 | 1.70 | 0.72 | 0.26 | 0.72 |
TJIB.EO-92 | 0.88 | 10.00 | 8.96 | 2.24 | 0.89 | 0.62 | 0.89 |
平均值Mean value | 0.78 | 9.90 | 6.12 | 1.91 | 0.81 | 0.71 | 0.81 |
标准差Standard deviation | 0.10 | 1.64 | 2.20 | 0.36 | 0.09 | 0.27 | 0.09 |
居群编号 Population code | 观测等位 基因数 Observed number of alleles | 有效等位 基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数 Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态位点数 Number of polymorphic loci | 多态位点百 分率Percentage of polymorphic loci (%) |
---|---|---|---|---|---|---|---|---|
C1 | 4.30±1.77 | 3.56±1.58 | 1.24±0.54 | 0.64±0.24 | 0.58±0.35 | 0.71±0.27 | 9.00 | 90.00 |
C2 | 6.80±2.70 | 3.85±1.53 | 1.48±0.45 | 0.70±0.12 | 0.68±0.26 | 0.72±0.12 | 10.00 | 100.00 |
C3 | 6.70±2.26 | 4.52±1.53 | 1.59±0.39 | 0.75±0.10 | 0.76±0.26 | 0.77±0.10 | 10.00 | 100.00 |
C4 | 7.90±2.42 | 4.97±1.68 | 1.73±0.41 | 0.77±0.11 | 0.70±0.23 | 0.79±0.11 | 10.00 | 100.00 |
C5 | 6.40±2.76 | 4.01±1.91 | 1.45±0.50 | 0.69±0.16 | 0.68±0.36 | 0.71±0.16 | 10.00 | 100.00 |
C6 | 6.60±1.65 | 4.04±1.42 | 1.51±0.37 | 0.72±0.12 | 0.60±0.33 | 0.74±0.12 | 10.00 | 100.00 |
C7 | 6.00±2.67 | 3.47±1.30 | 1.34±0.46 | 0.66±0.15 | 0.79±0.32 | 0.68±0.15 | 10.00 | 100.00 |
C8 | 4.40±1.96 | 3.11±1.18 | 1.15±0.50 | 0.61±0.22 | 0.76±0.36 | 0.63±0.23 | 10.00 | 100.00 |
平均值Mean value | 6.14±2.27 | 3.94±1.52 | 1.44±0.45 | 0.69±0.15 | 0.69±0.31 | 0.72±0.16 | 9.88 | 98.75 |
Table 5 Genetic diversity of centipedegrass populations (mean±SD)
居群编号 Population code | 观测等位 基因数 Observed number of alleles | 有效等位 基因数 Effective number of alleles | Shannon’s遗传多样性信息指数Shannon’s information index | Nei’s基因多样性指数 Nei’s gene diversity | 观测杂合度 Observed heterozygosity | 期望杂合度 Expected heterozygosity | 多态位点数 Number of polymorphic loci | 多态位点百 分率Percentage of polymorphic loci (%) |
---|---|---|---|---|---|---|---|---|
C1 | 4.30±1.77 | 3.56±1.58 | 1.24±0.54 | 0.64±0.24 | 0.58±0.35 | 0.71±0.27 | 9.00 | 90.00 |
C2 | 6.80±2.70 | 3.85±1.53 | 1.48±0.45 | 0.70±0.12 | 0.68±0.26 | 0.72±0.12 | 10.00 | 100.00 |
C3 | 6.70±2.26 | 4.52±1.53 | 1.59±0.39 | 0.75±0.10 | 0.76±0.26 | 0.77±0.10 | 10.00 | 100.00 |
C4 | 7.90±2.42 | 4.97±1.68 | 1.73±0.41 | 0.77±0.11 | 0.70±0.23 | 0.79±0.11 | 10.00 | 100.00 |
C5 | 6.40±2.76 | 4.01±1.91 | 1.45±0.50 | 0.69±0.16 | 0.68±0.36 | 0.71±0.16 | 10.00 | 100.00 |
C6 | 6.60±1.65 | 4.04±1.42 | 1.51±0.37 | 0.72±0.12 | 0.60±0.33 | 0.74±0.12 | 10.00 | 100.00 |
C7 | 6.00±2.67 | 3.47±1.30 | 1.34±0.46 | 0.66±0.15 | 0.79±0.32 | 0.68±0.15 | 10.00 | 100.00 |
C8 | 4.40±1.96 | 3.11±1.18 | 1.15±0.50 | 0.61±0.22 | 0.76±0.36 | 0.63±0.23 | 10.00 | 100.00 |
平均值Mean value | 6.14±2.27 | 3.94±1.52 | 1.44±0.45 | 0.69±0.15 | 0.69±0.31 | 0.72±0.16 | 9.88 | 98.75 |
位点 Locus | 近交系数 Inbreeding coefficient (Fis) | 居群内近交系数 Inbreeding coefficient with population (Fit) | 居群间分化系数 Fixation index (Fst) | 基因流 Number of effective migrants (Nm) |
---|---|---|---|---|
TJIB.EO-51 | 0.12 | 0.18 | 0.07 | 3.32 |
TJIB.EO-82 | -0.35 | -0.15 | 0.15 | 1.37 |
TJIB.EO-06 | 0.04 | 0.14 | 0.11 | 1.98 |
TJIB.EO-66 | 0.40 | 0.48 | 0.13 | 1.64 |
TJIB.EO-31 | -0.30 | -0.19 | 0.09 | 2.65 |
TJIB.EO-40 | -0.69 | -0.59 | 0.06 | 4.04 |
TJIB.EO-90 | 0.49 | 0.58 | 0.18 | 1.11 |
TJIB.EO-65 | -0.42 | -0.16 | 0.18 | 1.12 |
TJIB.EO-29 | 0.48 | 0.66 | 0.35 | 0.46 |
TJIB.EO-92 | 0.21 | 0.31 | 0.12 | 1.80 |
平均值Mean value | 0.00 | 0.15 | 0.14 | 1.49 |
Table 6 F-statistics of SSR in populations of centipedegrass
位点 Locus | 近交系数 Inbreeding coefficient (Fis) | 居群内近交系数 Inbreeding coefficient with population (Fit) | 居群间分化系数 Fixation index (Fst) | 基因流 Number of effective migrants (Nm) |
---|---|---|---|---|
TJIB.EO-51 | 0.12 | 0.18 | 0.07 | 3.32 |
TJIB.EO-82 | -0.35 | -0.15 | 0.15 | 1.37 |
TJIB.EO-06 | 0.04 | 0.14 | 0.11 | 1.98 |
TJIB.EO-66 | 0.40 | 0.48 | 0.13 | 1.64 |
TJIB.EO-31 | -0.30 | -0.19 | 0.09 | 2.65 |
TJIB.EO-40 | -0.69 | -0.59 | 0.06 | 4.04 |
TJIB.EO-90 | 0.49 | 0.58 | 0.18 | 1.11 |
TJIB.EO-65 | -0.42 | -0.16 | 0.18 | 1.12 |
TJIB.EO-29 | 0.48 | 0.66 | 0.35 | 0.46 |
TJIB.EO-92 | 0.21 | 0.31 | 0.12 | 1.80 |
平均值Mean value | 0.00 | 0.15 | 0.14 | 1.49 |
变异来源 Source of variation | 离差平方和 Sum of squares deviations | 方差分量估计 Estimation of variance components | 变异百分比 Percentage of variation (%) |
---|---|---|---|
居群间Among populations | 157.02 | 3.54 | 13.04 |
居群内Within populations | 498.50 | 22.43 | 86.96 |
Table 7 Molecular analysis of variance
变异来源 Source of variation | 离差平方和 Sum of squares deviations | 方差分量估计 Estimation of variance components | 变异百分比 Percentage of variation (%) |
---|---|---|---|
居群间Among populations | 157.02 | 3.54 | 13.04 |
居群内Within populations | 498.50 | 22.43 | 86.96 |
环境变量 Environmental variables | 轴1 Axis 1 | 轴2 Axis 2 | 解释度 Explanation degree (%) | 贡献率 Contribution rate (%) |
---|---|---|---|---|
Bio 1 | -0.90** | 0.10 | 0.52 | 1.82 |
Bio 3 | 0.43 | -0.57* | 2.60 | 9.81 |
Bio 5 | -0.83** | -0.25 | 1.83 | 6.59 |
Bio 7 | 0.48 | -0.53* | 1.46 | 5.23 |
Bio 9 | -0.79** | 0.29 | 2.80 | 10.58 |
Bio 12 | -0.76** | 0.44 | 4.61 | 17.47 |
Bio 14 | -0.92** | 0.14 | 12.93 | 48.50 |
Table 8 Correlation, degree of explanation and contribution rate of each environmental variables to the ranking axis
环境变量 Environmental variables | 轴1 Axis 1 | 轴2 Axis 2 | 解释度 Explanation degree (%) | 贡献率 Contribution rate (%) |
---|---|---|---|---|
Bio 1 | -0.90** | 0.10 | 0.52 | 1.82 |
Bio 3 | 0.43 | -0.57* | 2.60 | 9.81 |
Bio 5 | -0.83** | -0.25 | 1.83 | 6.59 |
Bio 7 | 0.48 | -0.53* | 1.46 | 5.23 |
Bio 9 | -0.79** | 0.29 | 2.80 | 10.58 |
Bio 12 | -0.76** | 0.44 | 4.61 | 17.47 |
Bio 14 | -0.92** | 0.14 | 12.93 | 48.50 |
位点Locus | Bio 1 | Bio 3 | Bio 5 | Bio 7 | Bio 9 | Bio 12 | Bio 14 |
---|---|---|---|---|---|---|---|
TJIB.EO-82-3 | - | - | - | 3.54 | - | - | - |
TJIB.EO-65-2 | 6.27 | 6.38 | 3.61 | 5.86 | 6.54 | 7.73 | 6.04 |
TJIB.EO-65-6 | - | 4.29 | - | - | - | - | - |
TJIB.EO-29-6 | 8.37 | 3.99 | 7.19 | 5.06 | 7.94 | 8.12 | 7.27 |
Table 9 Environment association site determined by the score |Z|
位点Locus | Bio 1 | Bio 3 | Bio 5 | Bio 7 | Bio 9 | Bio 12 | Bio 14 |
---|---|---|---|---|---|---|---|
TJIB.EO-82-3 | - | - | - | 3.54 | - | - | - |
TJIB.EO-65-2 | 6.27 | 6.38 | 3.61 | 5.86 | 6.54 | 7.73 | 6.04 |
TJIB.EO-65-6 | - | 4.29 | - | - | - | - | - |
TJIB.EO-29-6 | 8.37 | 3.99 | 7.19 | 5.06 | 7.94 | 8.12 | 7.27 |
1 | Hanna W W. Centipedegrass-diversity and vulnerability. Crop Science, 1995, 35: 332-334. |
2 | Zheng Y Q, Zang G Z, Guo H L, et al. Analysis of heredity and correlation of reproductive traits in centipedegrass (Eremochloa ophiuroides)hybrids. Acta Prataculturae Sinica, 2011, 20(2): 283-289. |
郑轶琦, 臧国长, 郭海林, 等. 假俭草杂交后代生殖性状遗传及相关性分析. 草业学报, 2011, 20(2): 283-289. | |
3 | Weaver K R, Callahan L M, Caetano-Anollés G, et al. DNA amplification fingerprinting and hybridization analysis of centipedegrass. Crop Science, 1995, 35(3): 881-885. |
4 | Bai S Q, Gao R, Shen Y, et al. AFLP fingerprinting analysis of Eremochloa ophiuroides (Munro) Hackel germplasm. High Technology Letters, 2002(10): 45-49. |
白史且, 高荣, 沈翼, 等. 假俭草遗传多样性的AFLP指纹分析. 高技术通讯, 2002(10): 45-49. | |
5 | Liu X S, Liu J X, Guo H L. Preliminary study on germplasm resource diversity of Eremochloa ophiuroides in East China Ⅲ ploidy level and morphological variation of somatic chromosome. Acta Prataculturae Sinica, 2003, 12(3): 90-94. |
刘学诗, 刘建秀, 郭海林. 华东地区假俭草种质资源多样性初步研究Ⅲ染色体倍性和形态. 草业学报, 2003, 12(3): 90-94. | |
6 | Xuan J P, Gao H, Liu J X. RAPD analysis of a population of Eremochloa ophiuroides in China. Acta Prataculturae Sinica, 2005, 14(4): 47-52. |
宣继萍, 高鹤, 刘建秀. 中国假俭草居群遗传多样性研究Ⅲ RAPD分析. 草业学报, 2005, 14(4): 47-52. | |
7 | Zhao Q L, Bai C J, Liang X L. An analysis by ISSR of genetic diversity in Eremochloa ophiuroides in China. Chinese Journal of Tropical Crops, 2011, 32(1): 110-115. |
赵琼玲, 白昌军, 梁晓玲. 中国假俭草种质资源遗传多样性的ISSR分析. 热带作物学报, 2011, 32(1): 110-115. | |
8 | Yang S L. Study on genetic diversity of wild centipedegrass germplasm resources in Hunan. Changsha: Central South University of Forestry and Technology, 2009. |
杨水莲. 湖南野生假俭草种质资源遗传多样性研究. 长沙: 中南林业科技大学, 2009. | |
9 | Zheng Y Q. Detection of genetic diversity, construction of genetic linkage map and mapping QTL in centipedegrass (Eremochloa ophiuroides). Nanjing: Nanjing Agricultural University, 2009. |
郑轶琦. 假俭草种质遗传多样性分析、遗传图谱构建及重要性状QTL定位. 南京: 南京农业大学, 2009. | |
10 | Susana R, Jennifer A, Kimball M, et al. Use of sequence-related amplified polymorphism (SRAP) markers for comparing levels of genetic diversity in centipedegrass (Eremochloa ophiuroides (Munro) Hack.) germplasm. Genetic Resources and Crop Evolution, 2012, 59(7): 1517-1526. |
11 | Guo H L, Guo A G, Zong J Q, et al. Identification and analysis of eight centipedegrass materials by SRAP molecular makers. Acta Agrestia Sinica, 2014, 22(1): 203-207. |
郭海林, 郭爱桂, 宗俊勤, 等. SRAP标记对8份假俭草材料的鉴定分析. 草地学报, 2014, 22(1): 203-207. | |
12 | Wang T. Comprehensive evaluation of morphological characters, turf use value and construction of fingerprint map of wild centipedegrass. Chengdu: Sichuan Agricultural University, 2018. |
王婷. 野生假俭草种质形态性状、坪用价值综合评价及指纹图谱构建. 成都: 四川农业大学, 2018. | |
13 | Karen R, Susana R, Carolina Z M, et al. Development of simple sequence repeat markers and the analysis of genetic diversity and ploidy level in a centipedegrass collection. Crop Science, 2012, 52(1): 383-392. |
14 | Li J J, Guo H L, Wang Y, et al. High-throughput SSR marker development and its application in a centipedegrass (Eremochloa ophiuroides (Munro) Hack.) genetic diversity analysis. PLoS One, 2018, 13(8): e0202605. |
15 | Rellstab C, Gugerli F, Eckert A J, et al. A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 2015, 24(17): 4348-4370. |
16 | Li J X, Zhu X H, Li Y, et al. Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biology, 2018, 18(1): 306-318. |
17 | Thomas C D, Bodsworth E J, Wilson R J, et al. Ecological and evolutionary processes at expanding range margins. Nature, 2001, 411(6837): 557-581. |
18 | Montero-Mendieta S, Tan K, Christmas M J, et al. The genomic basis of adaptation to high altitude habitats in the eastern honey bee (Apis cerana). Molecular Ecology, 2019, 28(4): 746-760. |
19 | Hamasha H, Schmidt-Lebuhn A, Durka W, et al. Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biology, 2012, 15(5): 882-891. |
20 | Wu Z, Yu D, Li X, et al. Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology & Evolution, 2016, 6(2): 460-468. |
21 | Gao L, Tang S, Zhuge L, et al. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLoS One, 2012, 7(8): e43334. |
22 | Lawton J H. Range, population abundance and conservation. Trends in Ecology and Evolution, 1993, 8(11): 409-413. |
23 | Kluth C, Bruelheide H. Central and peripheral Hornungia petraea populations: Patterns and dynamics. Journal of Ecology, 2005, 93(3): 584-595. |
24 | Wang Y Q, Zhang Z B, Xu L X. The genetic diversity of central and peripheral populations of ratlike hamster (Cricetulus triton). Chinese Science Bulletin, 2002, 47(3): 201-206. |
25 | Eckert C G, Samis K E, Lougheed S C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 2008, 17(5): 1170-1188. |
26 | Johannesson K, André C. Life on the margin: Genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology, 2006, 15(8): 2013-2029. |
27 | Li N, Jiang Y F, Su X, et al. Genetic diversity and genetic structure of the northern margin populations of Hippophae neurocarpa. Guihaia, 2016, 36(5): 557-563. |
李霓, 蒋严妃, 苏雪, 等. 肋果沙棘北缘居群的遗传多样性与遗传结构. 广西植物, 2016, 36(5): 557-563. | |
28 | Van R F, Vekemans X, Gratia E, et al. A comparative study of allozyme variation of peripheral and central populations of Silene nutans L. (Caryophyllaceae) from Western Europe: implications for conservation. Plant Systematics and Evolution, 2003, 242: 49-61. |
29 | Liu J, Jiang J M, Zou J. Genetic diversity of the central and peripheral populations of Toona ciliata var. pubescens, an endangered tree species endemic to China. Journal of Plant Ecology, 2013, 37(1): 52-60. |
30 | Shi M M, Chen X Y. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Population Ecology, 2012, 54(4): 591-600. |
31 | Jiangsu Institute of Botany. Flora of Jiangsu (I). Nanjing: Jiangsu People’s Publishing House, 1997. |
江苏省植物研究所. 江苏植物志(上). 南京: 江苏人民出版社, 1977. | |
32 | Ding B Z, Wang S Y, Ye Y Z, et al. Flora of Henan. Zhengzhou: Henan Science and Technology Press, 1998(4): 229. |
丁宝章, 王遂义, 叶永忠, 等. 河南植物志. 郑州: 河南科学技术出版社, 1998(4): 229. | |
33 | Li J J, Guo H L, Zong J Q, et al. Genetic diversity in centipedegrass [Eremochloa ophiuroides (Munro) Hack.]. Horticulture Research, 2020, 7(1): 1-9. |
34 | Peakall R O D, Smouse P E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources, 2006, 6(1): 288-295. |
35 | Yeh F C, Yang R, Boyle T J, et al. PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre. Edmonton: University of Alberta, 2000. |
36 | Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007, 16(5): 1099-1106. |
37 | Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.1. Setauket: Exeter Software, 2000. |
38 | Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. |
39 | Evanno G S, Regnaut S J, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
40 | Liu K J, Goodman M, Muse S, et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165(4): 2117-2128. |
41 | Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 1966, 53(3/4): 325-338. |
42 | Craig M. Multivariate analysis of ecological data using Canoco 5, 2nd edition. African Journal of Range & Forage Science, 2015, 32(4): 289-290. |
43 | Foil M, Gaggiotti O E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 2008, 180(2): 977-993. |
44 | Beaumont M A, Nichols R A. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London, 1996, 263(1377): 1619-1626. |
45 | Frichot E, Schoville S D, Bouchard G, et al. Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 2013, 30(7): 1687-1699. |
46 | Mu Y, Zhang M L, Bai Y H, et al. Analysis on genetic diversity of natural populations of Acer davidii based on EST-SSR marker. Journal of Plant Resources and Environment, 2022, 31(2): 57-63. |
穆莹, 张梦璐, 白云海, 等. 基于EST-SSR标记的青榨槭天然种群遗传多样性分析. 植物资源与环境学报, 2022, 31(2): 57-63. | |
47 | Liu X S, Deng X Y. Research progress on the germplasm resources of Eremochloa ophiuroides (Munro) Hack. Anhui Agricultural Science, 2004, 32(5): 1007-1008, 1020. |
刘学诗, 邓新义. 假俭草[Eremochloa ophiuroides (Munro) Hack.]种质资源研究进展. 安徽农业科学, 2004, 32(5): 1007-1008, 1020. | |
48 | Duminil J, Fineschi S, Hampe A, et al. Can population genetic structure be predicted from life-history traits? The American Naturalist, 2007, 169(5): 662-672. |
49 | Ohsawa T, Ide Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography, 2008, 17(2): 152-163. |
50 | Yang J, Li Y, Miao C Y, et al. Landscape genomics analysis of Achyranthes bidentata reveal adaptive genetic variations are driven by environmental variations relating to ecological habit. Population Ecology, 2017, 59(4): 355-362. |
51 | Xie L F, Li N, Li Y, et al. Genetic diversity and population structure of eggplant (Solanum melongena) germplasm resources based on SRAP method. Bulletin of Botany, 2019, 54(1): 58-63. |
谢立峰, 李宁, 李烨, 等. 茄子种质遗传多样性及群体结构的SRAP分析. 植物学报, 2019, 54(1): 58-63. | |
52 | Johnson B J, Carrow R N. Frequency of fertilizer applications and centipedegrass performance. Agronomy Journal, 1988, 80(6): 925-929. |
53 | Jiang X L, Xu G B, Deng M. Spatial genetic patterns and distribution dynamics of the rare oak Quercus chungii: Implications for biodiversity conservation in southeast China. Forests, 2019, 10(9): 821. |
54 | Shryock D F, Havrilla C A, Defalco L A, et al. Landscape genetic approaches to guide native plant restoration in the Mojave Desert. Ecological Applications, 2017, 27(2): 429-445. |
55 | Jia K H, Zhao W, Maier P A, et al. Landscape genomics predicts climate change related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evolutionary Applications, 2020, 13(4): 665-676. |
56 | Miao C Y, Li Y, Yang J, et al. Landscape genomics reveal that ecological character determines adaptation: A case study in smoke tree (Cotinus coggygria Scop.). BMC Evolutionary Biology, 2017, 17(1): 202. |
57 | Zhang X X, Liu B G, Li Y, et al. Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats. BMC Evolutionary Biology, 2019, 19(1): 1-13. |
58 | Yang J, Miao C Y, Mao R L, et al. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Frontiers in Plant Science, 2017, 8: 481. |
59 | Cushman S A. Grand challenges in evolutionary and population genetics: The importance of integrating epigenetics, genomics, modeling, and experimentation. Frontiers in Genetics, 2014, 5(5): 197-182. |
60 | Yan D Q, Ren J, Liu J M, et al. De novo assembly, annotation, marker discovery, and genetic diversity of the Stipa breviflora Griseb. (Poaceae) response to grazing. PLoS One, 2021, 15(12): e0244222. |
[1] | Zi-li LYU, Bin LIU, Feng CHANG, Zi-jing MA, Qiu-mei CAO. Species diversity and phylogenetic diversity in Bayinbrook alpine grasslands: elevation gradient distribution patterns and drivers [J]. Acta Prataculturae Sinica, 2023, 32(7): 12-22. |
[2] | Shi-long MA, Xiao-wei LI, Xiang LI, Shu-qiong XIE, Yi-li LIU, Jiao TANG, Ming-feng JIANG. Assessment of genetic structure of 3 Maiwa yak preserved populations based on genotyping-by-sequencing technology [J]. Acta Prataculturae Sinica, 2022, 31(9): 183-194. |
[3] | Xue-feng REN, Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG. A SSR marker analysis of genetic diversity and population genetic structure of bermudagrass in Henan Province [J]. Acta Prataculturae Sinica, 2022, 31(3): 60-70. |
[4] | Jing PAN, Jun-chao ZHANG, You-jun CHEN, Qing-ping ZHOU. Genetic diversity analysis and fingerprint construction of Elymus germplasm based on SCoT markers [J]. Acta Prataculturae Sinica, 2022, 31(11): 48-60. |
[5] | Li-fang CHANG, Xin LI, Hui-juan GUO, Lin-yi QIAO, Shu-wei ZHANG, Fang CHEN, Zhi-jian CHANG, Xiao-jun ZHANG. Genetic diversity analysis and comprehensive evaluation of octoploid Tritipyrum-derived wheat breeding lines based on agronomic traits [J]. Acta Prataculturae Sinica, 2022, 31(11): 61-74. |
[6] | Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144. |
[7] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
[8] | Zheng-yu YANG, Zhong-jie LU, Mao ZHANG, Rui DONG. A digital image analysis of seed phenotypic traits of 132 Lespedeza accessions [J]. Acta Prataculturae Sinica, 2021, 30(11): 87-97. |
[9] | LEI Xiong, YOU Ming-hong, BAI Shi-qie, CHEN Li-li, DENG Pei-hua, XIONG Yi, XIONG Yan-li, YU Qing-qing, MA Xiao, YANG Jian, ZHANG Chang-bing. Genetic diversity analysis and multivariate evaluation of agronomic traits of 50 oat germplasm lines in northwest Sichuan [J]. Acta Prataculturae Sinica, 2020, 29(7): 131-142. |
[10] | DING Yong-fu, WANG Ji-liang, CHEN Fen-qi, ZHUANG Ze-long, BAI Ming-xing, LU Yan-tian, JIN Bing-bing, PENG Yun-ling. Correlation between SSR diversity and ear traits of maize inbred lines [J]. Acta Prataculturae Sinica, 2020, 29(7): 143-153. |
[11] | WANG Jian-li, MA Li-chao, SHEN Zhong-bao, LIU Jie-lin, ZHU Rui-fen, HAN Wei-bo, ZHONG Peng, DI Gui-li, HAN Gui-qing, GUO Chang-hong. An evaluation of agronomic traits and genetic diversity among 51 oat germplasm accessions [J]. Acta Prataculturae Sinica, 2019, 28(2): 133-141. |
[12] | ZHANG Yan-jun, GOU Zuo-wang, WANG Xing-rong, LI Yue, QI Xu-sheng. An analysis of genetic diversity and linked agronomic traits of Heshangtou wheat in northwest China [J]. Acta Prataculturae Sinica, 2019, 28(2): 142-155. |
[13] | GONG Wen-long, WANG Zan, ZHAO Gui-qin, MA Lin, WEI Bao, GONG Pan, LIU Xi-qiang. Development of EST-SSR molecular markers and analysis of genetic diversity of erect milk vetch (Astragalus adsurgens) [J]. Acta Prataculturae Sinica, 2019, 28(11): 147-158. |
[14] | SUN Li-kun, LIU Guang-xiu, ZHANG Bao-gui, ZHANG Gao-sen. Effects of environmental factors on population genetic diversity of Tamarix chinensis [J]. Acta Prataculturae Sinica, 2019, 28(10): 178-186. |
[15] | ZHU Yong-qun, PENG Dan-dan, LIN Chao-wen, NIE Gang, XU Wen-zhi, HUANG Lin-kai, LUO Fu-xiang, PENG Jian-hua, ZHANG Xin-quan. Development of SSR markers based on transcriptome sequence and analysis of genetic diversity in Sorghum sudanense [J]. Acta Prataculturae Sinica, 2018, 27(5): 178-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||