Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 106-122.DOI: 10.11686/cyxb2023490
Ze-bin LI2(), Yong-zheng QIU2, Yan-jie LIU2, Jin-qiu YU1, Bai-ji WANG1, Qian-ning LIU1, Yue WANG1,2(), Guo-wen CUI1()
Received:
2023-12-19
Revised:
2024-02-14
Online:
2024-11-20
Published:
2024-09-09
Contact:
Yue WANG,Guo-wen CUI
Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress[J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122.
基因Gene | 引物序列 Primer sequence (5'-3') |
---|---|
MsBZR05 | F: ACATTACTCCTTCCTGCCTTCT R: TTGATCCCAGCAAACCATTC |
MsBZR06 | F: GAACGCATGGATGTGATAGG R: AGCCAGGACTTGGGTTGTAG |
MsBZR12 | F: CCATTCATCCGCAACATAAC R: GAAAGAGGTGGCGTAACAGG |
GAPDH | F: GGCTGCCATCAAGGAGGAAT R: TCCAAGCTCAGCCTCATCAAG |
Table 1 The primers sequences of qRT-PCR
基因Gene | 引物序列 Primer sequence (5'-3') |
---|---|
MsBZR05 | F: ACATTACTCCTTCCTGCCTTCT R: TTGATCCCAGCAAACCATTC |
MsBZR06 | F: GAACGCATGGATGTGATAGG R: AGCCAGGACTTGGGTTGTAG |
MsBZR12 | F: CCATTCATCCGCAACATAAC R: GAAAGAGGTGGCGTAACAGG |
GAPDH | F: GGCTGCCATCAAGGAGGAAT R: TCCAAGCTCAGCCTCATCAAG |
基因名称 Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (D) | 等电点 Isoelectric point | 疏水性 Hydrophobicity | 染色体 Chromosome | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MsBZR01 | MS.gene24310.t1 | 249 | 27557.01 | 8.22 | -0.581 | Chr1.1 | 细胞核Cell nucleus |
MsBZR02 | MS.gene26935.t1 | 249 | 27540.01 | 8.82 | -0.595 | Chr1.3 | 细胞核Cell nucleus |
MsBZR03 | MS.gene062710.t1 | 249 | 27482.92 | 8.62 | -0.595 | Chr1.4 | 细胞核Cell nucleus |
MsBZR04 | MS.gene070724.t1 | 323 | 34856.61 | 8.44 | -0.705 | Chr2.1 | 细胞核Cell nucleus |
MsBZR05 | MS.gene070726.t1 | 316 | 34141.90 | 8.65 | -0.628 | Chr2.1 | 细胞核Cell nucleus |
MsBZR06 | MS.gene026895.t1 | 322 | 34700.43 | 8.14 | -0.693 | Chr2.3 | 细胞核Cell nucleus |
MsBZR07 | MS.gene059905.t1 | 280 | 29760.82 | 5.32 | -0.519 | Chr2.3 | 细胞核Cell nucleus |
MsBZR08 | MS.gene059906.t1 | 328 | 35427.26 | 8.64 | -0.718 | Chr2.3 | 细胞核Cell nucleus |
MsBZR09 | MS.gene63375.t1 | 316 | 34127.87 | 8.65 | -0.628 | Chr2.4 | 细胞核Cell nucleus |
MsBZR10 | MS.gene63376.t1 | 323 | 34856.61 | 8.44 | -0.705 | Chr2.4 | 细胞核Cell nucleus |
MsBZR11 | MS.gene047749.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.1 | 细胞核Cell nucleus |
MsBZR12 | MS.gene010465.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.2 | 细胞核Cell nucleus |
MsBZR13 | MS.gene89854.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.3 | 细胞核Cell nucleus |
MsBZR14 | MS.gene59331.t1 | 323 | 35322.67 | 9.42 | -0.704 | Chr5.4 | 细胞核Cell nucleus |
Table 2 Alfalfa BZR gene family information
基因名称 Gene name | 基因ID Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (D) | 等电点 Isoelectric point | 疏水性 Hydrophobicity | 染色体 Chromosome | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MsBZR01 | MS.gene24310.t1 | 249 | 27557.01 | 8.22 | -0.581 | Chr1.1 | 细胞核Cell nucleus |
MsBZR02 | MS.gene26935.t1 | 249 | 27540.01 | 8.82 | -0.595 | Chr1.3 | 细胞核Cell nucleus |
MsBZR03 | MS.gene062710.t1 | 249 | 27482.92 | 8.62 | -0.595 | Chr1.4 | 细胞核Cell nucleus |
MsBZR04 | MS.gene070724.t1 | 323 | 34856.61 | 8.44 | -0.705 | Chr2.1 | 细胞核Cell nucleus |
MsBZR05 | MS.gene070726.t1 | 316 | 34141.90 | 8.65 | -0.628 | Chr2.1 | 细胞核Cell nucleus |
MsBZR06 | MS.gene026895.t1 | 322 | 34700.43 | 8.14 | -0.693 | Chr2.3 | 细胞核Cell nucleus |
MsBZR07 | MS.gene059905.t1 | 280 | 29760.82 | 5.32 | -0.519 | Chr2.3 | 细胞核Cell nucleus |
MsBZR08 | MS.gene059906.t1 | 328 | 35427.26 | 8.64 | -0.718 | Chr2.3 | 细胞核Cell nucleus |
MsBZR09 | MS.gene63375.t1 | 316 | 34127.87 | 8.65 | -0.628 | Chr2.4 | 细胞核Cell nucleus |
MsBZR10 | MS.gene63376.t1 | 323 | 34856.61 | 8.44 | -0.705 | Chr2.4 | 细胞核Cell nucleus |
MsBZR11 | MS.gene047749.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.1 | 细胞核Cell nucleus |
MsBZR12 | MS.gene010465.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.2 | 细胞核Cell nucleus |
MsBZR13 | MS.gene89854.t1 | 323 | 35322.65 | 9.42 | -0.697 | Chr5.3 | 细胞核Cell nucleus |
MsBZR14 | MS.gene59331.t1 | 323 | 35322.67 | 9.42 | -0.704 | Chr5.4 | 细胞核Cell nucleus |
蛋白名称 Protein name | α-螺旋α-helix | β-转角β-turn | 无规则卷曲Random coil | 延伸链Extended chain | ||||
---|---|---|---|---|---|---|---|---|
数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | |
MsBZR01 | 51 | 20.48 | 12 | 4.82 | 156 | 62.65 | 30 | 12.05 |
MsBZR02 | 52 | 20.16 | 14 | 5.13 | 160 | 62.02 | 32 | 12.40 |
MsBZR03 | 53 | 21.29 | 12 | 4.82 | 165 | 66.27 | 19 | 7.63 |
MsBZR04 | 50 | 15.48 | 13 | 4.02 | 238 | 73.68 | 22 | 6.81 |
MsBZR05 | 51 | 16.14 | 13 | 4.11 | 221 | 69.94 | 31 | 9.81 |
MsBZR06 | 54 | 16.77 | 16 | 4.97 | 227 | 70.50 | 25 | 7.76 |
MsBZR07 | 39 | 13.93 | 10 | 3.57 | 201 | 71.79 | 30 | 10.71 |
MsBZR08 | 50 | 15.24 | 14 | 4.27 | 246 | 75.00 | 18 | 5.49 |
MsBZR09 | 47 | 14.87 | 18 | 5.70 | 218 | 68.99 | 18 | 5.70 |
MsBZR10 | 50 | 15.48 | 13 | 4.02 | 238 | 73.68 | 22 | 6.81 |
MsBZR11 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 18 | 5.57 |
MsBZR12 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 25 | 7.74 |
MsBZR13 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 25 | 7.74 |
MsBZR14 | 48 | 14.86 | 19 | 5.88 | 224 | 69.35 | 32 | 9.91 |
Table 3 Secondary structure of alfalfa MsBZRprotein
蛋白名称 Protein name | α-螺旋α-helix | β-转角β-turn | 无规则卷曲Random coil | 延伸链Extended chain | ||||
---|---|---|---|---|---|---|---|---|
数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | 数量Number | 占比Ratio (%) | |
MsBZR01 | 51 | 20.48 | 12 | 4.82 | 156 | 62.65 | 30 | 12.05 |
MsBZR02 | 52 | 20.16 | 14 | 5.13 | 160 | 62.02 | 32 | 12.40 |
MsBZR03 | 53 | 21.29 | 12 | 4.82 | 165 | 66.27 | 19 | 7.63 |
MsBZR04 | 50 | 15.48 | 13 | 4.02 | 238 | 73.68 | 22 | 6.81 |
MsBZR05 | 51 | 16.14 | 13 | 4.11 | 221 | 69.94 | 31 | 9.81 |
MsBZR06 | 54 | 16.77 | 16 | 4.97 | 227 | 70.50 | 25 | 7.76 |
MsBZR07 | 39 | 13.93 | 10 | 3.57 | 201 | 71.79 | 30 | 10.71 |
MsBZR08 | 50 | 15.24 | 14 | 4.27 | 246 | 75.00 | 18 | 5.49 |
MsBZR09 | 47 | 14.87 | 18 | 5.70 | 218 | 68.99 | 18 | 5.70 |
MsBZR10 | 50 | 15.48 | 13 | 4.02 | 238 | 73.68 | 22 | 6.81 |
MsBZR11 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 18 | 5.57 |
MsBZR12 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 25 | 7.74 |
MsBZR13 | 58 | 17.96 | 18 | 5.57 | 222 | 68.73 | 25 | 7.74 |
MsBZR14 | 48 | 14.86 | 19 | 5.88 | 224 | 69.35 | 32 | 9.91 |
1 | Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-938. |
2 | Tanveer M, Shahzed B, Sharma A, et al. 24-epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 2018, 130: 69-79. |
3 | Khripach V, Zhabinskii V, de Groot A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Annals of Botany, 2000, 86(3): 441-447. |
4 | Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 2009, 47(1): 1-8. |
5 | Campos M L, de Almeida M, Rossi M L, et al. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 2009, 60(15): 4347-4361. |
6 | Yang D H, Hettenhausen C, Baldwin I T, et al. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. Journal of Experimental Botany, 2010, 62(2): 641-652. |
7 | Li L, Deng X W. It runs in the family: regulation of brassinosteroid signaling by the BZR1-BES1 class of transcription factors. Trends in Plant Science, 2005, 10(6): 266-268. |
8 | Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120(2): 249-259. |
9 | Manoli, Alessandro, Trevisan, et al. Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses in Zea mays L. Plant Growth Regulation, 2018, 84(3): 423-436. |
10 | Yu H Q, Feng W Q, Sun F, et al. Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant Growth Regulation, 2018, 86(2): 235-249. |
11 | Kesawat M S, Kherawat B S, Singh A, et al. Genome-wide identification and characterization of the brassinazole-resistant (BZR) gene family and its expression in the various developmental stage and stress conditions in wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2021, 22: 8743. |
12 | Yin Y, Wang Z Y, Mora-Garcia, et al. BES1 accumulates in the nucleus in response to brassinosteriods to regulate gene expression and promote stem elongation. Cell, 2002, 109(2): 181-191. |
13 | Sun Y, Fan X Y, Cao D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 2010, 19(5): 765-777. |
14 | Wang Z Y, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2002, 2(4): 505-513. |
15 | Arshad M, Feyissa B A, Amyot L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 2017, 258: 122-136. |
16 | Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
17 | Yin H, Yuan Y Y, Song T T, et al. Bioinformatics analysis of Medicago sativa L. YABBY gene family and its response to abiotic stress. Molecular Plant Breeding, 2020, 18(2): 416-424. |
尹航, 袁玉莹, 宋婷婷, 等. 紫花苜蓿(Medicago sativa L.)YABBY基因家族的生物信息学分析及其对逆境胁迫的响应.分子植物育种, 2020, 18(2): 416-424. | |
18 | Liu H, Li X Y, He F, et al. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
刘昊, 李显炀, 何飞, 等. 紫花苜蓿SAUR基因家族的鉴定及其在非生物胁迫中的表达模式研究. 草业学报, 2024, 33(4): 135-153. | |
19 | Li X Y, Liu H, He F, et al. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
李显炀, 刘昊, 何飞, 等. 全基因组水平紫花苜蓿WRKY转录因子家族鉴定与表达模式分析. 草业学报, 2024, 33(4): 154-170. | |
20 | Chou K C, Shen H B. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science, 2010, 2(10): 1090-1103. |
21 | Yin J L, Liu M Y, Ma D F, et al. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136: 90-98. |
22 | Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
23 | Chen C, Wu Y, Li J, et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742. |
24 | O’Rourke J A, Fu F, Bucciarelli B, et al. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics, 2015, 16(1): 502. |
25 | Dong X, Deng H, Ma W, et al. Genome-wide identification of the MADS-box transcription factor family in autotetraploid cultivated alfalfa (Medicago sativa L.) and expression analysis under abiotic stress. BMC Genomics, 2021, 22(1): 603. |
26 | Sun F, Yu H, Qu J, et al. Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis. International Journal of Molecular Sciences, 2020, 21(3): 996. |
27 | Liu D, Cui Y, Zhao Z, et al. Genome-wide identification and characterization of the BES/BZR gene family in wheat and foxtail millet. BMC Genomics, 2021, 22(1): 682. |
28 | Wang Z, Wang X, Zhang H, et al. A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa (Medicago sativa L.). Plant Biotechnology Journal, 2020, 18(3): 611-613. |
29 | Li X, Brummer E C. Applied genetics and genomics in alfalfa breeding. Agronomy, 2012, 2(1): 40-61. |
30 | Li Y, He L, Li J, et al. Genome-wide identification, characterization, and expression profiling of the legume BZR transcription factor gene family. Frontiers in Plant Science, 2018, 9: 1332. |
31 | Li C, Liu X J, Cai P, et al. Genome-wide identification and bioinformatics analysis of BZR gene family in pumpkin (Cucurbita moschata Duch.). Molecular Plant Breeding, 2022, 20(19): 6324-6330. |
李春, 刘小俊, 蔡鹏, 等. 中国南瓜BZR基因家族的全基因组鉴定及生物信息学分析. 分子植物育种, 2022, 20(19): 6324-6330. | |
32 | Jiang Q Q, Wang Y T, Hui Z M. Identification and expression analysis of BZR gene family in grapevine. Plant Physiology Journal, 2021, 57(6): 1218-1228. |
江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析. 植物生理学报, 2021, 57(6): 1218-1228. | |
33 | Du Q L, Liu J X, Chen M Q, et al. Identification of sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response. Journal of Plant Protection, 2022, 49(3): 848-856. |
杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析. 植物保护学报, 2022, 49(3): 848-856. | |
34 | Zhang Q, Yan X Y, Zuo C L, et al. Evolution and brassinosteroid response analysis of the BZR1 gene family in soybean. Journal of Hebei Normal University (Natural Science Edition), 2023, 47(6): 620-627. |
张晴, 严新悦, 左春柳, 等. 大豆BZR1基因家族进化与油菜素内酯响应分析. 河北师范大学学报(自然科学版), 2023, 47(6): 620-627. | |
35 | Chen X, Shen C Y, Mo F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress. Journal of Northeast Agricultural University, 2021, 52(11): 9-17. |
陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析. 东北农业大学学报, 2021, 52(11): 9-17. | |
36 | Hernandez G C M, Finer J J. Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 2014, 217: 109-119. |
37 | Li H, Ye K, Shi Y, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Molecular Plant, 2017, 10(4): 545-559. |
38 | Wei N, Li Y P, Ma Y T, et al. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
魏娜, 李艳鹏, 马艺桐, 等. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析. 草业学报, 2022, 31(1): 118-130. | |
39 | Cui C, Wang H, Hong L, et al. MtBZR1 plays an important role in nodule development in Medicago truncatula. International Journal of Molecular Sciences, 2019, 20(12): 2941. |
40 | Luo S, Zhang G, Zhang Z, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.). BMC Plant Biology, 2023, 23(1): 1-13. |
41 | Jia C G, Zhao S K, Bao T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis. Plant Science, 2021, 302: 110719. |
42 | Talaat N B, Ibrahim A S, Shawky B T. Enhancement of the expression of ZmBZR1 and ZmBES1 regulatory genes and antioxidant defense genes triggers water stress mitigation in maize (Zea mays L.) plants treated with 24-epibrassinolide in combination with spermine. Agronomy, 2022, 12(10): 2517. |
43 | Fan C, Guo G, Yan H, et al. Characterization of brassinazole resistant (BZR) gene family and stress induced expression in Eucalyptus grandis. Physiology and Molecular Biology of Plants, 2018, 24: 821-831. |
44 | Chen X, Wu X, Qiu S, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana. International Journal of Molecular Sciences, 2021, 22(19): 10379. |
45 | Wang W, Su Y Q, Li G L, et al. Genome-wide identification, characterization, and expression patterns of the BZR transcription factor family in sugar beet (Beta vulgaris L.). BMC Plant Biology, 2019, 19(1): 1-12. |
[1] | Hong-li CUI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Genome-wide analysis and expression of the OSCA family genes from Medicago truncatula in response to low temperature stresses [J]. Acta Prataculturae Sinica, 2024, 33(9): 111-125. |
[2] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
[3] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
[4] | Yi WU, Ya-lan FENG, Tian-ning WANG, Ji-hao JU, Hui-shu XIAO, Chao MA, Jun ZHANG. Genome-wide identification and expression analysis of the Hsp70 gene family in wheat and its ancestral species [J]. Acta Prataculturae Sinica, 2024, 33(7): 53-67. |
[5] | Zhen-huan ZHANG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Identification of AKR gene family members in Halogeton glomeratus and salt tolerance analysis of the root salt stress response gene HgAKR42639 [J]. Acta Prataculturae Sinica, 2024, 33(7): 68-83. |
[6] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
[7] | Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
[8] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
[9] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[10] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[11] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[12] | Xin-yue ZHOU, Qing-xue JIANG, Hui-li JIA, Lin MA, Lu FAN, Xue-min WANG. Cloning and salt-tolerance functional analysis of alfalfa MsBBX20 gene [J]. Acta Prataculturae Sinica, 2024, 33(10): 55-73. |
[13] | Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197. |
[14] | Xu-qin BAI, Chun-yun JIA, Wen-shuan LI, Ya-min LI, Chang-feng LIU, Xiu-yun HAN, Mei-han CHU, Zong-qiang GONG, Xiao-jun LI. An investigation of foliar spraying of selenium fertilizer for selenium enrichment and cadmium reduction in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(1): 50-60. |
[15] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||