Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (1): 75-88.DOI: 10.11686/cyxb2023085
Previous Articles Next Articles
Jiong-rui TAN1(), Tong-gang ZHA2(), Ze-yu ZHANG2, Xiao-xia ZHANG3, Hong-mei TENG1, Ling-li WANG1, Li-li ZHAO4, Ao WANG4, Xin-yao WANG1
Received:
2023-03-21
Revised:
2023-05-31
Online:
2024-01-20
Published:
2023-11-23
Contact:
Tong-gang ZHA
Jiong-rui TAN, Tong-gang ZHA, Ze-yu ZHANG, Xiao-xia ZHANG, Hong-mei TENG, Ling-li WANG, Li-li ZHAO, Ao WANG, Xin-yao WANG. Leaf structure, physiology and transcriptome analysis of Salsola collina in response to drought stress[J]. Acta Prataculturae Sinica, 2024, 33(1): 75-88.
基因编号Gene ID | 正向引物Forward primers | |
---|---|---|
TR16542_c0_g1 | TGCTAACGGTTGGAGATGCT | TGCAGCAATTTTGGGGTTGC |
TR17024_c0_g1 | CGTTGTCGTCGTTGCTCTTC | CCTATCCGATCCATGGCAGG |
TR17405_c0_g1 | TTGGGCTAGTGATGGAGGGA | GCAATTGGGATCCGAACACG |
TR2171_c0_g1 | AAGAAACCACGAAACGCACG | GTGTGTCGGTTCAAGTTGCC |
TR5292_c0_g1 | GTGGAGCTTGCCTCCAAAGA | CATGGGTCCCACATCGACTC |
TR7123_c0_g1 | ACTATCGGGGGTAGCCAACT | CGAGCTTATTGGCCTCGGAT |
EF1A | TGGTCGTTTTGCTGTGAGGG | GCAGCCTTGGTCACCTTTG |
Table 1 Primers of differentially expressed genes
基因编号Gene ID | 正向引物Forward primers | |
---|---|---|
TR16542_c0_g1 | TGCTAACGGTTGGAGATGCT | TGCAGCAATTTTGGGGTTGC |
TR17024_c0_g1 | CGTTGTCGTCGTTGCTCTTC | CCTATCCGATCCATGGCAGG |
TR17405_c0_g1 | TTGGGCTAGTGATGGAGGGA | GCAATTGGGATCCGAACACG |
TR2171_c0_g1 | AAGAAACCACGAAACGCACG | GTGTGTCGGTTCAAGTTGCC |
TR5292_c0_g1 | GTGGAGCTTGCCTCCAAAGA | CATGGGTCCCACATCGACTC |
TR7123_c0_g1 | ACTATCGGGGGTAGCCAACT | CGAGCTTATTGGCCTCGGAT |
EF1A | TGGTCGTTTTGCTGTGAGGG | GCAGCCTTGGTCACCTTTG |
胁迫天数 Stress days (d) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 贮水组织厚度 Thickness of aqueous tissue (μm) | 主维管束面积 Area of main vascular bundle (μm2) | 表皮厚度 Epidermal thickness (μm) | 叶片厚度 Leaf thickness (μm) | 叶面积 Leaf area (mm2) |
---|---|---|---|---|---|---|
0 | 43.15±3.49a | 149.66±19.62b | 2065.41±80.08b | 13.71±1.26b | 506.29±3.50b | 42.22±2.65a |
7 | 52.30±2.28a | 210.09±15.68a | 2374.54±218.09b | 15.03±0.97b | 573.27±17.04a | 30.46±1.89b |
14 | 43.23±3.31a | 166.67±8.20ab | 2776.56±155.15ab | 16.08±2.64b | 554.08±24.05a | 37.41±2.18ab |
28 | 38.89±6.13b | 140.55±18.48b | 3099.72±151.88a | 23.73±0.68a | 531.21±21.83a | 36.40±2.94ab |
Table 2 Changes of anatomical parameters of leaves of S. collina with drought stress
胁迫天数 Stress days (d) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 贮水组织厚度 Thickness of aqueous tissue (μm) | 主维管束面积 Area of main vascular bundle (μm2) | 表皮厚度 Epidermal thickness (μm) | 叶片厚度 Leaf thickness (μm) | 叶面积 Leaf area (mm2) |
---|---|---|---|---|---|---|
0 | 43.15±3.49a | 149.66±19.62b | 2065.41±80.08b | 13.71±1.26b | 506.29±3.50b | 42.22±2.65a |
7 | 52.30±2.28a | 210.09±15.68a | 2374.54±218.09b | 15.03±0.97b | 573.27±17.04a | 30.46±1.89b |
14 | 43.23±3.31a | 166.67±8.20ab | 2776.56±155.15ab | 16.08±2.64b | 554.08±24.05a | 37.41±2.18ab |
28 | 38.89±6.13b | 140.55±18.48b | 3099.72±151.88a | 23.73±0.68a | 531.21±21.83a | 36.40±2.94ab |
项目 Item | GO编号 GO ID | 条目 Term | 种类 Category | 基因数目 Gene number | P值 P value |
---|---|---|---|---|---|
7 d Vs 0 d | 0035966 | BP | 4 | 0.00 | |
0030968 | BP | 3 | 0.00 | ||
0034620 | BP | 3 | 0.00 | ||
0035967 | BP | 3 | 0.00 | ||
0006986 | BP | 3 | 0.00 | ||
1 | 0.00 | ||||
1 | 0.00 | ||||
Table 3 Top 5 terms of GO enrichment analysis of the differentially expressed genes
项目 Item | GO编号 GO ID | 条目 Term | 种类 Category | 基因数目 Gene number | P值 P value |
---|---|---|---|---|---|
7 d Vs 0 d | 0035966 | BP | 4 | 0.00 | |
0030968 | BP | 3 | 0.00 | ||
0034620 | BP | 3 | 0.00 | ||
0035967 | BP | 3 | 0.00 | ||
0006986 | BP | 3 | 0.00 | ||
1 | 0.00 | ||||
1 | 0.00 | ||||
1 | Diatta A A, Fike J H, Battaglia M L, et al. Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 2020, 13(14): 595. |
2 | O’connell E. Towards adaptation of water resource systems to climatic and socio-economic change. Water Resources Management, 2017, 31(10): 2965-2984. |
3 | Liu J S. Plant physiology. Beijing: Higher Education Press, 2006: 220-222. |
刘继澍. 植物生理学. 北京: 高等教育出版社, 2006: 220-222. | |
4 | Zhang H, Zhu J, Gong Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23(2): 104-119. |
5 | Hirt H. Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6): 2405-2407. |
6 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
7 | Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 2015, 6: 701. |
8 | Mansoor S, Ali W O, Lone J K, et al. Reactive oxygen species in plants: from source to sink. Antioxidants, 2022, 11(2): 225. |
9 | Zhao Y, Wei X, Ji X, et al. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress. Plant Physiology and Biochemistry, 2019, 141: 456-465. |
10 | Li S, Fan C, Li Y, et al. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 2016, 17(1): 200. |
11 | Yang F, Lv G. Combined analysis of transcriptome and metabolome reveals the molecular mechanism and candidate genes of Haloxylon drought tolerance. Frontiers in Plant Science, 2022, 13: 1020367. |
12 | Yan D H. Genome-wide transcriptional response and expressed NF-YB genes of Populus euphratica to drought stress. Beijing: Beijing Forestry University, 2013. |
严东辉. 胡杨干旱响应转录组及NF-YB基因表达谱. 北京: 北京林业大学, 2013. | |
13 | Duan N. Growth and physiological and transcriptomic studies in responses to nitrogen addition and drought stress in Nitraria tangutorum. Hohhot: Inner Mongolia Agricultural University, 2019. |
段娜. 白刺对氮添加和干旱胁迫的生长生理响应及转录组学研究. 呼和浩特: 内蒙古农业大学, 2019. | |
14 | Jin M, Su Y H. Identification and analysis on transcription factor genes from Ammopiptanthus mongolicus in responding to abiotic stress. Journal of Plant Resources and Environment, 2018, 27(1): 1-10. |
金曼, 苏彦华. 沙冬青响应非生物胁迫的转录因子基因鉴定与分析. 植物资源与环境学报, 2018, 27(1): 1-10. | |
15 | Bai W J. Effects of vegetation restoration on soil quality and plant physio-ecological adaptability in water-wind erosion region. Yangling: Chinese Academy of Sciences, 2010. |
白文娟. 水蚀风蚀交错带植被恢复对土壤质量的影响与植物生理生态适应性. 杨凌: 中国科学院, 2010. | |
16 | Peng L, Zhang L, Zhou X L, et al. Effects of water stress on life history strategy of Salsola nitraria in Zhundong, Xinjiang. Acta Prataculturae Sinica, 2021, 30(5): 65-74. |
彭磊, 张力, 周小龙, 等. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响. 草业学报, 2021, 30(5): 65-74. | |
17 | Wen Z B, Feng Y. Biodiversity and geographical distribution of the genus Salsola L. in Xinjiang. Arid Zone Research, 2020, 37(1): 185-192. |
闻志彬, 冯缨. 新疆猪毛菜属植物多样性及其地理分布特征. 干旱区研究, 2020, 37(1): 185-192. | |
18 | Chen P, Jiang L, Yang W, et al. Seed germination response and tolerance to different abiotic stresses of four Salsola species growing in an arid environment. Frontiers in Plant Science, 2022, 13: 892667. |
19 | Elnaggar R A, El-Keblawy A, Mosa K, et al. Adaptive drought tolerance during germination of Salsola drummondii seeds from saline and non-saline habitats of the arid Arabian Deserts. Botany, 2018, 97(2): 123-133. |
20 | Zhang Y H, Wang Y L, Xia C L, et al. Cloning and analysis of NADP-ME gene family and promoters in Salsola laricifolia. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(5): 760-769. |
张玉慧, 王玉兰, 夏春兰, 等. 松叶猪毛菜NADP-苹果酸酶基因家族及启动子克隆分析. 西北植物学报, 2022, 42(5): 760-769. | |
21 | Wu X F, Yang F, Yan X Y, et al. Response of hydraulic resistances of soil-Robinia pseudoacacia system of water stress. Research of Soil and Water Conservation, 2022, 29(2): 274-280. |
武小飞, 杨帆, 岩晓莹, 等. 土壤-刺槐系统水流阻力对水分胁迫的响应. 水土保持研究, 2022, 29(2): 274-280. | |
22 | Li L, Li N H, Jiang S M. Experimental guide of plant physiology module. Beijing: Science Press, 2009: 37-103. |
李玲, 李娘辉, 蒋素梅. 植物生理学模块实验指导. 北京: 科学出版社, 2009: 37-103. | |
23 | Li L, Yu D, Zhao F, et al. Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii. Journal of Integrative Agriculture, 2015, 14(1): 29-41. |
24 | Pandey G K, Kanwar P, Singh A, et al. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiology, 2015, 169(1): 780-792. |
25 | Ma Q J, Sun M H, Lu J, et al. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnology Journal, 2019, 17(3): 625-637. |
26 | Zhang H, Liu D, Yang B, et al. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. Journal of Experimental Botany, 2020, 71(1): 188-203. |
27 | Ma X. Responses and regulation mechanisms of CaCIPKs under drought and cold stresses in Capsicum annuum. Xianyang: Northwest A & F University, 2022. |
马潇. 辣椒CaCIPKs对干旱和低温胁迫的响应及其调控机理研究. 咸阳: 西北农林科技大学, 2022. | |
28 | Liu D D, Zhu M, Hao L L, et al. GhMAPKKK49, a novel cotton (Gossypium hirsutum L.) MAPKKK gene, is involved in diverse stress responses. Acta Physiologiae Plantarum, 2015, 38(1): 1-12. |
29 | Zhu X, Zhang N, Liu X, et al. Mitogen-activated protein kinase 11(MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Reports, 2021, 40(3): 491-506. |
30 | Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9(1): 105. |
31 | Qi W L, Ren Y H, Yang C R, et al. Signal transduction and transcriptome analysis of reactive oxygen species in mulberry under drought stress. Agricultural Research in the Arid Areas, 2023, 41(2): 50-60. |
祁伟亮, 任迎虹, 杨财容, 等. 干旱胁迫下桑树活性氧信号传导及转录组分析. 干旱地区农业研究, 2023, 41(2): 50-60. | |
32 | Gao P F, Zhang J, Fan W F, et al. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
高鹏飞, 张静, 范卫芳, 等. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响. 草业学报, 2022, 31(2): 203-212. | |
33 | Guan S J, Wang N, Xu R R, et al. Photosynthesis, antioxidant enzyme activity, and transcriptome sequencing analyses of Glycyrrhiza uralensis seedlings in response to drought stress. Pratacultural Science, 2021, 38(11): 2176-2190. |
关思静, 王楠, 徐蓉蓉, 等. 甘草幼苗响应干旱胁迫的光合、抗氧化特性及转录组分析. 草业科学, 2021, 38(11): 2176-2190. | |
34 | Wan L Y, Su W, Li B, et al. Molecular analysis of formation of drought tolerance traits in peanut. Chinese Journal of Oil Crop Sciences, 2018, 40(3): 335-343. |
万丽云, 苏威, 李蓓, 等. 花生苗期干旱处理后转录和代谢通路分析. 中国油料作物学报, 2018, 40(3): 335-343. | |
35 | Zsigmond L, Rigó G, Szarka A, et al. Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiology, 2008, 146(4): 1721-1737. |
36 | Su P X, An L Z, Ma R J, et al. Kranz anatomy and C4 photosynthetic characteristics of two desert pants, Haloxylon ammodendron and Calligonum mongolicum. Acta Phytoecologica Sinica, 2005, 29(1): 1-7. |
苏培玺, 安黎哲, 马瑞君, 等. 荒漠植物梭梭和沙拐枣的花环结构及C4光合特征. 植物生态学报, 2005, 29(1): 1-7. | |
37 | Han R L, Li L X, Liang Z S. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1): 23-27. |
韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究. 西北植物学报, 2003, 23(1): 23-27. |
[1] | Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197. |
[2] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[3] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[4] | Wen-wei LIU, Xin LIU, Ying-xia LEI, Qing-ping ZHOU, Zhi-feng LIU, Pei WANG. A comprehensive evaluation of cold resistance and the physiological response of Elymus sibiricus genotypes [J]. Acta Prataculturae Sinica, 2023, 32(8): 152-163. |
[5] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
[6] | Shou-jiang SUN, Pei-sheng MAO, Li-ru DOU, Zhi-cheng JIA, Ming SUN, Wen MA, Cheng-ming OU, Juan WANG. Studies on the regulation of seed aging by reactive oxygen species and telomeres [J]. Acta Prataculturae Sinica, 2023, 32(8): 202-213. |
[7] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[8] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[9] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[10] | Xiao-ming CHEN, Dong-ying HAN, Gui-long SONG. Effect of arsenic stress on arsenic uptake and root morphological changes in seashore paspalum [J]. Acta Prataculturae Sinica, 2023, 32(6): 112-119. |
[11] | Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis [J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156. |
[12] | Shi-yang ZHANG, Feng-min LIU, Jun-tao CUI, Lei HE, Yue-yan FENG, Wei-li ZHANG. Effects of three exogenous substances on the physiological and fluorescence characteristics of Stylosanthes guianensis under low-temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 85-99. |
[13] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[14] | Pan-pan SHANG, Bing ZENG, Ming-hao QU, Ming-yang LI, Xing-yun YANG, Yu-qian ZHENG, Bing-na SHEN, Lei BI, Cheng YANG, Bing ZENG. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 112-128. |
[15] | Ai-yu LIU, Chao WANG, Zhan-jun WU, Shou-pei ZHAO, Li-chen ZHAO, Xiao-yu LI, Wei-tao ZHANG, Le-tian WANG, Yu-hong GAO. Impact of heat stress on growth rate, serum antioxidant properties, and rumen flora in weaned lambs [J]. Acta Prataculturae Sinica, 2023, 32(4): 173-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||