Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (12): 73-83.DOI: 10.11686/cyxb2024037
Previous Articles Next Articles
Zi-qi CAO1,2(), Xiao-qing ZHAO1,3, Xiang-qian ZHANG1,3, Jian-hui WU3, Fan ZHANG3, Dan LIU3, Zhan-yuan LU1,3(), Yong-feng REN1,3()
Received:
2024-01-27
Revised:
2024-03-16
Online:
2024-12-20
Published:
2024-10-09
Contact:
Zhan-yuan LU,Yong-feng REN
Zi-qi CAO, Xiao-qing ZHAO, Xiang-qian ZHANG, Jian-hui WU, Fan ZHANG, Dan LIU, Zhan-yuan LU, Yong-feng REN. Effects of potassium application level on the growth, tuber quality, and yield of Cyperus esculentus in the Northern wind-sand area[J]. Acta Prataculturae Sinica, 2024, 33(12): 73-83.
Fig.1 The plant height, tiller number, single leaf area, maximum root length and root volume of C. esculentus under different potassium application levels
项目 Item | K0 | K1 | K2 | K3 |
---|---|---|---|---|
十四碳酸(肉蔻酸)Myristic acid | 0.0094±0.0004b | 0.0082±0.0005b | 0.0143±0.0026a | 0.0141±0.0007a |
十六碳酸(棕榈酸)Palmitic acid | 1.9283±0.0715b | 1.9299±0.1280b | 2.3422±0.1699a | 2.3311±0.0937a |
顺-9-十六碳一烯酸(棕榈油酸)Palmitoleic acid | 0.0197±0.0020b | 0.0332±0.0036a | 0.0262±0.0073ab | 0.0254±0.0043ab |
十七碳酸(珠光脂酸)Margaric acid | 0.0097±0.0003c | 0.0095±0.0003c | 0.0122±0.0006a | 0.0111±0.0007b |
顺-10-十七碳一烯酸Heptadecenoic acid | 0.0075±0.0002b | 0.0072±0.0005b | 0.0112±0.0036a | 0.0091±0.0001ab |
十八碳酸(硬脂酸)Stearic acid | 0.5730±0.0288c | 0.5842±0.0277c | 0.9100±0.0526a | 0.6536±0.0294b |
顺-9-十八碳一烯酸(油酸)Oleic acid | 10.7614±0.4259b | 11.3937±0.6778b | 13.4113±0.8017a | 13.5707±0.6152a |
顺,顺-9,12-十八碳二烯酸(亚油酸)Linoleic acid | 1.7620±0.0657c | 1.7719±0.1237c | 2.9317±0.1840a | 2.0487±0.1007b |
顺,顺,顺-6,9,12-十八碳三烯酸(γ-亚麻酸)γ-Linolenic acid | 0.0280±0.0025b | 0.0436±0.0042a | 0.0287±0.0029b | 0.0172±0.0006c |
顺,顺,顺-9,12,15-十八碳三烯酸(α-亚麻酸)α-Linolenic acid | 0.0480±0.0013ab | 0.0450±0.0034bc | 0.0418±0.0028c | 0.0526±0.0020a |
二十碳酸(花生酸)Arachidic acid | 0.0874±0.0023c | 0.0909±0.0038c | 0.1246±0.0122a | 0.1067±0.0075b |
顺-11-二十碳一烯酸(花生一烯酸)Gadoleic acid | 0.0421±0.0031c | 0.0417±0.0031c | 0.0742±0.0056a | 0.0507±0.0032b |
二十二碳酸(山嵛酸)Docosanoic acid | 0.0183±0.0037b | 0.0178±0.0026b | 0.0760±0.0066a | 0.0245±0.0026b |
二十四碳酸(木腊酸)Tetracosanoic acid | 0.0321±0.0002c | 0.0309±0.0006c | 0.0683±0.0050a | 0.0454±0.0073b |
饱和脂肪酸总量Total saturated fatty acids | 2.6582±0.1020c | 2.6713±0.1603c | 3.5477±0.2456a | 3.1866±0.1307b |
不饱和脂肪酸总量Total unsaturated fatty acids | 12.6686±0.4899b | 13.3365±0.8134b | 16.5251±0.9953a | 15.7746±0.7206a |
脂肪酸总量Total fatty acids | 15.3268±0.5911b | 16.0079±0.9736b | 20.0728±1.2389a | 18.9612±0.8500a |
Table 1 Fatty acid content of C. esculentus under different potassium application levels (g·100 g-1)
项目 Item | K0 | K1 | K2 | K3 |
---|---|---|---|---|
十四碳酸(肉蔻酸)Myristic acid | 0.0094±0.0004b | 0.0082±0.0005b | 0.0143±0.0026a | 0.0141±0.0007a |
十六碳酸(棕榈酸)Palmitic acid | 1.9283±0.0715b | 1.9299±0.1280b | 2.3422±0.1699a | 2.3311±0.0937a |
顺-9-十六碳一烯酸(棕榈油酸)Palmitoleic acid | 0.0197±0.0020b | 0.0332±0.0036a | 0.0262±0.0073ab | 0.0254±0.0043ab |
十七碳酸(珠光脂酸)Margaric acid | 0.0097±0.0003c | 0.0095±0.0003c | 0.0122±0.0006a | 0.0111±0.0007b |
顺-10-十七碳一烯酸Heptadecenoic acid | 0.0075±0.0002b | 0.0072±0.0005b | 0.0112±0.0036a | 0.0091±0.0001ab |
十八碳酸(硬脂酸)Stearic acid | 0.5730±0.0288c | 0.5842±0.0277c | 0.9100±0.0526a | 0.6536±0.0294b |
顺-9-十八碳一烯酸(油酸)Oleic acid | 10.7614±0.4259b | 11.3937±0.6778b | 13.4113±0.8017a | 13.5707±0.6152a |
顺,顺-9,12-十八碳二烯酸(亚油酸)Linoleic acid | 1.7620±0.0657c | 1.7719±0.1237c | 2.9317±0.1840a | 2.0487±0.1007b |
顺,顺,顺-6,9,12-十八碳三烯酸(γ-亚麻酸)γ-Linolenic acid | 0.0280±0.0025b | 0.0436±0.0042a | 0.0287±0.0029b | 0.0172±0.0006c |
顺,顺,顺-9,12,15-十八碳三烯酸(α-亚麻酸)α-Linolenic acid | 0.0480±0.0013ab | 0.0450±0.0034bc | 0.0418±0.0028c | 0.0526±0.0020a |
二十碳酸(花生酸)Arachidic acid | 0.0874±0.0023c | 0.0909±0.0038c | 0.1246±0.0122a | 0.1067±0.0075b |
顺-11-二十碳一烯酸(花生一烯酸)Gadoleic acid | 0.0421±0.0031c | 0.0417±0.0031c | 0.0742±0.0056a | 0.0507±0.0032b |
二十二碳酸(山嵛酸)Docosanoic acid | 0.0183±0.0037b | 0.0178±0.0026b | 0.0760±0.0066a | 0.0245±0.0026b |
二十四碳酸(木腊酸)Tetracosanoic acid | 0.0321±0.0002c | 0.0309±0.0006c | 0.0683±0.0050a | 0.0454±0.0073b |
饱和脂肪酸总量Total saturated fatty acids | 2.6582±0.1020c | 2.6713±0.1603c | 3.5477±0.2456a | 3.1866±0.1307b |
不饱和脂肪酸总量Total unsaturated fatty acids | 12.6686±0.4899b | 13.3365±0.8134b | 16.5251±0.9953a | 15.7746±0.7206a |
脂肪酸总量Total fatty acids | 15.3268±0.5911b | 16.0079±0.9736b | 20.0728±1.2389a | 18.9612±0.8500a |
1 | Yang Z L. Characteristics and research progress of Cyperus esculentus. Northern Horticulture, 2017(17): 192-201. |
阳振乐. 油莎豆的特性及其研究进展. 北方园艺, 2017(17): 192-201. | |
2 | Zhang S G, Li P Z, Wei Z M, et al. Cyperus (Cyperus esculentus L.): A review of its compositions, medical efficacy, antibacterial activity and allelopathic potentials. Plants, 2022, 11(9): 1127. |
3 | Chou Y X, Li K J, Min Y, et al. Research progress in nutritional composition, biological and application of Cyperus esculentus. Journal of Food Safety and Quality, 2023, 14(15): 222-230. |
丑义宣, 李柯洁, 闵琰, 等. 油莎豆的营养成分、生物活性及其应用研究进展. 食品安全质量检测学报, 2023, 14(15): 222-230. | |
4 | Zhang Y M, Sun S D. Tiger nut (Cyperus esculentus L.) oil: A review of bioactive compounds, extraction technologies, potential hazards and applications. Food Chemistry: X, 2023, 19: 100868. |
5 | Cao Z Q, Ren Y F, Lu Z Y, et al. Research progress on the characteristics and development and utilization of Cyperus esculentus. Journal of Northern Agriculture, 2022, 50(1): 66-74. |
曹秭琦, 任永峰, 路战远, 等. 油莎豆的特性及其开发利用研究进展. 北方农业学报, 2022, 50(1): 66-74. | |
6 | Cui J, Tcherkez G. Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 2021, 166: 522-530. |
7 | Li J, Hu W S, Lu Z F, et al. Imbalance between nitrogen and potassium fertilization influences potassium deficiency symptoms in winter oilseed rape (Brassica napus L.) leaves. The Crop Journal, 2022, 10(2): 565-576. |
8 | Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9(8): 681. |
9 | Xu X, Du X, Wang F, et al. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers in Plant Science, 2020, 11: 904. |
10 | Johnson R, Vishwakarma K, Hossen M S, et al. Potassium in plants: Growth regulation, signaling,and environmental stress tolerance. Plant Physiology and Biochemistry, 2022, 172: 56-59. |
11 | Wang Y X, Zhang P, Ge B L, et al. Response of agronomic characters and active components of Lilium concolor to potassium. Acta Prataculturae Sinica, 2021, 30(6): 205-213. |
王云霞, 张萍, 葛蓓蕾, 等. 渥丹百合农艺性状及活性成分对钾元素的响应. 草业学报, 2021, 30(6): 205-213. | |
12 | Zhang J L, Li J, Geng G T, et al. Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape caused by Sclerotinia stem rot disease. Agronomy Journal, 2020, 112(6): 5143-5157. |
13 | Zhejiang Agricultural University. Plant nutrition and fertilizer. Beijing: China Agriculture Press, 1991: 101-109. |
浙江农业大学. 植物营养与肥料. 北京: 中国农业出版社, 1991: 101-109. | |
14 | Li B B, Zhang F H, Zhao Y G, et al. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus. Chinese Journal of Plant Ecology, 2023, 47(1): 101-113. |
李变变, 张凤华, 赵亚光, 等. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响. 植物生态学报, 2023, 47(1): 101-113. | |
15 | Yang Y J, Liang G L, Liu W H, et al. Effects of silicon fertilizer on lodging resistance traits and seed yield of Avena sativa in the alpine region of Qinghai-Tibet Plateau. Pratacultural Science, 2022, 39(3): 551-561. |
杨钰洁, 梁国玲, 刘文辉, 等. 硅肥对青藏高原高寒地区燕麦抗倒伏性状及种子产量的影响. 草业科学, 2022, 39(3): 551-561. | |
16 | National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. National standard for food safety determination of fatty acids in food, GB 5009.6-2016. Beijing: National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration, 2016. |
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中脂肪酸的测定, GB 5009.6-2016. 北京: 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局, 2016. | |
17 | National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. National standard for food safety determination of fatty acids in food, GB 5009.168-2016. Beijing: National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration, 2016. |
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中脂肪酸的测定, GB 5009.168-2016. 北京: 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局, 2016. | |
18 | Chen Y, Wang L, Bai Y L, et al. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777. |
陈杨, 王磊, 白由路, 等. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22): 4761-4777. | |
19 | Gou Z Y, Guo L Z, Gao Y H, et al. Effects of combined application of potassium and silicon fertilizers on root morphology and lodging resistance characteristics of oil flax. Journal of Gansu Agricultural University, 2022, 57(1): 83-89, 97. |
苟振宇, 郭丽琢, 高玉红, 等. 钾硅肥配施对胡麻根系形态及抗倒伏特性的影响. 甘肃农业大学学报, 2022, 57(1): 83-89, 97. | |
20 | Hetherington F M, Kakkar M, Topping J F, et al. Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. Plant Physiology, 2021, 185(3): 1198-1215. |
21 | Kumar P, Singh T, Singh S, et al. Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 2021, 324: 198-210. |
22 | Sun X, Qiu Y, Peng Y, et al. Close temporal relationship between oscillating cytosolic K+ and growth in root hairs of Arabidopsis. International Journal of Molecular Sciences, 2020, 21(17): 6184. |
23 | Sustr M, Soukup A, Tylova E. Potassium in root growth and development. Plants, 2019, 8(10): 435. |
24 | Soumare A, Sarr D, Diédhiou A G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere, 2023, 33(1): 105-115. |
25 | Tränkner M, Tavakol E, Jákli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018, 163(3): 414-431. |
26 | Ceylan Y, Kutman U B, Mengutay M, et al. Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant and Soil, 2016, 406(2): 145-156. |
27 | Ye T H, Xue X X, Lu J W, et al. Effects of potassium fertilization on crops yield, potassium uptake, and soil potassium fertility in rice-oilseed rape cropping systems. Archives of Agronomy and Soil Science, 2022, 68(7): 873-885. |
28 | Wang F, Liu C L, He C M, et al. Appropriate ratios of phosphate and potassium fertilizers and 50% return of rice straw enhanced yield and nutrient capture of Chinese milk vetch. Acta Prataculturae Sinica, 2021, 30(12): 81-89. |
王飞, 刘彩玲, 何春梅, 等. 适宜磷、钾肥配比及稻秆半量还田提高紫云英产量与养分截获. 草业学报, 2021, 30(12): 81-89. | |
29 | Gu X, Liu Y, Li N, et al. Effects of the foliar application of potassium fertilizer on the grain protein and dough quality of wheat. Agronomy, 2021, 11(9): 1749. |
30 | Yang M, Tian L P, Xue L, et al. Effects of N, P, K combined application on yield and quality of Cyperus esculentus in arid climate region of Xinjiang. Northern Horticulture, 2013(6): 180-182. |
杨敏, 田丽萍, 薛琳, 等. 新疆干旱气候区不同氮磷钾肥配施对油莎豆产量与品质的影响. 北方园艺, 2013(6): 180-182. | |
31 | Guo A. Effects of different potassium application levels on fruit quality and sugar metabolism of fig fruit. Fuzhou: Fujian Agriculture and Forestry University, 2019. |
郭傲. 不同施钾水平对无花果果实品质及糖代谢的影响. 福州: 福建农林大学, 2019. | |
32 | Guo Z G, Li W F, Mao J, et al. Effects of potassium fertilizer on endogenous hormone content and acid metabolism in fruit of apple cv. ‘Red Delicious’. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 281-290. |
郭志刚, 李文芳, 毛娟, 等. 钾肥施用对元帅苹果果实内源激素含量及酸代谢的影响. 农业工程学报, 2019, 35(10): 281-290. | |
33 | Lu Z F. Studies on mechanisms underlying the effects of potassium nutrition on leaf photosynthesis of Brassica napus. Wuhan: Huazhong Agricultural University, 2017. |
陆志峰. 钾素营养对冬油菜叶片光合作用的影响机制研究. 武汉: 华中农业大学, 2017. | |
34 | Yang R L. Study on the effects of different light condition on the synthesis of lipids of Cyperus esculentus. Shihezi: Shihezi University, 2013. |
杨若琳. 不同光照条件对油莎豆油脂合成作用的影响研究. 石河子: 石河子大学, 2013. | |
35 | Ma P, Yuan Y, Shen Q, et al. Evolution and expression analysis of starch synthase gene families in Saccharum spontaneum. Tropical Plant Biology, 2019, 12: 158-173. |
36 | Liu N, Xie C, Gao S J, et al. Effects of different potassium levels on photosynthetic characteristics and yield of peanut. Chinese Journal of Oil Crops Science, 2021, 43(5): 883-890. |
刘娜, 谢畅, 高世杰, 等. 不同钾水平对花生光合特性及产量的影响. 中国油料作物学报, 2021, 43(5): 883-890. | |
37 | Farooq M A, Ali S, Hassan A, et al. Biosynthesis and industrial applications of α-amylase: A review. Archives of Microbiology, 2021, 203(4): 1281-1292. |
38 | Zhu M Y, Kang Y J, Pu H T. Effects of potassium application rate on key enzyme activities of peanut fat formation. Modern Agricultural Science and Technology, 2017(20): 9-10. |
朱明玉, 康玉洁, 蒲海涛. 施钾量对花生脂肪形成关键酶活性的影响. 现代农业科技, 2017(20): 9-10. | |
39 | Long X Y, Yang X J, Yang S Y, et al. Effects of potassium application in summer on leaf growth and yield of Camellia oleifera. Tropical Forestry, 2021, 49(1): 35-41. |
龙雪燕, 杨小菊, 杨胜优, 等. 夏季施钾肥对油茶叶片生长和产量相关指标影响. 热带林业, 2021, 49(1): 35-41. | |
40 | Luo X L, Wu M Y, Tao L. Impacts of potassium fertilizer application at different stages on key enzyme activities and starch accumulation in starch synthesis of Cassava. Jiangsu Agricultural Sciences, 2020, 48(16): 115-119. |
罗兴录, 吴美艳, 陶林. 木薯不同时期施钾对淀粉合成关键酶活性和淀粉积累的影响. 江苏农业科学, 2020, 48(16): 115-119. | |
41 | Pang Y L, Wang F X, Huang Z J, et al. Improving yield and quality of autumn tea with drip irrigation under appropriate nitrogen and potassium fertilization. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 98-103. |
庞永磊, 王凤新, 黄泽军, 等. 适宜施氮钾水平提高滴灌秋茶的产量及品质. 农业工程学报, 2019, 35(24): 98-103. | |
42 | Liu J, Fan Y F, Sun J Y, et al. Effects of straw return with potassium fertilizer on the stem lodging resistance, grain quality and yield of spring maize (Zea mays L.). Scientific Reports, 2023, 13(1): 20307. |
43 | He P, Jin J Y, Li W J, et al. Comparison of potassium absorption, yield and quality between high-oil and common corn affected by potassium application. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 620-626. |
何萍, 金继运, 李文娟, 等. 施钾对高油玉米和普通玉米吸钾特性及子粒产量和品质的影响. 植物营养与肥料学报, 2005, 11(5): 620-626. | |
44 | Hu W, Jiang N, Yang J, et al. Potassium (K) supply affects K accumulation and photosynthetic physiology in two cotton (Gossypium hirsutum L.) cultivars with different K sensitivities. Field Crops Research, 2016, 196: 51-63. |
45 | Yousef A F, Ali A M, Azab M A, et al. Improved plant yield of potato through exogenously applied potassium fertilizer sources and biofertilizer. AMB Express, 2023, 13(1): 124. |
46 | Sui X D. Effects of different amounts of nitrogen and potassium fertilizers on rice starch synthesis. Chengdu: Sichuan Agricultural University, 2020. |
隋晓东. 氮钾肥不同用量对水稻淀粉合成的影响. 成都: 四川农业大学, 2020. | |
47 | Shirani R A H, Eyni-Nargeseh H, Shiranirad S, et al. Effect of potassium silicate on seed yield and fatty acid composition of rapeseed (Brassica napus L.) genotypes under different irrigation regimes.Silicon, 2022, 14(2): 11927-11938. |
48 | Li S T, Duan Y, Guo T W, et al. Sunflower response to potassium fertilization and nutrient requirement estimation. Journal of Integrative Agriculture, 2018, 17(12): 2802-2812. |
49 | Popp M P, Slaton N A, Norsworthy J S, et al. Rice yield response to potassium: An economic analysis. Agronomy Journal, 2020, 113(1): 287-297. |
50 | Zou T X, Dai T B, Jiang D, et al. Effects of nitrogen and potassium on key regulatory enzyme activities for grain starch in winter wheat. Scientia Agricultura Sinica, 2008, 41(11): 3858-3864. |
邹铁祥, 戴廷波, 姜东, 等. 氮素和钾素对小麦籽粒淀粉合成关键酶活性的影响. 中国农业科学, 2008, 41(11): 3858-3864. |
[1] | Xiang-qi BU, Shan-shan LI, Ying-na DUAN, Ying-chun WANG, Lin-lin ZHENG. Effects of nitric oxide on stress resistance and feed quality of Suaeda salsa under saline-alkali stress [J]. Acta Prataculturae Sinica, 2024, 33(9): 60-69. |
[2] | Zhong-li LI, Cong-ze JIANG, Ren-shi MA, Wei GAO, Na SHOU, Yu-ying SHEN, Xian-long YANG. Suitability of five forage sweet sorghum varieties for production in the dry plateau area of Longdong [J]. Acta Prataculturae Sinica, 2024, 33(8): 50-62. |
[3] | Shou-xia XU. Meta-analysis of the effects of arbuscular mycorrhizae on the yield and quality of wheat [J]. Acta Prataculturae Sinica, 2024, 33(7): 192-204. |
[4] | Jian-feng NING, Tong LI, Rui-kun ZENG, Jian-wu YAO, Yong CHEN, Zi-wei LIANG. Soil fertility in perennial vegetable fields in the latosolic red soil zone of the Pearl River Delta [J]. Acta Prataculturae Sinica, 2024, 33(5): 25-40. |
[5] | Ding YANG, Jiao JIN, Jing-hao LI, Zhi-peng WANG, Yuan-bo HAO, Ning DING, Lu CHEN. Evaluation of rodent control quality in grassland in China based on an entropy weight TOPSIS model [J]. Acta Prataculturae Sinica, 2024, 33(4): 221-230. |
[6] | Hong-fei LI, Bang-wei ZHOU, Miao ZHANG, Shu-nan SHI, Zhi-jian LI. Adaptability evaluation of different oat varieties introduced in the Hulunbuir region [J]. Acta Prataculturae Sinica, 2024, 33(4): 60-72. |
[7] | Rui ZHANG, Xue-jiao AN, Jian-ye LI, Zeng-kui LU, Chun-e NIU, Zhen-fei XU, Jin-xia ZHANG, Zhi-guang GENG, Yao-jing YUE, Bo-hui YANG. Comparative analysis of growth performance, meat productivity, and meat quality in Hu sheep and its hybrids [J]. Acta Prataculturae Sinica, 2024, 33(3): 186-197. |
[8] | Feng-shuo ZHANG, Qiu-rong JI, Ting-li HE, Qu-yang-ang-mao SU, Zhi-you WANG, Sheng-zhen HOU, lin-Sheng GUI. Effect of different ratios of amino acids in low-protein diets on muscle quality, amino acid and fatty acid composition, and vitamin and mineral contents of the longissimus dorsi muscle in Tibetan sheep [J]. Acta Prataculturae Sinica, 2024, 33(3): 198-208. |
[9] | Meng-ge ZHOU, Yong-hua LI. Establishment and application of a forage product quality and safety evaluation index system based on a ‘DPSIR’ model [J]. Acta Prataculturae Sinica, 2024, 33(2): 13-27. |
[10] | Xing-fa GAO, Ying-ying NIE, Li-jun XU, Min YANG, Shu-hua XU, Meng ZHU. Adaptability evaluation of oat introduction in winter fallow field of Wumeng Mountain area under drought condition [J]. Acta Prataculturae Sinica, 2024, 33(11): 215-227. |
[11] | Zhong-juan ZHANG, Xi-yu HAO, Xue WANG, Feng LI, Wen-long LI. Selection and multi-trait evaluation of silage maize varieties suitable for cultivation in the Qiqihar area [J]. Acta Prataculturae Sinica, 2024, 33(11): 228-240. |
[12] | Si-yao WANG, Kai-yang QIU, Jian-yu WANG. Evaluation of soil quality change over time when retiring cultivated farmland on gravel-sand mulched fields in central Ningxia [J]. Acta Prataculturae Sinica, 2024, 33(11): 58-68. |
[13] | Wen-jun ZHAO, Rui LIU, Zheng-xu WANG, Yu FENG, Kai-zheng XUE, Kui LIU, Zi-he XU, Wei-dong CAO, Li-bo FU, Mei YIN, Hua CHEN. Effects of rotation with a green manure crop on soil quality and microbial nutrient limitation in a tobacco field in Yunnan [J]. Acta Prataculturae Sinica, 2024, 33(10): 147-158. |
[14] | Pei-shan HUANG, Mei-qi ZANG, Wei-ling ZHANG, Jun-jian CHEN, Li-xuan LIU, Qing ZHANG. Optimization of extraction process of Neolamarckia cadamba leaf polyphenols and its effect on Stylosanthes guianensis silage [J]. Acta Prataculturae Sinica, 2024, 33(10): 159-170. |
[15] | Tian-xin GUO, Shi-shi RUAN, Xiang GUO, Jia-qi ZHAN, Qiu-yu LIANG, Xiao-yang CHEN, Wei ZHOU, Qing ZHANG. Effect of bacterial enzyme complexes on the quality of silage made from Chinese medicine crop residues [J]. Acta Prataculturae Sinica, 2024, 33(10): 194-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||