Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 192-204.DOI: 10.11686/cyxb2023289
Received:
2023-08-10
Revised:
2023-10-09
Online:
2024-07-20
Published:
2024-04-08
Shou-xia XU. Meta-analysis of the effects of arbuscular mycorrhizae on the yield and quality of wheat[J]. Acta Prataculturae Sinica, 2024, 33(7): 192-204.
1 | Schiefer J, Lair G J, Blum W E H. Potential and limits of land and soil for sustainable intensification of European agriculture. Agriculture Ecosystems & Environment, 2016, 230: 283-293. |
2 | Bene C, Bakker D, Chavarro M J, et al. Global assessment of the impacts of COVID19 on food security. Global Food Security Agriculture Policy Economics and Environment, 2021, 31: 100575. |
3 | Anonymous. War in Ukraine and the challenge to global food security. Nature, 2022, 604(7905): 217-218. |
4 | Wu K, Wang S S, Song W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367(6478): 641. |
5 | Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342. |
6 | Finger R. Food security: Close crop yield gap. Nature, 2011, 480(7375): 39. |
7 | Kuila D, Ghosh S. Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as biofertilizer in sustainable agriculture. Current Research in Microbial Sciences, 2022, 3: 100107. |
8 | Youssef M A, Farag M I H. Coapplication of organic manure and biofertilizer to improve soil fertility and production of quinoa and proceeding Jew’s mallow crops. Journal of Soil Science and Plant Nutrition, 2021, 21(3): 2472-2488. |
9 | Chen Q L, Hu H W, He Z Y, et al. Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2021, 2(4): 233-240. |
10 | Smith S E, Read D J. Mycorrhizal symbiosis (The Third Edition). London, United Kingdom: Academic Press, 2008. |
11 | Jia Y Y, Zhang T, Walder F, et al. Can mycorrhizal fungi alleviate plant community instability caused by increased precipitation in arid ecosystems?Plant and Soil, 2022, 478(1/2): 559-577. |
12 | Lin G, McCormack M L, Guo D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. Journal of Ecology, 2015, 103(5): 1224-1232. |
13 | Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6(5): 388-391. |
14 | Liang Y, Guo L D, Ma K P. The role of mycorrhizal fungi in ecosystems. Acta Phytoecologica Sinica, 2002, 26(6): 739-745. |
梁宇, 郭良栋, 马克平. 菌根真菌在生态系统中的作用. 植物生态学报, 2002, 26(6): 739-745. | |
15 | Wu S, Shi Z, Chen X, et al. Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: A meta-analysis. PeerJ, 2022, 10: 12861. |
16 | Rillig M C, Aguilar-Trigueros C A, Camenzind T, et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist, 2019, 222(3): 1171-1175. |
17 | Bona E, Cantamessa S, Massa N, et al. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: A field study. Mycorrhiza, 2017, 27(1): 1-11. |
18 | An X X, Zhang Y Y, Ma C H, et al. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
安晓霞, 张盈盈, 马春晖, 等. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响. 草业学报, 2023, 32(6): 71-84. | |
19 | Zhang C X, Tian M H, Yang S, et al. Effects of arbuscular mycorrhizal fungi inoculant diversity on yield, phosphorus and potassium uptake of maize in acidic soil. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910. |
张晨曦, 田明慧, 杨硕, 等. 酸性土壤中丛枝菌根真菌菌剂多样性对玉米产量及其磷钾吸收的影响. 中国农业科学, 2022, 55(15): 2899-2910. | |
20 | Zhang S, Lehmann A, Zheng W, et al. Arbuscular mycorrhizal fungi increase grain yields: A meta analysis. New Phytologist, 2019, 222(1): 543-555. |
21 | Yan M J, Bu C L, Huang G Q, et al. Positive effects of arbuscular mycorrhizal fungi (AMF) on the aboveground part of Morus alba. Plant Physiology Journal, 2020, 56(12): 2647-2654. |
晏梅静, 补春兰, 黄盖群, 等. 丛枝菌根真菌对桑树(Morus alba)地上部分的促进作用. 植物生理学报, 2020, 56(12): 2647-2654. | |
22 | Qu M H, Yu Y C, Wang J, et al. Effects of arbuscular mycorrhizal fungi on biomass distribution and root architecture characters of Zenia insignis seedlings in karst soil. Chinese Journal of Ecology, 2021, 40(3): 766-776. |
屈明华, 俞元春, 王佳, 等. 喀斯特土壤条件下丛枝菌根真菌侵染对任豆幼苗生物量分配和根系结构特征的影响. 生态学杂志, 2021, 40(3): 766-776. | |
23 | Luo M, Shi Z, Yang S, et al. Mycorrhizal types regulated the responses of biomass in different plant organs to N addition. Agronomy, 2022, 12: 2357. |
24 | Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. |
25 | Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology? Science, 2020, 367(6480): 867. |
26 | Kapulnik Y, Kushnir U. Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhiza fungi. Euphytica, 1991, 56: 27-36. |
27 | Lehnert H, Serfling A, Enders M, et al. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). New Phytologist, 2017, 215(2): 779-791. |
28 | De Vita P, Avio L, Sbrana C, et al. Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat.Scientific Reports, 2018, 8(1): 1-12. |
29 | Zhang H, Zhong X, Li S Z, et al. Responses of genes involved in mycorrhizal symbiosis to arbuscular mycorrhizal colonization in different wheat cultivars. Soil and Fertilizer Sciences in China, 2022(11): 199-211. |
张慧, 钟雄, 李素珍, 等. 菌根共生参与基因对不同品种小麦菌根侵染的响应. 中国土壤与肥料, 2022(11): 199-211. | |
30 | Mathur S, Tomar R S, Jajoo A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 2019, 139: 227-238. |
31 | Gupta S, Thokchom S D, Kapoor R. Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Frontiers in Plant Science, 2021, 12: 640379. |
32 | Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta analysis of context dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. |
33 | Van Houwelingen H C, Arends L R, Stijnen T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 2002, 21(4): 589-624. |
34 | Viechtbauer W. Conducting Meta-analyses in R with the metafor package. Journal of Statistical Software, 2010, 36(3): 1-48. |
35 | Wu F Y, Luo W Q, Xing W J, et al. Effects of arbuscular mycorrhizal fungi on accumulation and translocation of selenium in winter wheat. Journal of the Science of Food and Agriculture, 2022, 102(14): 6481-6490. |
36 | Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza, 2016, 26(3): 209-214. |
37 | Renaut S, Daoud R, Masse J, et al. Inoculation with Rhizophagus irregularis does not alter arbuscular mycorrhizal fungal community structure within the roots of corn, wheat, and soybean crops. Microorganisms, 2020, 8(1): 83. |
38 | Zhang X L, Li X L, He T Q, et al. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, 2021, 47(8): 1603-1615. |
张学林, 李晓立, 何堂庆, 等. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47(8): 1603-1615. | |
39 | Zhang S J, Wang L, Ma F, et al. Application of arbuscular mycorrhiza on promoting the growth of rice and reducing the usage of chemical fertilizer. Journal of Harbin Institute of Technology, 2010, 42(6): 958-962. |
张淑娟, 王立, 马放, 等. 丛枝菌根(AM)对水稻生长促进及化肥减量研究. 哈尔滨工业大学学报, 2010, 42(6): 958-962. | |
40 | Chen Z C, Shi Z Y, Tian C Y, et al. Effects of arbuscular mycorrhizal fungal inoculation on growth and nutrient uptake of two ephemeral plants. Chinese Journal of Ecology, 2008, 32(3): 648-653. |
陈志超, 石兆勇, 田长彦, 等. 接种AM真菌对短命植物生长发育及矿质养分吸收的影响. 植物生态学报, 2008, 32(3): 648-653. | |
41 | Tan Q Y, Wu C B, He Y J, et al. Competition regulating strategy of nutrient allocation by arbuscular mycorrhizae affecting Eupatorium adenophorum and Artemisia annua seedlings on the aboveground and the belowground. Acta Ecologica Sinica, 2021, 41(14): 5804-5813. |
谭淇毓, 吴长榜, 何跃军, 等. 丛枝菌根对紫茎泽兰和黄花蒿地上地下养分分配的竞争调控策略. 生态学报, 2021, 41(14): 5804-5813. | |
42 | Wei Y, Wang X Y, Li Y D, et al. Stress tolerance signal transfer by arbuscular mycorrhizal fungi in a whiteclover-perennial ryegrass mixture. Acta Prataculturae Sinica, 2020, 29(4): 138-146. |
魏勇, 王晓瑜, 李应德, 等. AM真菌在白三叶-黑麦草体系中对抗逆信号的传导作用. 草业学报, 2020, 29(4): 138-146. | |
43 | Shi J, Zhao B, Zheng S, et al. A phosphate starvation responsecentered network regulates mycorrhizal symbiosis. Cell, 2021, 184(22): 5527-5540. |
44 | Ding G L, Sun Y Y, Wang X Y, et al. Effects of different cultivation media and nitrogen on the growth and quality of mycorrhizal sweet corn. Soil and Fertilizer Sciences in China, 2023(2): 138-145. |
丁国丽, 孙颖盈, 王欣雨, 等. 不同栽培介质及氮素对菌根化甜玉米生长及品质的影响. 中国土壤与肥料, 2023(2): 138-145. | |
45 | Shi Z Y, Mickan B, Feng G, et al. Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. Journal of Arid Land, 2014, 7(3): 414-420. |
46 | Wu S, Shi Z, Huang M, et al. Effects of arbuscular mycorrhizal fungi on leaf N∶P∶K stoichiometry in agroecosystem. Agronomy, 2023, 13: 358. |
47 | Wei W J, Shi Z Y, Zhang M G, et al. Response to fertilization of leaf functional traits of grassland plants with different mycorrhizal status. Acta Prataculturae Sinica, 2023, 32(10): 104-114. |
韦文敬, 石兆勇, 张梦歌, 等. 基于数据库的菌根与施肥对草地植物叶片性状影响的分析. 草业学报, 2023, 32(10): 104-114. | |
48 | An X X, Li X, Cao G H, et al. Effects of arbuscular mycorrhizal fungi and phosphorus fertilizer interaction on the aboveground biomass and nutritional quality of alfalfa. Chinese Journal of Grassland, 2023, 45(4): 90-99. |
安晓霞, 李想, 曹冠华, 等. 菌磷互作对紫花苜蓿地上生物量及营养品质的影响. 中国草地学报, 2023, 45(4): 90-99. | |
49 | Xie W, Hao Z P, Zhang X, et al. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks. Chinese Journal of Plant Ecology, 2022, 46(5): 493-515. |
谢伟, 郝志鹏, 张莘, 等. 丛枝菌根网络介导的植物间信号交流研究进展及展望. 植物生态学报, 2022, 46(5): 493-515. |
[1] | Jun-hao ZHANG, Xue-ru CHAI, Song-ke MA, Dong-xia ZHANG, Jing ZHANG, Chang-chang QIAO, Shuang LI, Ming HUANG, He-zheng WANG. Effects of straw return combined with phosphorus fertilizer on carbon assimilate accumulation in dryland wheat and the associated physiological mechanisms [J]. Acta Prataculturae Sinica, 2024, 33(6): 89-104. |
[2] | Jian-feng NING, Tong LI, Rui-kun ZENG, Jian-wu YAO, Yong CHEN, Zi-wei LIANG. Soil fertility in perennial vegetable fields in the latosolic red soil zone of the Pearl River Delta [J]. Acta Prataculturae Sinica, 2024, 33(5): 25-40. |
[3] | Ding YANG, Jiao JIN, Jing-hao LI, Zhi-peng WANG, Yuan-bo HAO, Ning DING, Lu CHEN. Evaluation of rodent control quality in grassland in China based on an entropy weight TOPSIS model [J]. Acta Prataculturae Sinica, 2024, 33(4): 221-230. |
[4] | Hong-fei LI, Bang-wei ZHOU, Miao ZHANG, Shu-nan SHI, Zhi-jian LI. Adaptability evaluation of different oat varieties introduced in the Hulunbuir region [J]. Acta Prataculturae Sinica, 2024, 33(4): 60-72. |
[5] | Hai-wang YUE, Jian-wei WEI, Guang-cai WANG, Peng-cheng LIU, Shu-ping CHEN, Jun-zhou BU. Comprehensive evaluation of silage maize hybrids in the Huanghuaihai plain based on mega-environments delineated using envirotyping techniques [J]. Acta Prataculturae Sinica, 2024, 33(3): 120-138. |
[6] | Yao SU, Su-mei YE, Meng-xing LU, Yue MA, Yu-bao WANG, Shan-shan WANG, Ru-shan CHAI, Xin-xin YE, Zhen ZHANG, Chao MA. Effects of straw return on farmland weed abundance and diversity: A meta-analysis [J]. Acta Prataculturae Sinica, 2024, 33(3): 150-160. |
[7] | Rui ZHANG, Xue-jiao AN, Jian-ye LI, Zeng-kui LU, Chun-e NIU, Zhen-fei XU, Jin-xia ZHANG, Zhi-guang GENG, Yao-jing YUE, Bo-hui YANG. Comparative analysis of growth performance, meat productivity, and meat quality in Hu sheep and its hybrids [J]. Acta Prataculturae Sinica, 2024, 33(3): 186-197. |
[8] | Feng-shuo ZHANG, Qiu-rong JI, Ting-li HE, Qu-yang-ang-mao SU, Zhi-you WANG, Sheng-zhen HOU, lin-Sheng GUI. Effect of different ratios of amino acids in low-protein diets on muscle quality, amino acid and fatty acid composition, and vitamin and mineral contents of the longissimus dorsi muscle in Tibetan sheep [J]. Acta Prataculturae Sinica, 2024, 33(3): 198-208. |
[9] | Meng-ge ZHOU, Yong-hua LI. Establishment and application of a forage product quality and safety evaluation index system based on a ‘DPSIR’ model [J]. Acta Prataculturae Sinica, 2024, 33(2): 13-27. |
[10] | Yong-liang ZHANG, Ze TENG, Feng HAO, Tie-feng YU, Yu-xia ZHANG. Effects of different mixed sowing patterns and sowing ratios of alfalfa on grassland productivity and community stability in grass-legume mixtures [J]. Acta Prataculturae Sinica, 2024, 33(2): 185-197. |
[11] | Rui ZHANG, Chong-yang HAN, Jia-bang CAI, Yang WANG, Lin-kai HUANG, Xin-quan ZHANG, Gang NIE. Evaluation of production performance of six Festuca arundinacea varieties in the Chengdu Plain [J]. Acta Prataculturae Sinica, 2024, 33(1): 138-148. |
[12] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
[13] | Jia-min ZHANG, Hao GUAN, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Shi-yong CHEN, Yong-mei JIANG, Li GAN, Qing-ping ZHOU, Li-xue YANG. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration [J]. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
[14] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[15] | Yong-hong SHI, Peng GAO, Zhi-hong FANG, Xiang ZHAO, Wei HAN, Jiang-ming WEI, Lin LIU, Jin-zhen LI. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars [J]. Acta Prataculturae Sinica, 2023, 32(9): 130-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||