Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 123-134.DOI: 10.11686/cyxb2023498
Yu-xin WANG1(), Jia-li TAO2, Hui-sen ZHU1(), Tao XU1(), Yi-fei ZHANG1, Hui-fang CEN1
Received:
2023-12-26
Revised:
2024-03-18
Online:
2024-11-20
Published:
2024-09-09
Contact:
Hui-sen ZHU,Tao XU
Yu-xin WANG, Jia-li TAO, Hui-sen ZHU, Tao XU, Yi-fei ZHANG, Hui-fang CEN. Heterologous expression of miR397-5p from Medicago sativa cv. ‘Pianguan’ improves the drought tolerance of tobacco[J]. Acta Prataculturae Sinica, 2024, 33(11): 123-134.
基因Gene | 正向引物Forward primer (5'-3') |
---|---|
conservative_7_25433 | TTTCCAATTCCACCCATTCCTA |
conservative_8_17329 | ATTGGATTGAAGGGAGCTCC |
conservative_8_17330 | ATTGGATTGAAGGGAGCTCC |
miR397-5p | TCATTGAGTGCAGCGTTGATG |
miR5205a | CATACAATTTGGGACGGAGGGAG |
miR530 | TGCATTTGCACCTGCACTTTC |
unconservative_6_4438 | GCGTTAGCTCAGTTAGTAAGGACAATG |
U6 | CCTGCGCAAGGATGACACGCAT |
Table 1 Primers for 7 miRNAs
基因Gene | 正向引物Forward primer (5'-3') |
---|---|
conservative_7_25433 | TTTCCAATTCCACCCATTCCTA |
conservative_8_17329 | ATTGGATTGAAGGGAGCTCC |
conservative_8_17330 | ATTGGATTGAAGGGAGCTCC |
miR397-5p | TCATTGAGTGCAGCGTTGATG |
miR5205a | CATACAATTTGGGACGGAGGGAG |
miR530 | TGCATTTGCACCTGCACTTTC |
unconservative_6_4438 | GCGTTAGCTCAGTTAGTAAGGACAATG |
U6 | CCTGCGCAAGGATGACACGCAT |
基因Gene | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
MTR_4g015120 | AACTACCTGTGGAGAGTGGC ACTAGGCCATGGATCCGATG | CATCGGATCCATGGCCTAGT GCCACTCTCCACAGGTAGTT |
MsActin | TCGAGACCTTCAATGTGCCT | ACTCACACCGTCACCAGAAT |
PAL | NATWGACTTGAGGCAYTTGG | TTYTGCATYARTGGGTAGTT |
C4H | GGCAATCCCTCTTTTAGTCCC | CTCCTACCAACACCAAATGGA |
F5H | CCAGCGACCGTAGCCATAAGTTAC | TGCCGCCAGAAGAGTCCATAGTC |
4CL | CTCTGGKACTACRGGKCTGC | AYTCCARGAACGGAGCAATG |
CCR | TGGCAAACAGAGCAGGTGAAGTAG | CGGTGGCGTGAACAGTGTAGC |
HCT | CTCAACCCACTCCCAACCAT | GCCTCCTTTAGCACTTTTCCG |
CCoAOMT | AATGGTTCTGTGGTGGCTCC | CGGCGGCACAAGGTAATG |
COMT | GATGTTGGAGGTGGTCTTGGA | CTGGTTTCACTGGTAAAATGGC |
CAD | GAGGGTATGGCACCAGAACAA | GATGTCCCATTGCCTTTGCTAT |
PAO | GTCGCTGCTCTGTCGTCATAGTC | CGCCGAATTCCTCCTTCCTTATCC |
NtL25 | GCTTTCTTCGTCCCATCA | CCCCAAGTACCCTCGTAT |
Table 2 Primers for qRT-PCR
基因Gene | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
MTR_4g015120 | AACTACCTGTGGAGAGTGGC ACTAGGCCATGGATCCGATG | CATCGGATCCATGGCCTAGT GCCACTCTCCACAGGTAGTT |
MsActin | TCGAGACCTTCAATGTGCCT | ACTCACACCGTCACCAGAAT |
PAL | NATWGACTTGAGGCAYTTGG | TTYTGCATYARTGGGTAGTT |
C4H | GGCAATCCCTCTTTTAGTCCC | CTCCTACCAACACCAAATGGA |
F5H | CCAGCGACCGTAGCCATAAGTTAC | TGCCGCCAGAAGAGTCCATAGTC |
4CL | CTCTGGKACTACRGGKCTGC | AYTCCARGAACGGAGCAATG |
CCR | TGGCAAACAGAGCAGGTGAAGTAG | CGGTGGCGTGAACAGTGTAGC |
HCT | CTCAACCCACTCCCAACCAT | GCCTCCTTTAGCACTTTTCCG |
CCoAOMT | AATGGTTCTGTGGTGGCTCC | CGGCGGCACAAGGTAATG |
COMT | GATGTTGGAGGTGGTCTTGGA | CTGGTTTCACTGGTAAAATGGC |
CAD | GAGGGTATGGCACCAGAACAA | GATGTCCCATTGCCTTTGCTAT |
PAO | GTCGCTGCTCTGTCGTCATAGTC | CGCCGAATTCCTCCTTCCTTATCC |
NtL25 | GCTTTCTTCGTCCCATCA | CCCCAAGTACCCTCGTAT |
miRNA | 序列Sequence | log2(FC) (72 h VS 0 h) | 靶基因Target gene |
---|---|---|---|
conservative_7_25433 | TTTCCAATTCCACCCATTCCTA | -1.69 | MTR_0038s0060 |
conservative_8_17329 | ATTGGATTGAAGGGAGCTCC | 2.19 | MTR_3g011610 |
conservative_8_17330 | ATTGGATTGAAGGGAGCTCC | 2.19 | MTR_8g042410 |
miR397-5p | TCATTGAGTGCAGCGTTGATG | 2.02 | MTR_4g015120 |
miR5205a | CATACAATTTGGGACGGAGGGAG | -1.25 | MTR_7g100190 |
miR530 | TGCATTTGCACCTGCACTTTC | 0.32 | MTR_1g107575 |
unconservative_6_4438 | TTAGCTCAGTTAGTAAGGACAATG | -1.54 | MTR_2g020900 |
Table 3 Information of differential miRNA
miRNA | 序列Sequence | log2(FC) (72 h VS 0 h) | 靶基因Target gene |
---|---|---|---|
conservative_7_25433 | TTTCCAATTCCACCCATTCCTA | -1.69 | MTR_0038s0060 |
conservative_8_17329 | ATTGGATTGAAGGGAGCTCC | 2.19 | MTR_3g011610 |
conservative_8_17330 | ATTGGATTGAAGGGAGCTCC | 2.19 | MTR_8g042410 |
miR397-5p | TCATTGAGTGCAGCGTTGATG | 2.02 | MTR_4g015120 |
miR5205a | CATACAATTTGGGACGGAGGGAG | -1.25 | MTR_7g100190 |
miR530 | TGCATTTGCACCTGCACTTTC | 0.32 | MTR_1g107575 |
unconservative_6_4438 | TTAGCTCAGTTAGTAAGGACAATG | -1.54 | MTR_2g020900 |
1 | Han Q F, Jia Z K, Wang J P. The analysis of current situation and development prospect of alfalfa industry at home and abroad. Pratacultural Science, 2005(3): 22-25. |
韩清芳, 贾志宽, 王俊鹏. 国内外苜蓿产业发展现状与前景分析. 草业科学, 2005(3): 22-25. | |
2 | Dong K H, Zhu H S, Tong L R, et al. Forage germplasm resources in Shanxi. Beijing: China Agricultural Science and Technology Press, 2010. |
董宽虎, 朱慧森, 佟莉蓉, 等. 山西牧草种质资源. 北京: 中国农业科学技术出版社, 2010. | |
3 | Archana S, Deepti J, Jyotsna P, et al. Deciphering the role of miRNA in reprogramming plant responses to drought stress. Critical Reviews in Biotechnology, 2022, 43(4): 11-15. |
4 | Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 2004, 16(8): 2001-2019. |
5 | Kantar M, Lucas S J, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011, 233(3): 471-484. |
6 | Ferreira T H, Gentile A, Vilela R D, et al. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One, 2012, 7(10): e46703. |
7 | Xiang J, Lin P, Li X S, et al. Overexpression of tomato Sly-miR397 gene enhances drought tolerance in Arabidopsis thaliana. Journal of China Agricultural University, 2016, 21(10): 51-58. |
向娟, 林鹏, 李兴盛, 等. 过表达番茄Sly-miR397基因增强拟南芥的耐旱性. 中国农业大学学报, 2016, 21(10): 51-58. | |
8 | Yin J Q, Zhao R C. Identifying expression of new mall RNAs by microarrays. Methods, 2007, 43(2): 123-130. |
9 | Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Letters, 2006, 580(21): 5111-5116. |
10 | Wang C Y, Zhang S C, Yu Y, et al. miR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnology Journal, 2014, 12(8): 1132-1142. |
11 | Ali S, Huang S L, Zhou J J, et al. miR397-LACs mediated cadmium stress tolerance in Arabidopsis thaliana. Plant Molecular Biology, 2023, 113(6): 415-430. |
12 | Cui W T, Zhuang Z H, Jiang P H, et al. Characterization, expression profiling, and biochemical analyses of the Cinnamoyl-CoA Reductase gene family for lignin synthesis in alfalfa plants. International Journal of Molecular Sciences, 2022, 23(14): 7762. https://doi.org/10.3390/ijms23147762. |
13 | Halpin C. Lignin engineering to improve saccharification and digestibility in grasses. Current Opinion in Biotechnology, 2019, 56: 223-229. |
14 | Yan Y, Wang P, Liu Y, et al. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. The Plant Journal, 2021, 107(3): 847-860. |
15 | Li D D, Yang J L, Pak S, et al. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. The New Phytologist, 2021, 233(1): 390-408. |
16 | Río D C J, Rencoret J, Gutiérrez A, et al. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: Another brick in the wall. ACS Sustainable Chemistry Engineering, 2020, 8(13): 4997-5012. |
17 | Bhatt P, Tiwari M, Parmarick P, et al. Insights into the catalytic mechanism of ligninolytic peroxidase and laccase in lignin degradation. Bioremediation Journal, 2022, 26(4): 281-291. |
18 | Sharma N K, Yadav S, Gupta S K, et al. microRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. Plant, Cell & Environment, 2023, 46(11): 3501-3517. |
19 | Swetha C, Basu D, Pachamuthu K, et al. Major domestication related phenotypes in Indica rice are due to loss of miRNA mediated laccase silencing. The Plant Cell, 2018, 30(11): 2649-2662. |
20 | Rio D C, Ares M, Hannon G J, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6): 5439. |
21 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
22 | Gao J F, Sun Q, Cao C L, et al. Plant physiology experiment guide. Beijing: Higher Education Press, 2006: 15, 142, 144. |
高俊凤, 孙群, 曹翠玲, 等. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 15, 142, 144. | |
23 | Zou Q. Plant physiology experimental guidance. Beijing: China Agriculture Press, 2000: 1-54. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 1-54. | |
24 | Jiang H, Yan S C, Xue Y, et al. Effects of forest type on the activity of several defense proteins and content of secondary metabolites in larch needles. Forest Research, 2018, 31(3): 24-28. |
姜虹, 严善春, 薛羿, 等. 落叶松林型对其针叶内几种防御蛋白活力和次生代谢物含量的影响. 林业科学研究, 2018, 31(3): 24-28. | |
25 | Zhou L, Liu Y, Liu Z, et al. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 2010, 61(15): 4157-4168. |
26 | Wang L L, Zhao H S, Sun H Y, et al. Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses. Scientia Silvae Sinicae, 2015, 51(6): 63-70. |
王丽丽, 赵韩生, 孙化雨, 等. 毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析. 林业科学, 2015, 51(6): 63-70. | |
27 | Shin S J, Lee J H, Kwon H B. Genome-wide identification and characterization of drought responsive microRNAs in Solanum tuberosum L. Genes & Genomics, 2017, 39(11): 1193-1203. |
28 | Luo M R, Liang W B, Yang Y, et al. Effects of drought stress on photosynthesis and chloroplast ultrastructure of Gardenia jasminoides. Economic Forest Research, 2021, 39(3): 165-174. |
罗孟容, 梁文斌, 杨艳, 等. 干旱胁迫对栀子光合作用及叶绿体超微结构的影响. 经济林研究, 2021, 39(3): 165-174. | |
29 | Khan R, Ma X H, Zhang J, et al. Circular drought-hardening confers drought tolerance via modulation of the antioxidant defence system, osmoregulation, and gene expression in tobacco. Physiologia Plantarum, 2021, 172(2): 1073-1088. |
30 | Xiang H T, Zheng D F, He N, et al. Research progress on the physiological response of plants to low temperature and the amelioration effectiveness of exogenous ABA. Acta Prataculturae Sinica, 2021, 30(1): 208-219. |
项洪涛, 郑殿峰, 何宁, 等. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 2021, 30(1): 208-219. | |
31 | Li B, Liu C, Li H, et al. Analysis of the effect of exogenous calcium chloride on drought alleviation of ‘Longmu 807’ alfalfa seedlings. Acta Agrestia Sinica, 2020, 28(4): 990-997. |
李波, 刘畅, 李红, 等. 外源氯化钙对‘龙牧 807’苜蓿幼苗干旱缓解效应分析. 草地学报, 2020, 28(4): 990-997. | |
32 | Melandri G, AbdElgawad H, Riewe D, et al. Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany, 2020, 71(2): 669-683. |
33 | Li X, Tian X H, Du W H. Screening on the drought resistance index and conditions for ×Triticale Wittmack at the seedling stage. Pratacultural Science, 2017, 34(3): 539-546. |
李雪, 田新会, 杜文华. 饲草型小黑麦苗期抗旱指标的筛选. 草业科学, 2017, 34(3): 539-546. | |
34 | Guo Y Y, Xu H M, Zhao Y Y, et al. Plant lignification and its regulation. Scientia Sinica Vitae, 2020, 50(2): 111-122. |
郭亚玉, 许会敏, 赵媛媛, 等. 植物木质化过程及其调控的研究进展. 中国科学: 生命科学, 2020, 50(2): 111-122. | |
35 | Zhang S C, Ju C L, Wang X J. Arabidopsis laccase gene AtLAC4 regulates plant growth and responses to abiotic stress. Chinese Bulletin of Botany, 2012, 47(4): 357-365. |
张盛春, 鞠常亮, 王小菁. 拟南芥漆酶基因AtLAC4参与生长及非生物胁迫响应. 植物学报, 2012, 47(4): 357-365. |
[1] | Bao WANG, Zhan-ling XIE, Jing GUO, Yong-peng TANG, Qing MENG, Qing-qing PENG, Jia-bao YANG, De-yu DONG, Hong-yan XU, Tai-zhen GAO, Fan ZHANG, Ying-zhu DUAN. Effects of seed soaking of Avena sativa in fungal fermentation broth on rhizosphere fungal community structure and drought resistance of oats [J]. Acta Prataculturae Sinica, 2024, 33(9): 126-139. |
[2] | Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress [J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132. |
[3] | Na WEI, Wen-mao JING, Er-wen XU, Rong-xin WANG, Jing-zhong ZHAO, Xue-e MA, Ji-yu ZHANG, Wen-xian LIU. Functional analysis of the MaERF058 gene in response to drought stress in Melilotus albus [J]. Acta Prataculturae Sinica, 2024, 33(8): 159-169. |
[4] | Lu-jing ZENG, Guo-hua WANG. Effects of drought stress and rehydration on the growth and physiological characteristics of annual herbaceous plants from a desert-oasis ecotone [J]. Acta Prataculturae Sinica, 2024, 33(5): 41-57. |
[5] | Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198. |
[6] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[7] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[8] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[9] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[10] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[11] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[12] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[13] | Zhan-jun WANG, Bo JI, Tong JI, Qi JIANG. An evaluation of drought resistance of five forage legumes based on a quantile model [J]. Acta Prataculturae Sinica, 2023, 32(10): 187-199. |
[14] | Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
[15] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||