Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 128-142.DOI: 10.11686/cyxb2023236
Qiang LI(), Fan KANG, Qing XUE, Bin CHEN, Ying SUN()
Received:
2023-07-12
Revised:
2023-09-21
Online:
2024-05-20
Published:
2024-02-03
Contact:
Ying SUN
Qiang LI, Fan KANG, Qing XUE, Bin CHEN, Ying SUN. Functional analysis of the R2R3-MYB transcription factor CiMYB4 of Chrysanthemum indicum var. aromaticum in response to cadmium stress[J]. Acta Prataculturae Sinica, 2024, 33(5): 128-142.
引物名称Primer name | 正向引物序列Forward primer sequence (5′→3′) | 反向引物序列Reverse primer sequence (5′→3′) |
---|---|---|
NtPCS1 | TGGTCTTGAATGCCCTTGC | GAGGCTCACAACAGTCCAACA |
NtGSH1 | TGGGTTTGAGCAGTATGTGG | GCTGGTTGGCACCTTATTC |
NtABCC1 | GCTTGATGCTGGACAGGTTG | TAAATACTGGGCATTTGCGGC |
NtHMA3 | AGGGCAAGTCACAAGGCTAC | CAGCCCAGACCGTTGAATCT |
HSC70-1 | AGGTGGAGACATGGGTGGTG | TCATTAGGCACACAGATCTCTG |
CiPCS1 | TTTGGGAAGGTTGTGTGCCT | CCCTGCCAGCATGATAACCA |
CiGSH1 | CCAGCCAAAATGGGAACGGA | GCAAACAGTGCCGTAGCAAT |
CiABCC1 | TCGTCTAAGTGGCTATGCGG | AAGGCCACAAACCTCCCAAA |
CiHMA3 | TCGTCTAAGTGGCTATGCGG | AAGGCCACAAACCTCCCAAA |
EF1a | TTTTGGTATCTGGTCCTGGAG | CCATTCAAGCGACAGACTCA |
Table 1 The primers
引物名称Primer name | 正向引物序列Forward primer sequence (5′→3′) | 反向引物序列Reverse primer sequence (5′→3′) |
---|---|---|
NtPCS1 | TGGTCTTGAATGCCCTTGC | GAGGCTCACAACAGTCCAACA |
NtGSH1 | TGGGTTTGAGCAGTATGTGG | GCTGGTTGGCACCTTATTC |
NtABCC1 | GCTTGATGCTGGACAGGTTG | TAAATACTGGGCATTTGCGGC |
NtHMA3 | AGGGCAAGTCACAAGGCTAC | CAGCCCAGACCGTTGAATCT |
HSC70-1 | AGGTGGAGACATGGGTGGTG | TCATTAGGCACACAGATCTCTG |
CiPCS1 | TTTGGGAAGGTTGTGTGCCT | CCCTGCCAGCATGATAACCA |
CiGSH1 | CCAGCCAAAATGGGAACGGA | GCAAACAGTGCCGTAGCAAT |
CiABCC1 | TCGTCTAAGTGGCTATGCGG | AAGGCCACAAACCTCCCAAA |
CiHMA3 | TCGTCTAAGTGGCTATGCGG | AAGGCCACAAACCTCCCAAA |
EF1a | TTTTGGTATCTGGTCCTGGAG | CCATTCAAGCGACAGACTCA |
项目 Item | 株系 Strain | 株高 Plant height (cm) | 根长 Root length (cm) | 茎粗 Stem diameter (cm) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 干重Dry weight (g·plant-1) | |
---|---|---|---|---|---|---|---|---|
地上部Above-ground | 根Root | |||||||
对照组 Control | WT1 | 10.24±0.41a | 5.50±0.18a | 0.37±0.06a | 8.83±0.65a | 4.57±0.11a | 0.87±0.16a | 0.21±0.02a |
S1 | 10.09±0.25a | 5.51±0.27a | 0.39±0.03a | 9.03±0.85a | 4.60±0.15a | 0.85±0.12a | 0.20±0.06a | |
S2 | 10.75±0.59a | 5.92±0.64a | 0.40±0.03a | 8.97±0.32a | 4.63±0.27a | 0.87±0.08a | 0.18±0.03a | |
S3 | 10.32±0.56a | 5.51±0.40a | 0.38±0.02a | 8.94±0.68a | 4.45±0.12a | 0.86±0.23a | 0.19±0.02a | |
处理组 Treatment | WT1 | 9.25±0.26b | 4.62±0.25c | 0.33±0.04b | 7.85±1.05b | 3.65±0.14b | 0.75±0.14b | 0.14±0.02a |
S1 | 9.80±0.30ab | 5.10±0.53b | 0.37±0.02a | 8.48±0.57a | 4.14±0.17a | 0.81±0.08ab | 0.15±0.04a | |
S2 | 10.24±0.42a | 5.59±0.22a | 0.39±0.05a | 8.54±0.49a | 4.28±0.30a | 0.83±0.15ab | 0.17±0.02a | |
S3 | 9.83±0.50ab | 5.11±0.32b | 0.38±0.02a | 8.62±0.82a | 3.97±0.15a | 0.83±0.09a | 0.16±0.05a |
Table 2 Effects of Cd stress on the growth of CiMYB4 transgenic tobacco
项目 Item | 株系 Strain | 株高 Plant height (cm) | 根长 Root length (cm) | 茎粗 Stem diameter (cm) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 干重Dry weight (g·plant-1) | |
---|---|---|---|---|---|---|---|---|
地上部Above-ground | 根Root | |||||||
对照组 Control | WT1 | 10.24±0.41a | 5.50±0.18a | 0.37±0.06a | 8.83±0.65a | 4.57±0.11a | 0.87±0.16a | 0.21±0.02a |
S1 | 10.09±0.25a | 5.51±0.27a | 0.39±0.03a | 9.03±0.85a | 4.60±0.15a | 0.85±0.12a | 0.20±0.06a | |
S2 | 10.75±0.59a | 5.92±0.64a | 0.40±0.03a | 8.97±0.32a | 4.63±0.27a | 0.87±0.08a | 0.18±0.03a | |
S3 | 10.32±0.56a | 5.51±0.40a | 0.38±0.02a | 8.94±0.68a | 4.45±0.12a | 0.86±0.23a | 0.19±0.02a | |
处理组 Treatment | WT1 | 9.25±0.26b | 4.62±0.25c | 0.33±0.04b | 7.85±1.05b | 3.65±0.14b | 0.75±0.14b | 0.14±0.02a |
S1 | 9.80±0.30ab | 5.10±0.53b | 0.37±0.02a | 8.48±0.57a | 4.14±0.17a | 0.81±0.08ab | 0.15±0.04a | |
S2 | 10.24±0.42a | 5.59±0.22a | 0.39±0.05a | 8.54±0.49a | 4.28±0.30a | 0.83±0.15ab | 0.17±0.02a | |
S3 | 9.83±0.50ab | 5.11±0.32b | 0.38±0.02a | 8.62±0.82a | 3.97±0.15a | 0.83±0.09a | 0.16±0.05a |
株系 Strain | 根系镉含量 Cd2+ content in the root (mg·kg-1) | 地上部镉含量 Cd2+ content in the shoot (mg·kg-1) | 根系富集系数 Bioconcentration factor of the root | 地上部富集系数 Bioconcentration factor of the shoot | 转运系数 Translocation factor |
---|---|---|---|---|---|
WT1 | 33.05±2.28b | 45.55±3.41c | 1.65±0.11c | 2.28±0.17b | 1.38±0.02b |
S1 | 67.85±4.85a | 112.86±3.28a | 3.39±0.24b | 5.64±0.16b | 1.64±0.10a |
S2 | 73.95±7.60a | 122.73±5.91a | 3.70±0.38a | 6.14±0.30a | 1.66±0.11a |
S3 | 60.14±3.60a | 96.86±5.86b | 3.01±0.18c | 4.84±0.29a | 1.61±0.01b |
Table 3 Effects of Cd stress on Cd2+ content of root, stem and leaf, bioconcentration factor and translocation factor of CiMYB4 transgenic tobacco
株系 Strain | 根系镉含量 Cd2+ content in the root (mg·kg-1) | 地上部镉含量 Cd2+ content in the shoot (mg·kg-1) | 根系富集系数 Bioconcentration factor of the root | 地上部富集系数 Bioconcentration factor of the shoot | 转运系数 Translocation factor |
---|---|---|---|---|---|
WT1 | 33.05±2.28b | 45.55±3.41c | 1.65±0.11c | 2.28±0.17b | 1.38±0.02b |
S1 | 67.85±4.85a | 112.86±3.28a | 3.39±0.24b | 5.64±0.16b | 1.64±0.10a |
S2 | 73.95±7.60a | 122.73±5.91a | 3.70±0.38a | 6.14±0.30a | 1.66±0.11a |
S3 | 60.14±3.60a | 96.86±5.86b | 3.01±0.18c | 4.84±0.29a | 1.61±0.01b |
项目 Item | 株系 Strain | 株高 Plant height (cm) | 根长 Root length (cm) | 茎粗 Stem diameter (cm) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 干重Dry weight (g·plant-1) | |
---|---|---|---|---|---|---|---|---|
地上部 Above-ground | 根 Root | |||||||
对照组 Control | OE-2 | 16.02±0.85a | 11.54±0.79a | 0.21±0.02a | 3.53±0.36a | 2.79±0.17a | 0.95±0.08a | 0.36±0.04a |
OE-3 | 15.86±0.60a | 12.33±1.25a | 0.19±0.01a | 3.65±0.57a | 2.93±0.43a | 0.94±0.05a | 0.37±0.04a | |
WT2 | 16.36±0.44a | 11.46±0.55a | 0.22±0.02a | 2.58±0.23b | 2.10±0.23b | 0.90±0.04a | 0.37±0.05a | |
Ri-1 | 15.86±0.65a | 11.54±0.82a | 0.19±0.02a | 2.60±0.26b | 2.11±0.41b | 0.90±0.09a | 0.37±0.04a | |
Ri-2 | 15.87±0.95a | 11.79±0.78a | 0.20±0.01a | 2.55±0.14b | 2.08±0.13b | 0.91±0.11a | 0.38±0.04a | |
处理组 Treatment | OE-2 | 15.42±1.29a | 10.65±0.81ab | 0.16±0.02ab | 3.27±0.37a | 2.45±0.12a | 0.87±0.02ab | 0.32±0.03ab |
OE-3 | 15.50±0.62a | 11.40±0.55a | 0.17±0.01a | 3.39±0.47a | 2.64±0.44a | 0.88±0.13a | 0.33±0.04a | |
WT2 | 15.06±1.21b | 9.47±0.62bc | 0.15±0.01ab | 2.08±0.19b | 1.69±0.31b | 0.84±0.01b | 0.30±0.03ab | |
Ri-1 | 14.76±0.36c | 9.51±0.47bc | 0.13±0.02bc | 1.98±0.22b | 1.54±0.27b | 0.80±0.06c | 0.26±0.04b | |
Ri-2 | 14.63±0.48c | 9.25±1.01c | 0.12±0.02c | 1.92±0.32b | 1.50±0.15b | 0.78±0.03c | 0.28±0.04ab |
Table 4 Effects of Cd stress on the growth of CiMYB4 transgenic C. indicum
项目 Item | 株系 Strain | 株高 Plant height (cm) | 根长 Root length (cm) | 茎粗 Stem diameter (cm) | 叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 干重Dry weight (g·plant-1) | |
---|---|---|---|---|---|---|---|---|
地上部 Above-ground | 根 Root | |||||||
对照组 Control | OE-2 | 16.02±0.85a | 11.54±0.79a | 0.21±0.02a | 3.53±0.36a | 2.79±0.17a | 0.95±0.08a | 0.36±0.04a |
OE-3 | 15.86±0.60a | 12.33±1.25a | 0.19±0.01a | 3.65±0.57a | 2.93±0.43a | 0.94±0.05a | 0.37±0.04a | |
WT2 | 16.36±0.44a | 11.46±0.55a | 0.22±0.02a | 2.58±0.23b | 2.10±0.23b | 0.90±0.04a | 0.37±0.05a | |
Ri-1 | 15.86±0.65a | 11.54±0.82a | 0.19±0.02a | 2.60±0.26b | 2.11±0.41b | 0.90±0.09a | 0.37±0.04a | |
Ri-2 | 15.87±0.95a | 11.79±0.78a | 0.20±0.01a | 2.55±0.14b | 2.08±0.13b | 0.91±0.11a | 0.38±0.04a | |
处理组 Treatment | OE-2 | 15.42±1.29a | 10.65±0.81ab | 0.16±0.02ab | 3.27±0.37a | 2.45±0.12a | 0.87±0.02ab | 0.32±0.03ab |
OE-3 | 15.50±0.62a | 11.40±0.55a | 0.17±0.01a | 3.39±0.47a | 2.64±0.44a | 0.88±0.13a | 0.33±0.04a | |
WT2 | 15.06±1.21b | 9.47±0.62bc | 0.15±0.01ab | 2.08±0.19b | 1.69±0.31b | 0.84±0.01b | 0.30±0.03ab | |
Ri-1 | 14.76±0.36c | 9.51±0.47bc | 0.13±0.02bc | 1.98±0.22b | 1.54±0.27b | 0.80±0.06c | 0.26±0.04b | |
Ri-2 | 14.63±0.48c | 9.25±1.01c | 0.12±0.02c | 1.92±0.32b | 1.50±0.15b | 0.78±0.03c | 0.28±0.04ab |
株系 Strain | 根系镉含量 Cd2+ content in the root (mg·kg-1) | 地上部镉含量 Cd2+ content in the shoot (mg·kg-1) | 根系富集系数 Bioconcentration factor of the root | 地上部富集系数 Bioconcentration factor of the shoot | 转运系数 Translocation factor |
---|---|---|---|---|---|
OE-2 | 1242.05±66.12b | 178.19±11.62ab | 24.84±1.32a | 3.56±0.23a | 0.14±0.01a |
OE-3 | 1384.30±86.35a | 204.55±5.77a | 27.69±1.73a | 4.09±0.11a | 0.15±0.01a |
WT2 | 1028.47±54.46c | 122.68±14.68b | 20.57±1.09b | 2.45±0.29b | 0.12±0.02a |
Ri-1 | 936.22±9.26cd | 115.45±8.63c | 17.92±0.62c | 2.31±0.17b | 0.13±0.02a |
Ri-2 | 754.78±28.56d | 98.72±8.72d | 15.10±0.58c | 1.97±0.19c | 0.13±0.01a |
Table 5 Effects of Cd stress on Cd2+ content of root, stem and leaf, bioconcentration factor and translocation factor of CiMYB4 transgenic C. indicum
株系 Strain | 根系镉含量 Cd2+ content in the root (mg·kg-1) | 地上部镉含量 Cd2+ content in the shoot (mg·kg-1) | 根系富集系数 Bioconcentration factor of the root | 地上部富集系数 Bioconcentration factor of the shoot | 转运系数 Translocation factor |
---|---|---|---|---|---|
OE-2 | 1242.05±66.12b | 178.19±11.62ab | 24.84±1.32a | 3.56±0.23a | 0.14±0.01a |
OE-3 | 1384.30±86.35a | 204.55±5.77a | 27.69±1.73a | 4.09±0.11a | 0.15±0.01a |
WT2 | 1028.47±54.46c | 122.68±14.68b | 20.57±1.09b | 2.45±0.29b | 0.12±0.02a |
Ri-1 | 936.22±9.26cd | 115.45±8.63c | 17.92±0.62c | 2.31±0.17b | 0.13±0.02a |
Ri-2 | 754.78±28.56d | 98.72±8.72d | 15.10±0.58c | 1.97±0.19c | 0.13±0.01a |
1 | Satarug S, Garrett S H, Sens M A, et al. Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 2010, 118(2): 182-190. |
2 | Raza A, Habib M, Kakavand S N, et al. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology, 2020, 9(7): 177. |
3 | Liu J X, Sun Z Y, Gou P, et al. Response of photosynthetic physiology of perennial ryegrass (Lolium perenne) to Cd2+ stress. Acta Prataculturae Sinica, 2012, 21(3): 191-197. |
刘俊祥, 孙振元, 勾萍, 等. 镉胁迫下多年生黑麦草的光合生理响应. 草业学报, 2012, 21(3): 191-197. | |
4 | Wang F, Kong W, Wong G, et al. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics, 2016, 291(4): 1545-1559. |
5 | Shen X J, Wang Y Y, Zhang Y X, et al. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. International Journal of Molecular Sciences, 2018, 19(12): 3958. |
6 | Liu C, Zhang Y, Tan Y, et al. CRISPR/Cas9-mediated SlMYBS2 mutagenesis reduces tomato resistance to Phytophthora infestans. International Journal of Molecular Sciences, 2021, 22(21): 11423. |
7 | Yang A, Dai X, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556. |
8 | Wei Q, Chen R, Wei X, et al. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21(1): 1-16. |
9 | Yang J, Zhang B, Gu G, et al. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genomics, 2022, 23(1): 432. |
10 | Wang Y, Wu J, Li J, et al. The R2R3-MYB transcription factor ThRAX2 recognized a new element MYB-T (CTTCCA) to enhance cadmium tolerance in Tamarix hispida. Plant Science, 2023, 329: 111574. |
11 | Zhu S, Shi W, Jie Y, et al. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation. PLoS One, 2020, 15(5): e0233375. |
12 | Agarwal P, Mehali M, Banerjee S, et al. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Science, 2020, 297: 110501. |
13 | Zhang P, Wang R, Ju Q, et al. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 2019, 180(1): 529-542. |
14 | Wu X S, Xu J, Zhang T J, et al. Research progress in chemical constituents of Chrysanthemum indicum and their quality assessment. Chinese Traditional and Herbal Drugs, 2015, 46(3): 443-452. |
吴雪松, 许浚, 张铁军, 等. 野菊的化学成分及质量评价研究进展. 中草药, 2015, 46(3): 443-452. | |
15 | Liu X J, Li Y, Su S L, et al. Status and prospects of resource utilization of non-medicinal parts of medicinal Chrysanthemum morifolium. Chinese Traditional and Herbal Drugs, 2020, 51(15): 4075-4081. |
刘夏进, 李懿, 宿树兰, 等. 药用菊非药用部位的资源化利用现状与展望. 中草药, 2020, 51(15): 4075-4081. | |
16 | Wang J J. Cloning of CiMYB4 Chrysanthemum indicum var. aromaticum and genetic transformation of Chrysanthemum indicum. Harbin: Northeast Forestry University, 2019. |
王霁佳. 神农香菊CiMYB4基因的克隆及对野菊的遗传转化. 哈尔滨: 东北林业大学, 2019. | |
17 | Li M Y. Verification of drought tolerance function of CiMYB4 gene of Chrysanthemum indicum var. aromaticum and construction of RNAi vector. Harbin: Northeast Forestry University, 2020. |
李梦雨. 神农香菊CiMYB4基因抗旱性功能验证及RNAi载体构建. 哈尔滨: 东北林业大学, 2020. | |
18 | Li H S. Principles and techniques of plant physiological biochemical experiment. Bejing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
19 | Zhang X Y, Li L G, Guo J L, et al. Comparison and analysis of isolation methods of photosynthetic pigment of leaves in Cerasus humilis. Northern Horticulture, 2021(9): 104-110. |
张晓艳, 李连国, 郭金丽, 等. 欧李叶片光合色素提取方法的比较分析. 北方园艺, 2021(9): 104-110. | |
20 | Wang A, Wang M, Liao Q, et al. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environmental Science and Pollution Research, 2016, 23(6): 5410-5419. |
21 | Wang R, Xu Y L, Li Z F, et al. Identification and validation of tobacco reference genes for qRT-PCR based on microarray data. Tobacco Science & Technology, 2015, 48(2): 1-6. |
王燃, 许亚龙, 李泽锋, 等. 基于芯片数据的烟草qRT-PCR内参基因鉴定与验证. 烟草科技, 2015, 48(2): 1-6. | |
22 | Gu C, Chen S, Liu Z, et al. Reference gene selection for quantitative real-time PCR in Chrysanthemum subjected to biotic and abiotic stress. Molecular Biotechnology, 2011, 49(2): 192-197. |
23 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
24 | He L X, Huang Y X, Huang C Y, et al. Physiological response of Chamaecrista rotundifolia to cadmium exposure. Acta Prataculturae Sinica, 2016, 25(2): 198-204. |
何梨香, 黄运湘, 黄楚瑜, 等. 圆叶决明对镉胁迫的生理响应. 草业学报, 2016, 25(2): 198-204. | |
25 | Hu B Y, Fang Z G, Lou L Q, et al. Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum virgatum) cultivars in the seedling stage. Acta Prataculturae Sinica, 2019, 28(1): 27-36. |
胡冰钰, 方志刚, 娄来清, 等. 14份柳枝稷种质资源苗期耐镉性综合评价. 草业学报, 2019, 28(1): 27-36. | |
26 | Zhang C, Chen Y, Xu W, et al. Resistance of alfalfa and Indian mustard to Cd and the correlation of plant Cd uptake and soil Cd form. Environmental Science and Pollution Reseach, 2019, 26(14): 13804-13811. |
27 | Sun Y B, Zhou Q X, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 2009, 161(2/3): 808-814. |
28 | Mourato M, Reis R, Martins L L. Characterization of plant antioxidative system in response to abiotic stresses: A focus on heavy metal toxicity. Advances in Selected Plant Physiology Aspects, 2012, 12: 1-17. |
29 | Liu X S, Sun Y L, An X X, et al. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
刘选帅, 孙延亮, 安晓霞, 等. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响. 草业学报, 2023, 32(3): 189-199. | |
30 | Zhao C D, Liu Y C, Yang Z, et al. Effects of different gradient phosphorus additions on photosynthetic characteristics of Vitex negundo seedlings. Journal of West China Forestry Science, 2020, 49(6): 94-99. |
赵琛迪, 刘雅辰, 杨子, 等. 不同磷添加梯度对荆条幼苗光合特性的影响. 西部林业科学, 2020, 49(6): 94-99. | |
31 | Xin J P, Li W M, Qi X, et al. Effects of Cd on antioxidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata. Acta Prataculturae Sinica, 2018, 27(10): 23-34. |
辛建攀, 李文明, 祁茜, 等. 镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响. 草业学报, 2018, 27(10): 23-34. | |
32 | Jia L, Liu Z, Chen W, et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. Journal of Plant Growth Regulation, 2015, 34(1): 13-21. |
33 | An M J, Wang H J, Fan H, et al. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. Journal of Plant Growth Regulation, 2019, 38: 1196-1205. |
34 | Sun J Y, Li Q, He M, et al. Bioaccumulation characteristics and physiological response of different ground-cover Chrysanthemum cultivars to cadmium. Journal of Jilin Agricultural University, 2018, 40(1): 92-98. |
孙婕妤, 李强, 何淼, 等. 不同地被菊品种对镉的富集特性及生理响应. 吉林农业大学学报, 2018, 40(1): 92-98. | |
35 | Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant. Acta Ecologica Sinica, 2015, 35(23): 7921-7929. |
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制. 生态学报, 2015, 35(23): 7921-7929. | |
36 | Zhang X Y, Ye Z B, Zhang Y Y. Advances in physiological and molecular mechanism of plant response to cadmium stress. Plant Physiology Journal, 2021, 57(7): 14. |
张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展. 植物生理学报, 2021, 57(7): 14. | |
37 | Yamazaki S, Ueda Y, Mukai A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance. Plant Direct, 2018, 2(1): e00034. |
38 | Zhu S, Shi W, Jie Y. Overexpression of BnPCS1, a novel phytochelatin synthase gene from ramie (Boehmeria nivea) enhanced Cd tolerance, accumulation, and translocation in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12: 1169. |
39 | Yang Z, Yang F, Liu J L, et al. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment, 2022, 809: 151099. |
40 | Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2mediate tolerance to cadmium and mercury. The Plant Journal, 2012, 69(2): 278-288. |
41 | Liu H, Zhao H, Wu L, et al. Heavy metal ATPase 3 (HMA3) confers cadmium hyper tolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytologist, 2017, 215(2): 687-698. |
[1] | Jin-xiu HAN, Bin CHEN, Yan-ting LIU, Ru MENG, Li-yan JIN, Miao HE. Identification of CibHLH1 and its effect on photosynthetic characteristics in Chrysanthemum indicum var. aromaticum [J]. Acta Prataculturae Sinica, 2024, 33(1): 89-101. |
[2] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
[3] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[4] | DONG Ji-Fei, ZHANG Fan, HU Yu-Han, LI Jun-Cheng, LI Wei, WANG Xian-Shu. Effect of nitrogen supplementation on growth of white clover under cadmium stress and alleviation of cadmium toxicity [J]. Acta Prataculturae Sinica, 2017, 26(9): 83-91. |
[5] | WANG Yu-Ping, CHANG Hong, LI Cheng, LIANG Yan-Chao, LU Xiao. Effects of exogenous Ca2+ on growth, photosynthetic characteristics and photosystem II function of maize seedlings under cadmium stress [J]. Acta Prataculturae Sinica, 2016, 25(5): 40-48. |
[6] | LI Xi-Ming, SONG Gui-Long. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress [J]. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
[7] | HE Li-Xiang, HUANG Yun-Xiang, HUANG Chu-Yu, LIU Li-Shan, LONG Xiang, LUO Lin. Physiological response of Chamaecrista rotundifolia to cadmium exposure [J]. Acta Prataculturae Sinica, 2016, 25(2): 198-204. |
[8] | HAN Bao-he,ZHU Hong. Effects of cadmium stress on accumulation ability, microstructure and physiological property in leaves of Trifolium repens [J]. Acta Prataculturae Sinica, 2014, 23(6): 167-175. |
[9] |
LIU Shi-liang, SHI Xin-sheng, PAN Yuan-zhi, DING Ji-jun, HE Yang, WANG Li.
Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus [J]. Acta Prataculturae Sinica, 2013, 22(3): 154-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||