Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (11): 149-160.DOI: 10.11686/cyxb2024008
Shuai-lei LYU1(), Dan-na CHANG1(), Guo-peng ZHOU1, Rui LIU2, Xin ZHAO1, Jia LIU3, Chang-xu XU3, Wei-dong CAO1()
Received:
2024-01-04
Revised:
2024-04-29
Online:
2024-11-20
Published:
2024-09-09
Contact:
Wei-dong CAO
Shuai-lei LYU, Dan-na CHANG, Guo-peng ZHOU, Rui LIU, Xin ZHAO, Jia LIU, Chang-xu XU, Wei-dong CAO. The phosphorus effect of applying phosphate rock powder during the green manure season in red soil of Jiangxi Province[J]. Acta Prataculturae Sinica, 2024, 33(11): 149-160.
处理 Treatment | 干物重 Dry weight (g·pot-1) | 有机碳 Organic carbon (g·pot-1) | 总氮 Total nitrogen (mg·pot-1) |
---|---|---|---|
MVP0 | 12.90 | 4.85 | 397.14 |
MVP1 | 13.97 | 5.11 | 401.63 |
MVP2 | 18.31 | 7.36 | 488.85 |
RAP0 | 12.67 | 5.73 | 193.90 |
RAP1 | 16.52 | 6.31 | 219.94 |
RAP2 | 18.07 | 7.84 | 224.59 |
RYP0 | 18.28 | 8.75 | 83.54 |
RYP1 | 23.68 | 11.66 | 144.64 |
RYP2 | 25.33 | 12.43 | 160.93 |
Table 1 Dry weight, organic carbon, and total nitrogen accumulation of green manure under different treatments
处理 Treatment | 干物重 Dry weight (g·pot-1) | 有机碳 Organic carbon (g·pot-1) | 总氮 Total nitrogen (mg·pot-1) |
---|---|---|---|
MVP0 | 12.90 | 4.85 | 397.14 |
MVP1 | 13.97 | 5.11 | 401.63 |
MVP2 | 18.31 | 7.36 | 488.85 |
RAP0 | 12.67 | 5.73 | 193.90 |
RAP1 | 16.52 | 6.31 | 219.94 |
RAP2 | 18.07 | 7.84 | 224.59 |
RYP0 | 18.28 | 8.75 | 83.54 |
RYP1 | 23.68 | 11.66 | 144.64 |
RYP2 | 25.33 | 12.43 | 160.93 |
Fig.3 Effect of applying phosphate rock powder on soil total phosphorus, available phosphorus and microbial biomass phosphorus content in different green manure treatments
处理 Treatment | 活性磷库 Labile P | 中等活性磷库 Moderately labile P | 稳定性磷库 Stable P |
---|---|---|---|
WFP0 | 63.65±3.01a | 162.50±1.58a | 305.83±8.04c |
WFP1 | 65.37±1.06a | 161.14±0.94a | 404.08±3.08b |
WFP2 | 63.48±0.76a | 162.83±1.06a | 483.06±13.77a |
平均值Average | 64.17±1.02A | 162.15±0.68A | 397.66±22.40A |
MVP0 | 67.95±1.72a | 151.61±0.43a | 303.64±6.31b |
MVP1 | 63.14±1.63ab | 155.93±2.53a | 417.55±13.77a |
MVP2 | 59.89±2.52b | 141.92±2.08b | 437.02±7.89a |
平均值Average | 63.66±1.44A | 149.82±2.03B | 86.07±18.47A |
RAP0 | 66.56±1.72a | 152.25±1.81ab | 306.48±7.19c |
RAP1 | 68.56±2.40a | 154.93±1.39a | 384.84±6.65b |
RAP2 | 65.94±1.87a | 148.66±2.80b | 449.60±18.87a |
平均值Average | 67.02±1.11A | 151.95±1.34B | 380.30±18.77A |
RYP0 | 60.83±1.90b | 144.28±2.30c | 316.95±7.05c |
RYP1 | 66.31±1.22a | 150.60±1.24b | 397.63±16.57b |
RYP2 | 65.14±1.54ab | 156.35±1.90a | 476.24±2.11a |
平均值Average | 64.1±1.09A | 150.41±1.78B | 396.97±20.36A |
GM | 2.02ns | 30.99*** | 1.94ns |
P | 1.41ns | 3.97* | 214.09*** |
GM×P | 2.15ns | 8.83*** | 2.15ns |
Table 2 Effect of applying phosphate rock powder on phosphorus storage in different green manure treatments (mg·kg-1)
处理 Treatment | 活性磷库 Labile P | 中等活性磷库 Moderately labile P | 稳定性磷库 Stable P |
---|---|---|---|
WFP0 | 63.65±3.01a | 162.50±1.58a | 305.83±8.04c |
WFP1 | 65.37±1.06a | 161.14±0.94a | 404.08±3.08b |
WFP2 | 63.48±0.76a | 162.83±1.06a | 483.06±13.77a |
平均值Average | 64.17±1.02A | 162.15±0.68A | 397.66±22.40A |
MVP0 | 67.95±1.72a | 151.61±0.43a | 303.64±6.31b |
MVP1 | 63.14±1.63ab | 155.93±2.53a | 417.55±13.77a |
MVP2 | 59.89±2.52b | 141.92±2.08b | 437.02±7.89a |
平均值Average | 63.66±1.44A | 149.82±2.03B | 86.07±18.47A |
RAP0 | 66.56±1.72a | 152.25±1.81ab | 306.48±7.19c |
RAP1 | 68.56±2.40a | 154.93±1.39a | 384.84±6.65b |
RAP2 | 65.94±1.87a | 148.66±2.80b | 449.60±18.87a |
平均值Average | 67.02±1.11A | 151.95±1.34B | 380.30±18.77A |
RYP0 | 60.83±1.90b | 144.28±2.30c | 316.95±7.05c |
RYP1 | 66.31±1.22a | 150.60±1.24b | 397.63±16.57b |
RYP2 | 65.14±1.54ab | 156.35±1.90a | 476.24±2.11a |
平均值Average | 64.1±1.09A | 150.41±1.78B | 396.97±20.36A |
GM | 2.02ns | 30.99*** | 1.94ns |
P | 1.41ns | 3.97* | 214.09*** |
GM×P | 2.15ns | 8.83*** | 2.15ns |
处理 | 早稻Early rice | 晚稻Late rice | ||
---|---|---|---|---|
Treatment | 籽粒产量Grain yield | 秸秆产量Straw yield | 籽粒产量Grain yield | 秸秆产量Straw yield |
WFP0 | 26.33±1.02e | 34.70±1.89a | 39.17±0.76a | 33.64±1.49a |
WFP1 | 30.33±2.31de | 32.51±2.86ab | 39.75±0.60a | 36.16±1.39a |
WFP2 | 28.91±3.70de | 31.51±1.50abc | 41.29±1.17a | 38.57±2.45a |
平均值Average | 28.52±1.37C | 32.90±1.19A | 40.07±0.53C | 36.12±1.14A |
MVP0 | 41.25±1.37ab | 29.79±0.92bc | 43.88±0.29b | 39.34±0.92a |
MVP1 | 41.95±0.94a | 30.38±0.48abc | 47.60±0.67a | 37.34±2.12a |
MVP2 | 45.87±0.65a | 32.72±2.46ab | 49.04±1.27a | 39.30±1.29a |
平均值Average | 43.02±0.81A | 30.97±0.89A | 46.84±0.79A | 38.66±0.85A |
RAP0 | 29.15±1.73de | 30.72±1.02abc | 42.75±1.16b | 37.27±1.58a |
RAP1 | 33.29±1.54cd | 32.31±1.90ab | 46.63±1.56a | 38.95±2.51a |
RAP2 | 30.47±2.25cde | 27.12±0.66c | 41.53±1.22b | 37.27±1.61a |
平均值Average | 30.97±1.10BC | 30.04±0.94A | 43.64±0.95B | 37.87±1.04A |
RYP0 | 32.57±2.44cd | 29.19±1.88bc | 41.58±0.39a | 40.37±2.56a |
RYP1 | 35.96±2.18bc | 31.30±1.49abc | 40.82±0.23a | 36.14±1.84a |
RYP2 | 33.41±2.10cd | 32.64±0.59ab | 40.46±0.61a | 39.50±1.34a |
平均值Average | 33.98±1.25B | 31.04±0.86A | 40.95±0.27C | 38.67±1.17A |
GM | 32.27*** | 1.60ns | 32.51*** | 1.28ns |
P | 2.73ns | 0.17ns | 4.17* | 0.75ns |
GM×P | 0.69ns | 1.82ns | 4.66** | 1.01ns |
Table 3 Grain and yield of subsequent rice in different treatments (g·pot -1)
处理 | 早稻Early rice | 晚稻Late rice | ||
---|---|---|---|---|
Treatment | 籽粒产量Grain yield | 秸秆产量Straw yield | 籽粒产量Grain yield | 秸秆产量Straw yield |
WFP0 | 26.33±1.02e | 34.70±1.89a | 39.17±0.76a | 33.64±1.49a |
WFP1 | 30.33±2.31de | 32.51±2.86ab | 39.75±0.60a | 36.16±1.39a |
WFP2 | 28.91±3.70de | 31.51±1.50abc | 41.29±1.17a | 38.57±2.45a |
平均值Average | 28.52±1.37C | 32.90±1.19A | 40.07±0.53C | 36.12±1.14A |
MVP0 | 41.25±1.37ab | 29.79±0.92bc | 43.88±0.29b | 39.34±0.92a |
MVP1 | 41.95±0.94a | 30.38±0.48abc | 47.60±0.67a | 37.34±2.12a |
MVP2 | 45.87±0.65a | 32.72±2.46ab | 49.04±1.27a | 39.30±1.29a |
平均值Average | 43.02±0.81A | 30.97±0.89A | 46.84±0.79A | 38.66±0.85A |
RAP0 | 29.15±1.73de | 30.72±1.02abc | 42.75±1.16b | 37.27±1.58a |
RAP1 | 33.29±1.54cd | 32.31±1.90ab | 46.63±1.56a | 38.95±2.51a |
RAP2 | 30.47±2.25cde | 27.12±0.66c | 41.53±1.22b | 37.27±1.61a |
平均值Average | 30.97±1.10BC | 30.04±0.94A | 43.64±0.95B | 37.87±1.04A |
RYP0 | 32.57±2.44cd | 29.19±1.88bc | 41.58±0.39a | 40.37±2.56a |
RYP1 | 35.96±2.18bc | 31.30±1.49abc | 40.82±0.23a | 36.14±1.84a |
RYP2 | 33.41±2.10cd | 32.64±0.59ab | 40.46±0.61a | 39.50±1.34a |
平均值Average | 33.98±1.25B | 31.04±0.86A | 40.95±0.27C | 38.67±1.17A |
GM | 32.27*** | 1.60ns | 32.51*** | 1.28ns |
P | 2.73ns | 0.17ns | 4.17* | 0.75ns |
GM×P | 0.69ns | 1.82ns | 4.66** | 1.01ns |
处理 Treatment | 早稻Early rice | 晚稻Late rice | ||
---|---|---|---|---|
籽粒磷素吸收量 Phosphorus absorption in rice | 秸秆磷素吸收量 Phosphorus absorption of straw | 籽粒磷素吸收量 Phosphorus absorption in rice | 秸秆磷素吸收量 Phosphorus absorption of straw | |
WFP0 | 78.67±4.97g | 75.95±3.59a | 112.04±11.03bcd | 25.29±1.35cd |
WFP1 | 94.30±3.02ef | 62.29±4.39bc | 120.7±10.57bc | 28.93±2.71bc |
WFP2 | 94.39±7.36ef | 54.58±4.91bcde | 106.34±8.90cd | 37.09±2.70a |
平均值Average | 89.12±3.60C | 64.27±3.50A | 113.03±5.62BC | 30.44±1.92AB |
MVP0 | 106.87±5.33cde | 46.80±3.29def | 117.02±5.99bc | 22.69±2.06d |
MVP1 | 143.57±6.93a | 36.66±4.84f | 152.43±11.81a | 27.37±2.15bcd |
MVP2 | 131.81±4.97ab | 65.82±5.66ab | 129.24±2.94bc | 28.90±1.44bc |
平均值Average | 127.42±5.52A | 49.76±4.40B | 132.95±6.02A | 26.32±1.27C |
RAP0 | 91.73±2.87fg | 43.17±2.46ef | 92.07±2.38d | 26.55±0.22bcd |
RAP1 | 96.43±5.03def | 56.58±4.90bcd | 105.06±10.54cd | 30.35±2.14bc |
RAP2 | 101.71±4.48def | 46.63±1.86def | 112.96±9.57bcd | 26.52±0.50bcd |
平均值Average | 96.62±2.53C | 48.79±2.45B | 103.36±5.07C | 27.78±0.85BC |
RYP0 | 98.64±3.51def | 42.44±3.13ef | 113.11±3.45bcd | 29.59±0.48bc |
RYP1 | 118.42±2.72bc | 50.32±6.47cde | 113.40±4.50bcd | 30.71±1.82b |
RYP2 | 110.27±5.96cd | 50.29±6.10cde | 130.84±8.93ab | 37.03±1.82a |
平均值Average | 109.11±3.32B | 47.68±3.05B | 119.09±4.06B | 32.43±1.26A |
GM | 33.84*** | 8.96*** | 6.42*** | 6.82*** |
P | 16.77*** | 0.45ns | 3.30* | 12.39*** |
GM×P | 1.89ns | 6.47*** | 1.78ns | 2.81* |
Table 4 Shoot phosphorus absorption of subsequent rice in different treatments (mg·pot -1)
处理 Treatment | 早稻Early rice | 晚稻Late rice | ||
---|---|---|---|---|
籽粒磷素吸收量 Phosphorus absorption in rice | 秸秆磷素吸收量 Phosphorus absorption of straw | 籽粒磷素吸收量 Phosphorus absorption in rice | 秸秆磷素吸收量 Phosphorus absorption of straw | |
WFP0 | 78.67±4.97g | 75.95±3.59a | 112.04±11.03bcd | 25.29±1.35cd |
WFP1 | 94.30±3.02ef | 62.29±4.39bc | 120.7±10.57bc | 28.93±2.71bc |
WFP2 | 94.39±7.36ef | 54.58±4.91bcde | 106.34±8.90cd | 37.09±2.70a |
平均值Average | 89.12±3.60C | 64.27±3.50A | 113.03±5.62BC | 30.44±1.92AB |
MVP0 | 106.87±5.33cde | 46.80±3.29def | 117.02±5.99bc | 22.69±2.06d |
MVP1 | 143.57±6.93a | 36.66±4.84f | 152.43±11.81a | 27.37±2.15bcd |
MVP2 | 131.81±4.97ab | 65.82±5.66ab | 129.24±2.94bc | 28.90±1.44bc |
平均值Average | 127.42±5.52A | 49.76±4.40B | 132.95±6.02A | 26.32±1.27C |
RAP0 | 91.73±2.87fg | 43.17±2.46ef | 92.07±2.38d | 26.55±0.22bcd |
RAP1 | 96.43±5.03def | 56.58±4.90bcd | 105.06±10.54cd | 30.35±2.14bc |
RAP2 | 101.71±4.48def | 46.63±1.86def | 112.96±9.57bcd | 26.52±0.50bcd |
平均值Average | 96.62±2.53C | 48.79±2.45B | 103.36±5.07C | 27.78±0.85BC |
RYP0 | 98.64±3.51def | 42.44±3.13ef | 113.11±3.45bcd | 29.59±0.48bc |
RYP1 | 118.42±2.72bc | 50.32±6.47cde | 113.40±4.50bcd | 30.71±1.82b |
RYP2 | 110.27±5.96cd | 50.29±6.10cde | 130.84±8.93ab | 37.03±1.82a |
平均值Average | 109.11±3.32B | 47.68±3.05B | 119.09±4.06B | 32.43±1.26A |
GM | 33.84*** | 8.96*** | 6.42*** | 6.82*** |
P | 16.77*** | 0.45ns | 3.30* | 12.39*** |
GM×P | 1.89ns | 6.47*** | 1.78ns | 2.81* |
1 | Chang D N, Chen Z Y, Han M, et al. Differences in phosphorus acquisition characteristics and rhizosphere properties among different hairy vetch genotypes. Acta Prataculturae Sinica, 2024, 33(4): 122-134. |
常单娜, 陈子英, 韩梅, 等. 毛叶苕子磷获取特征及根际特性的基因型差异. 草业学报, 2024, 33(4): 122-134. | |
2 | Wang Y K, Cai Z J, Feng G. Effects of different phosphorus application techniques on phosphorus availability in a rape system in a red soil. Acta Pedologica Sinica, 2023, 60(1): 235-246. |
王一锟, 蔡泽江, 冯固. 不同磷肥调控措施下红壤磷素有效性和利用率的变化. 土壤学报, 2023, 60(1): 235-246. | |
3 | Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China. Acta Pedologica Sinica, 2021, 58(2): 476-486. |
都江雪, 柳开楼, 黄晶, 等. 稻田土壤有效磷时空演变特征及其对磷平衡的响应. 土壤学报, 2021, 58(2): 476-486. | |
4 | Zhang H P, Liu Q, Peng J W, et al. Prospects of medium-low grade rock phosphate application in agricultural production. Journal of Southern Agriculture, 2012, 43(4): 477-480. |
张海鹏, 刘强, 彭建伟, 等. 中低品位磷矿在农业生产上的应用展望. 南方农业学报, 2012, 43(4): 477-480. | |
5 | Zhao X, Cai M D, Dong Q Q, et al. Advances of mechanisms and technology pathway of efficient utilization of medium-low grade phosphate rock resources. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1121-1130. |
赵鑫, 蔡慢弟, 董倩倩, 等. 中低品位磷矿资源高效利用机制与途径研究进展. 植物营养与肥料学报, 2018, 24(4): 1121-1130. | |
6 | Shao X Q, Yao H L, Cui S H, et al. Activated low-grade phosphate rocks for simultaneously reducing the phosphorus loss and cadmium uptake by rice in paddy soil. Science of the Total Environment, 2021, 780: 146550. |
7 | Thien S J, Myers R. Determination of bioavailable phosphorus in soil. Soil Science Society of America Journal, 1992, 26(3): 331-336. |
8 | Chen Y Y, Mathiyazhagan N, Shi X J, et al. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of the Total Environment, 2023, 901: 166468. |
9 | Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34(1): 33-41. |
10 | Li C J. Mineral nutrition of higher plants. Beijing: China Agricultural University Press, 2008. |
李春俭. 高级植物营养学. 北京: 中国农业大学出版社, 2008. | |
11 | Neumann G, Martinoia E. Cluster roots-An underground adaptation for survival in extreme environments. Trends in Plant Science, 2002, 7(4): 162-167. |
12 | Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. |
曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望. 植物营养与肥料学报, 2017, 23(6): 1450-1461. | |
13 | Gao S J, Zhou G P, Chang D N, et al. Southern China can produce more high-quality rice with less N by green manuring. Resources, Conservation and Recycling, 2023, 196: 107025. |
14 | Cao W D, Huang H X. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009(4): 1-3. |
曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009(4): 1-3. | |
15 | Lyu Y, Tang H L, Li H G, et al. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Plant Science, 2016, 7: 1939. |
16 | Lan Z M, Lin X J, Zhang W G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. |
兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响. 中国农业科学, 2012, 45(8): 1521-1531. | |
17 | Wang L S, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018, 271: 108-116. |
18 | Jiang B F. A study on rock phosphate of China for agriculture use. Scientia Agriculture Sinica, 1988(4): 62-67. |
蒋柏藩. 中国磷矿农业利用的研究. 中国农业科学, 1988(4): 62-67. | |
19 | Xie W J. Studies on rape’s activation and utilization of different forms inorganic phosphorus of acid soil and it’s physiological change. Nanning: Guangxi University, 2005. |
谢文娟. 油菜对酸性土壤不同形态无机磷的活化利用及其生理变化研究. 南宁: 广西大学, 2005. | |
20 | Gu C M, Li Y, Li Y S, et al.Effects of organic acid composition in the decomposed liquid of green manure crops on the activation level of AlPO4 and FePO4·2H2O. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1627-1635. |
顾炽明, 李越, 李银水, 等. 绿肥腐解液中有机酸组成对铝磷和铁磷活化能力的影响. 植物营养与肥料学报, 2021, 27(9): 1627-1635. | |
21 | Mckenney D J, Wang S W, Drury C F, et al. Dentrification and mineralization in soil amended with legume, grass, and corn residues. Soil Science Society of America Journal, 1993, 57(4): 1013-1020. |
22 | Eichler-Loebermann B, Schiemenz K, Makadi M, et al. Nutrient cycling by using residues of bio-energy production-Effects of biomass ashes on plant and soil parameters. Cereal Research Communications, 2008, 36(7): 1259-1262. |
23 | Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2000: 263-270. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 263-270. | |
24 | Liu B, Wang S, Wang J, et al. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris. Science of the Total Environment, 2020, 719: 137475. |
25 | Tiessen H, Moir J O. Characterization of available P by sequential extraction. Boca Raton: CRC Press, 1993: 75-86. |
26 | Ren Y. Effect of phosphate rock on growth and nutrient uptake of green manure crops and following rice. Wuhan: Huazhong Agricultural University, 2022. |
任洋. 磷矿粉对绿肥及后茬水稻生长和养分吸收的影响. 武汉: 华中农业大学, 2022. | |
27 | Jiao B. Chinese green manure. Beijing: China Agriculture Press, 1986. |
焦彬. 中国绿肥. 北京: 中国农业出版社, 1986. | |
28 | Wang Z R, Zang H L. The fertilizer efficiency of phosphate rock powder fertilizer on several acidic soils in Jiangsu Province. Soils, 1974(4): 29-32. |
王振荣, 臧惠林. 磷矿粉肥在江苏几种酸性土壤上的肥效. 土壤, 1974(4): 29-32. | |
29 | Wu A J. Mechanisms of root responses to low phosphorus stress in different crop species/genotypes with contrasting root systems. Beijing: University of Chinese Academy of Sciences, 2021. |
吴爱姣. 不同根系类型作物/品种的根系对低磷胁迫的响应机制. 北京: 中国科学院大学, 2021. | |
30 | Wang W H, Zhou X B, Zhou Y X, et al. The mechanism of rhizosphere phosphorus activation of two rape genotypes (Brassica napus L.) with different P efficiencies. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1379-1387. |
王文华, 周鑫斌, 周永祥, 等. 不同磷效率油菜根际土壤磷活化机理研究. 植物营养与肥料学报, 2011, 17(6): 1379-1387. | |
31 | Zhang H, Gao Y J, An R. Testing method of rape root exudates by GC-MS analysis. Journal of Agricultural Resources and Environment, 2014, 31(3): 290-295. |
张红, 高亚军, 安蓉. 油菜根系分泌物的GC-MS检测方法研究. 农业资源与环境学报, 2014, 31(3): 290-295. | |
32 | Ye G K, E S Z, Chen Z Y, et al. The forms and classification methods of phosphorus in soil: Research progress. Chinese Agricultural Science Bulletin, 2023, 39(1): 96-102. |
冶赓康, 俄胜哲, 陈政宇, 等. 土壤中磷的存在形态及分级方法研究进展. 中国农学通报, 2023, 39(1): 96-102. | |
33 | Peng Y, Duan Y S, Huo W G, et al. Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biology and Fertility of Soils, 2021, 57: 657-669. |
34 | Yang L, Zhou X, Liao Y L, et al. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake. Crop Science, 2019, 59: 749-759. |
35 | Gao J S, Cao W D, Dong C H, et al. Effect of long-term rice-green manure rotation on rice yield. China Journal of Rice Science, 2010, 24(6): 672-676. |
高菊生, 曹卫东, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量的影响. 中国水稻科学, 2010, 24(6): 672-676. | |
36 | Li Y Z, Han T F, Liu K L, et al. Response of soil enzyme activity and rice yield to winter green manure incorporation in red paddy soil. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1313-1322. |
李亚贞, 韩天富, 柳开楼, 等. 红壤稻田土壤酶活性及水稻产量对翻压冬季绿肥的响应.植物营养与肥料学报, 2023, 29(7): 1313-1322. | |
37 | Zhou G P, Gao S J, Lu Y H, et al.Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil and Tillage Research, 2020, 197: 104499. |
38 | Zhang L, Xu C X, Liu J, et al. Effects of green manure on yield and nitrogen utilization of double rice under reduced 20% chemical fertilizer input in Jiangxi Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 845-856. |
张磊, 徐昌旭, 刘佳, 等. 减施20%化肥下绿肥翻压量对江西双季稻产量及氮素利用的影响. 植物营养与肥料学报, 2022, 28(5): 845-856. | |
39 | Zhou C H, Zhao Z K, Pan X H, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system. Rice Science, 2016, 23(3): 132-143. |
[1] | Zheng WANG, Wei CHANG, Jun-cheng LI, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effects of alfalfa green manure on the yield, nitrogen absorption, and nitrogen translocation of feed maize [J]. Acta Prataculturae Sinica, 2024, 33(8): 63-73. |
[2] | Wen-jun ZHAO, Rui LIU, Zheng-xu WANG, Yu FENG, Kai-zheng XUE, Kui LIU, Zi-he XU, Wei-dong CAO, Li-bo FU, Mei YIN, Hua CHEN. Effects of rotation with a green manure crop on soil quality and microbial nutrient limitation in a tobacco field in Yunnan [J]. Acta Prataculturae Sinica, 2024, 33(10): 147-158. |
[3] | Xue-liang ZHANG, Yu-ting ZHANG, Rui LIU, Jun XIE, Jian-wei ZHANG, Wen-jing XU, Xiao-jun SHI. Effects of green manure return regimes on soil greenhouse gas emissions [J]. Acta Prataculturae Sinica, 2021, 30(5): 25-33. |
[4] | Fei WANG, Cai-ling LIU, Chun-mei HE, Qing-hua LI, Yu-jie LIU, Yi-bin HUANG. Appropriate ratios of phosphate and potassium fertilizers and 50% return of rice straw enhanced yield and nutrient capture of Chinese milk vetch [J]. Acta Prataculturae Sinica, 2021, 30(12): 81-89. |
[5] | Li-jun GU, Ting-yu DUAN. Current status of research on Vicia villosa var. glabresens as indicated by a bibliometric analysis using the China National Knowledge Infrastructure (CNKI) database [J]. Acta Prataculturae Sinica, 2021, 30(11): 221-228. |
[6] | Xiao-fen CHEN, Lu-ping ZHANG, Wen-jing QIN, Jing-rui CHEN, Yang-geng XU, Ming LIU, Zhong-pei LI, Chang-xu XU, Jia LIU. A study of the appropriate seeding rates for four winter green manure crops in an upland red soil of Southern China [J]. Acta Prataculturae Sinica, 2021, 30(10): 137-146. |
[7] | LÜ Han-qiang, YU Ai-zhong, WANG Yu-long, SU Xiang-xiang, LÜ Yi-tong, CHAI Qiang. Effect of green manure retention practices on nitrogen absorption and utilization by maize crops in the arid oasis irrigation area [J]. Acta Prataculturae Sinica, 2020, 29(8): 93-103. |
[8] | YANG Ye-hua, ZHANG Song, WANG Shuai, LIU Zheng-lan, FANG Lin-fa, ZHANG Xue-liang, LIU Rui, ZHANG Jian-wei, ZHANG Yu-ting, SHI Xiao-jun. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China [J]. Acta Prataculturae Sinica, 2020, 29(6): 39-55. |
[9] | Bo-wen XIAO, Wei FENG, Ting-yu DUAN. Pathogenicity ofseed-borne fungi of Orychophragmus violaceus [J]. Acta Prataculturae Sinica, 2020, 29(12): 121-130. |
[10] | WANG Deng-ke, YU Xiang-yu, ZHANG Xue-feng, HUANG Lei, LI Xiao-ting, HE Zhi-bin, KANG lin, WANG Dang-jun, YAO Lu-hua, GUO Yan-jun. Responses of seed germination and rhizobia antioxidative enzyme activities in legumes to acidity and aluminum and NaCl stresses [J]. Acta Prataculturae Sinica, 2018, 27(10): 35-44. |
[11] | WAN Shui-Xia, TANG Shan, JIANG Guang-Yue, LI Fan, GUO Xi-Sheng, WANG Yun-Qing, CAO Wei-Dong. Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice [J]. Acta Prataculturae Sinica, 2016, 25(6): 109-117. |
[12] | DU Qing-Feng, WANG Dang-Jun, YU Xiang-Yu, YAO Lu-Hua, HE Yu-Ji, WANG Rui, MA Sheng-Lan, GUO Yan-Jun. The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake [J]. Acta Prataculturae Sinica, 2016, 25(3): 225-233. |
[13] | CHEN Guo-Jun, YAN Hui-Feng, WU Kai, YANG Ju-Tian, TIAN Lei, TAN Xiao-Lei, ZONG Hao, CHEN Xiu-Zhai, ZHANG Yong-Chun, SUN Yan-Guo, LIU Hai-Wei, SHI Yi. Green manure returning effect of Amaranthus hypochondriacus harvested at different times on soil fertility [J]. Acta Prataculturae Sinica, 2016, 25(3): 215-224. |
[14] | ZHOU Ling-Hong, WEI Jia-Bin, TANG Xian-Liang, CHENG Xiao-Lin, XIAO Zhi-Xiang, XU Hua-Qin, TANG Jian-Wu. Effects of winter green manure crops with and without chicken rearing on microbial biomass and effective carbon and nitrogen pools in a double-crop rice paddy soil [J]. Acta Prataculturae Sinica, 2016, 25(11): 103-114. |
[15] | SUN Yanru, SHI Yi, CHEN Guojun, YAN Huifeng. Evaluation of the germination characteristics and drought resistance of green manure crops under PEG stress [J]. Acta Prataculturae Sinica, 2015, 24(3): 89-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||