Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 203-218.DOI: 10.11686/cyxb2023276
Guo-qiang WU(), Zu-long YU, Ming WEI
Received:
2023-08-05
Revised:
2023-09-25
Online:
2024-06-20
Published:
2024-03-20
Contact:
Guo-qiang WU
Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress[J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218.
属 Genus | 种 Species | 功能 Function | 参考文献 References |
---|---|---|---|
芽孢杆菌属Bacillus | 枯草芽孢杆菌B. subtilis | 诱导植物抗性,调节植物激素。Induce plant resistance, and regulate plant hormone. | [ |
假单胞菌属Pseudomonas | 固氮假单胞菌Pseudomonas azotoformans | 产胞外多糖、吲哚乙酸和可溶性磷酸三钙。Production of extracellular polysaccharides, indoleacetic acid and soluble tricalcium phosphate. | [ |
固氮螺旋菌属Azospirillum | 巴西固氮螺菌Azospirillum brasilense | 固氮,产铁载体、胞外多糖、ACC脱氨酶、吲哚乙酸和水解酶。Nitrogen fixation, production of iron carrier, extracellular polysaccharide, ACC deaminase, indoleacetic acid and hydrolase. | [ |
固氮菌属Azotobacter | 贝氏固氮菌Azotobacter beijerinckii | 固氮,改良土壤,产生长素。Nitrogen fixation, soil improvement, and production of auxin. | [ |
克雷伯菌属Klebsiella | 肺炎克雷伯菌Klebsiella pneumoniae | 固氮,产氨、铁载体和吲哚乙酸。Nitrogen fixation, production of ammonia, iron carrier and indole acetic acid. | [ |
肠杆菌属Enterobacter | 气肠杆菌Enterobacter aerogenes | 固氮、溶磷,产生长素、ACC脱氨酶和铁载体。Nitrogen fixation, phosphorus dissolution, production of auxin, ACC deaminase, and iron carrier. | [ |
节杆菌属Arthrobacter | 滋养节杆菌Arthrobacter pascens | 合成吲哚乙酸。Synthesis of indole acetic acid. | [ |
伯克霍尔德氏菌属Burkhoolderia | 越南伯克霍尔德菌Burkholderia vietnamiensis | 固氮。Nitrogen fixation. | [ |
类芽孢杆菌属Paenibacillus | 胶质类芽孢杆菌Paenibacillus mucilaginosus | 形成生物膜、溶磷和产生长素。Forming biofilm, phosphorus dissolution and production of auxin. | [ |
沙雷氏菌属Serratia | 格氏沙雷氏菌Serratia grimesii | 固氮、溶磷、产铁载体和生长素。Nitrogen fixation, phosphorus dissolution, production of iron carrier and auxin. | [ |
无色杆菌属Achromobacter | 木糖无色杆菌Achromobacter xylosoxidans | 产ACC脱氨酶。Production of ACC deaminase. | [ |
根瘤菌属Rhizobia | 阿拉米根瘤菌Rhizobium alamii | 产胞外多糖。Production of extracellular polysaccharide. | [ |
不动杆菌属Acinetobacter | 约氏不动杆菌Acinetobacter johnsonii | 调节土壤酶活性,改善土壤。Regulating soil enzyme activity and improving soil quality. | [ |
产碱杆菌属Alcaligenes | 粪产碱杆菌Alcaligenes faecalis | 产生长素,溶磷,改善营养吸收。Production of auxin, phosphorus dissolution, and improve nutrient absorption. | [ |
链霉菌属Streptomyces | 微黄链霉菌Streptomyces microflavus | 提高养分吸收。Improve nutrient absorption. | [ |
气单胞菌属Aeromonas | 豚鼠气单胞菌Aeromonas caviae | 改良土壤,促进营养吸收。Improve soil and promote nutrient absorption. | [ |
泛菌属Pantoea | 成团泛菌Pantoea agglomerans | 固氮、溶磷、产生长素。Nitrogen fixation, phosphorus dissolution, and production of auxin. | [ |
微球菌属Micrococcus | 云南微球菌Micrococcus yunnanensis | 提高营养元素的吸收。Improve the absorption of nutrients. | [ |
Table 1 Types and functions of PGPR
属 Genus | 种 Species | 功能 Function | 参考文献 References |
---|---|---|---|
芽孢杆菌属Bacillus | 枯草芽孢杆菌B. subtilis | 诱导植物抗性,调节植物激素。Induce plant resistance, and regulate plant hormone. | [ |
假单胞菌属Pseudomonas | 固氮假单胞菌Pseudomonas azotoformans | 产胞外多糖、吲哚乙酸和可溶性磷酸三钙。Production of extracellular polysaccharides, indoleacetic acid and soluble tricalcium phosphate. | [ |
固氮螺旋菌属Azospirillum | 巴西固氮螺菌Azospirillum brasilense | 固氮,产铁载体、胞外多糖、ACC脱氨酶、吲哚乙酸和水解酶。Nitrogen fixation, production of iron carrier, extracellular polysaccharide, ACC deaminase, indoleacetic acid and hydrolase. | [ |
固氮菌属Azotobacter | 贝氏固氮菌Azotobacter beijerinckii | 固氮,改良土壤,产生长素。Nitrogen fixation, soil improvement, and production of auxin. | [ |
克雷伯菌属Klebsiella | 肺炎克雷伯菌Klebsiella pneumoniae | 固氮,产氨、铁载体和吲哚乙酸。Nitrogen fixation, production of ammonia, iron carrier and indole acetic acid. | [ |
肠杆菌属Enterobacter | 气肠杆菌Enterobacter aerogenes | 固氮、溶磷,产生长素、ACC脱氨酶和铁载体。Nitrogen fixation, phosphorus dissolution, production of auxin, ACC deaminase, and iron carrier. | [ |
节杆菌属Arthrobacter | 滋养节杆菌Arthrobacter pascens | 合成吲哚乙酸。Synthesis of indole acetic acid. | [ |
伯克霍尔德氏菌属Burkhoolderia | 越南伯克霍尔德菌Burkholderia vietnamiensis | 固氮。Nitrogen fixation. | [ |
类芽孢杆菌属Paenibacillus | 胶质类芽孢杆菌Paenibacillus mucilaginosus | 形成生物膜、溶磷和产生长素。Forming biofilm, phosphorus dissolution and production of auxin. | [ |
沙雷氏菌属Serratia | 格氏沙雷氏菌Serratia grimesii | 固氮、溶磷、产铁载体和生长素。Nitrogen fixation, phosphorus dissolution, production of iron carrier and auxin. | [ |
无色杆菌属Achromobacter | 木糖无色杆菌Achromobacter xylosoxidans | 产ACC脱氨酶。Production of ACC deaminase. | [ |
根瘤菌属Rhizobia | 阿拉米根瘤菌Rhizobium alamii | 产胞外多糖。Production of extracellular polysaccharide. | [ |
不动杆菌属Acinetobacter | 约氏不动杆菌Acinetobacter johnsonii | 调节土壤酶活性,改善土壤。Regulating soil enzyme activity and improving soil quality. | [ |
产碱杆菌属Alcaligenes | 粪产碱杆菌Alcaligenes faecalis | 产生长素,溶磷,改善营养吸收。Production of auxin, phosphorus dissolution, and improve nutrient absorption. | [ |
链霉菌属Streptomyces | 微黄链霉菌Streptomyces microflavus | 提高养分吸收。Improve nutrient absorption. | [ |
气单胞菌属Aeromonas | 豚鼠气单胞菌Aeromonas caviae | 改良土壤,促进营养吸收。Improve soil and promote nutrient absorption. | [ |
泛菌属Pantoea | 成团泛菌Pantoea agglomerans | 固氮、溶磷、产生长素。Nitrogen fixation, phosphorus dissolution, and production of auxin. | [ |
微球菌属Micrococcus | 云南微球菌Micrococcus yunnanensis | 提高营养元素的吸收。Improve the absorption of nutrients. | [ |
非生物胁迫 Abiotic stress | 植物根际促生菌 PGPR | 植物种类 Plant species | PGPR机制 PGPR mechanism | 作用效果 Action effect | 参考文献References |
---|---|---|---|---|---|
盐胁迫 Salt stress | 巴西固氮螺菌Azospirillum brasiliense 褐球固氮菌Azotobacter chococcum | 香菜Coriandrum sativum | 调节抗氧化酶活性。Regulating antioxidant enzyme activity. | 生物量增加,产量提高。Increase in biomass and yield. | [ |
约氏不动杆菌A. johnsonii | 玉米Z. mays | 调节土壤酶活性。Regulating soil enzyme activity. | 改良了土壤健康,养分吸收增加。Improved soil health and increased nutrient absorption. | [ | |
特基拉芽孢杆菌B. tequilensis 阿氏芽孢杆菌B. aryabhattai | 水稻O. sativa | 维持渗透平衡。Maintain osmotic balance. | 改善了生化特性和养分吸收。Improved biochemical characteristics and nutrient absorption. | [ | |
甲基营养芽孢杆菌Bacillus methyllotrophicus | 小麦T. aestivum | 产IAA、ACC脱氨酶和胞外多糖。Production of IAA, ACC deaminase and extracellular polysaccharides (EPS). | 发芽率、根冠长、光合色素等均有显著增加。Significant increases in germination rate, root cap length, photosynthetic pigments, etc. | [ | |
巨大芽孢杆菌B. megaterium | 小麦T. aestivum | 产生IAA。Production of IAA. | 发芽率、根冠长等生长参数均有显著提高。The growth parameters such as germination rate and root cap length have significantly improved. | [ | |
干旱胁迫 Drought stress | 贝莱斯芽孢杆菌Bacillus velezensis 解淀粉芽孢杆菌B. amyloliquefaciens | 胡桃Juglans regia | 产铁载体、氰化氢 和IAA。Production of iron carrier, hydrogen cyanide and IAA. | 改善了抗逆机制。Improved stress resistance mechanism. | [ |
枯草芽孢杆菌B. subtilis | 番茄S. lycopersicum | 产ACC脱氨酶,降低乙烯水平。Production of ACC deaminase and reduce ethylene (ET) levels. | 脯氨酸含量升高,MDA和H2O2含量降低。Proline content increases, MDA and H2O2 content decreases. | [ | |
恶臭假单胞菌Pseudomonas putida | 玉米Z. mays | 调节代谢、信号和应激反应基因。Regulating metabolism, signal and stress response gene. | 超氧化物歧化酶、过氧化氢酶和ET表达均降低。The expression of superoxide dismutase, catalase and ET were reduced. | [ | |
固氮假单胞菌P. azotoformans | 小麦T. aestivum | 产生EPS、IAA和可溶性磷酸三钙。Production of EPS, IAA, and soluble tricalcium phosphate. | 生长性状、光合色素效率等生理指标均有显著提高。Physiological indicators such as growth traits and photosynthetic pigment efficiency have significantly improved. | [ | |
阿拉米根瘤菌R. alamii | 油菜B. chinensis | 产EPS。Production of EPS. | 茎部生物量增加。Increased stem biomass. | [ | |
荧光假单胞菌P. fluorescens 解淀粉芽孢杆菌B. amyloliquefaciens | 薄荷Mentha hyplocalyx | 调节酶活性。Regulating enzyme activity. | 酶活性和总酚含量显著提高。Significant increase in enzyme activity and total phenolic content. | [ | |
温度胁迫 Temperature stress | 芥菜假单胞菌 Pseudomonas brassicacearum | 小麦 T. aestivum | 产生高分子量的耐热蛋白,调节植物抗氧化酶活性。Production of high molecular weight heat-resistant proteins to regulate plant antioxidant enzyme activity. | 幼苗鲜重、抗氧化酶活性、脯氨酸和蛋白质含量显著提高。Significant increase in seedling fresh weight, antioxidant enzyme activity, proline and protein content. | [ |
特基拉芽孢杆菌 B. tequilensis | 大豆 G. max | 产IAA、ABA。Production of IAA and ABA. | 植株茎长、生物量和光合色素含量显著提高。Significant increase in plant stem length, biomass, and photosynthetic pigment content. | [ | |
梭形芽孢杆菌Bacillusfusiformis 球形芽孢杆菌Bacillus sphaericus | 玉米 Z. mays | 溶磷,产生葡萄糖酸、植物激素、儿茶酚和铁载体。Dissolve phosphorus and production of gluconic acid, phytohormone, catechol and iron carrier. | 渗透酶、酚类物质、植物激素和抗氧化酶均上调。Permeases, phenols, plant hormone and antioxidant enzymes were up-regulated. | [ | |
哈茨木霉菌Trichoderma harzianum 木糖无色杆菌Achromobacter xylosoxidans | 圣罗勒 Ocimum sanctum | 产ACC脱氨酶。Production of ACC deaminase. | 营养吸收、光合作用、淀粉和脯氨酸积累增加,产量提高。Increased nutrient absorption, photosynthesis, starch and proline accumulation, resulting in increased yield. | [ | |
重金属胁迫 Heavy metal stress | 气肠杆菌E. aerogenes | 水稻 O. sativa | 产生IAA、固氮、溶磷。Production of IAA, nitrogen fixation, and dissolved phosphorus. | 光合作用增强。Enhanced photosynthesis. | [ |
胶质类芽孢杆菌 Paenibacillus mucilaginosus 中华根瘤菌Sinorhizobium meliloti | 紫花苜蓿 M. sativa | 降低MDA和ROS的积累。Reduce the accumulation of MDA and ROS. | 提高植株的抗氧化能力,显著降低了氧化损伤。Improve the antioxidant capacity of plants and significantly reduce oxidative damage. | [ | |
不动杆菌Acinetobacter beijerinckii 植生拉乌尔菌Raoultella planticola | 大豆 G.max | 产IAA、水杨酸和代谢物。Production of IAA, salicylic acid (SA), and metabolites. | 代谢物上调,氧化损伤减少。Upregulation of metabolites and reduction of oxidative damage. | [ | |
荧光假单胞菌P. fluorescens 假单胞菌Pseudomonas | 向日葵 Helianthus annuus | 产生长素、铁载体、ACC脱氨酶,溶磷。Production of auxin, iron carrier, ACC deaminase, and dissolve phosphorus. | 茎高和茎粗、叶绿素指数及生物量增加。Increase in stem height and stem diameter, chlorophyll index, and biomass. | [ |
Table 2 Role of PGPR in alleviating plant abiotic stress
非生物胁迫 Abiotic stress | 植物根际促生菌 PGPR | 植物种类 Plant species | PGPR机制 PGPR mechanism | 作用效果 Action effect | 参考文献References |
---|---|---|---|---|---|
盐胁迫 Salt stress | 巴西固氮螺菌Azospirillum brasiliense 褐球固氮菌Azotobacter chococcum | 香菜Coriandrum sativum | 调节抗氧化酶活性。Regulating antioxidant enzyme activity. | 生物量增加,产量提高。Increase in biomass and yield. | [ |
约氏不动杆菌A. johnsonii | 玉米Z. mays | 调节土壤酶活性。Regulating soil enzyme activity. | 改良了土壤健康,养分吸收增加。Improved soil health and increased nutrient absorption. | [ | |
特基拉芽孢杆菌B. tequilensis 阿氏芽孢杆菌B. aryabhattai | 水稻O. sativa | 维持渗透平衡。Maintain osmotic balance. | 改善了生化特性和养分吸收。Improved biochemical characteristics and nutrient absorption. | [ | |
甲基营养芽孢杆菌Bacillus methyllotrophicus | 小麦T. aestivum | 产IAA、ACC脱氨酶和胞外多糖。Production of IAA, ACC deaminase and extracellular polysaccharides (EPS). | 发芽率、根冠长、光合色素等均有显著增加。Significant increases in germination rate, root cap length, photosynthetic pigments, etc. | [ | |
巨大芽孢杆菌B. megaterium | 小麦T. aestivum | 产生IAA。Production of IAA. | 发芽率、根冠长等生长参数均有显著提高。The growth parameters such as germination rate and root cap length have significantly improved. | [ | |
干旱胁迫 Drought stress | 贝莱斯芽孢杆菌Bacillus velezensis 解淀粉芽孢杆菌B. amyloliquefaciens | 胡桃Juglans regia | 产铁载体、氰化氢 和IAA。Production of iron carrier, hydrogen cyanide and IAA. | 改善了抗逆机制。Improved stress resistance mechanism. | [ |
枯草芽孢杆菌B. subtilis | 番茄S. lycopersicum | 产ACC脱氨酶,降低乙烯水平。Production of ACC deaminase and reduce ethylene (ET) levels. | 脯氨酸含量升高,MDA和H2O2含量降低。Proline content increases, MDA and H2O2 content decreases. | [ | |
恶臭假单胞菌Pseudomonas putida | 玉米Z. mays | 调节代谢、信号和应激反应基因。Regulating metabolism, signal and stress response gene. | 超氧化物歧化酶、过氧化氢酶和ET表达均降低。The expression of superoxide dismutase, catalase and ET were reduced. | [ | |
固氮假单胞菌P. azotoformans | 小麦T. aestivum | 产生EPS、IAA和可溶性磷酸三钙。Production of EPS, IAA, and soluble tricalcium phosphate. | 生长性状、光合色素效率等生理指标均有显著提高。Physiological indicators such as growth traits and photosynthetic pigment efficiency have significantly improved. | [ | |
阿拉米根瘤菌R. alamii | 油菜B. chinensis | 产EPS。Production of EPS. | 茎部生物量增加。Increased stem biomass. | [ | |
荧光假单胞菌P. fluorescens 解淀粉芽孢杆菌B. amyloliquefaciens | 薄荷Mentha hyplocalyx | 调节酶活性。Regulating enzyme activity. | 酶活性和总酚含量显著提高。Significant increase in enzyme activity and total phenolic content. | [ | |
温度胁迫 Temperature stress | 芥菜假单胞菌 Pseudomonas brassicacearum | 小麦 T. aestivum | 产生高分子量的耐热蛋白,调节植物抗氧化酶活性。Production of high molecular weight heat-resistant proteins to regulate plant antioxidant enzyme activity. | 幼苗鲜重、抗氧化酶活性、脯氨酸和蛋白质含量显著提高。Significant increase in seedling fresh weight, antioxidant enzyme activity, proline and protein content. | [ |
特基拉芽孢杆菌 B. tequilensis | 大豆 G. max | 产IAA、ABA。Production of IAA and ABA. | 植株茎长、生物量和光合色素含量显著提高。Significant increase in plant stem length, biomass, and photosynthetic pigment content. | [ | |
梭形芽孢杆菌Bacillusfusiformis 球形芽孢杆菌Bacillus sphaericus | 玉米 Z. mays | 溶磷,产生葡萄糖酸、植物激素、儿茶酚和铁载体。Dissolve phosphorus and production of gluconic acid, phytohormone, catechol and iron carrier. | 渗透酶、酚类物质、植物激素和抗氧化酶均上调。Permeases, phenols, plant hormone and antioxidant enzymes were up-regulated. | [ | |
哈茨木霉菌Trichoderma harzianum 木糖无色杆菌Achromobacter xylosoxidans | 圣罗勒 Ocimum sanctum | 产ACC脱氨酶。Production of ACC deaminase. | 营养吸收、光合作用、淀粉和脯氨酸积累增加,产量提高。Increased nutrient absorption, photosynthesis, starch and proline accumulation, resulting in increased yield. | [ | |
重金属胁迫 Heavy metal stress | 气肠杆菌E. aerogenes | 水稻 O. sativa | 产生IAA、固氮、溶磷。Production of IAA, nitrogen fixation, and dissolved phosphorus. | 光合作用增强。Enhanced photosynthesis. | [ |
胶质类芽孢杆菌 Paenibacillus mucilaginosus 中华根瘤菌Sinorhizobium meliloti | 紫花苜蓿 M. sativa | 降低MDA和ROS的积累。Reduce the accumulation of MDA and ROS. | 提高植株的抗氧化能力,显著降低了氧化损伤。Improve the antioxidant capacity of plants and significantly reduce oxidative damage. | [ | |
不动杆菌Acinetobacter beijerinckii 植生拉乌尔菌Raoultella planticola | 大豆 G.max | 产IAA、水杨酸和代谢物。Production of IAA, salicylic acid (SA), and metabolites. | 代谢物上调,氧化损伤减少。Upregulation of metabolites and reduction of oxidative damage. | [ | |
荧光假单胞菌P. fluorescens 假单胞菌Pseudomonas | 向日葵 Helianthus annuus | 产生长素、铁载体、ACC脱氨酶,溶磷。Production of auxin, iron carrier, ACC deaminase, and dissolve phosphorus. | 茎高和茎粗、叶绿素指数及生物量增加。Increase in stem height and stem diameter, chlorophyll index, and biomass. | [ |
1 | Kopecka R, Kameniarova M, Cerny M, et al. Abiotic stress in crop production. International Journal of Molecular Sciences, 2023, 24(7): 6603. |
2 | Omae N, Tsuda K. Plant-microbiota interactions in abiotic stress environments. Molecular Plant-Microbe Interactions, 2022, 35(7): 511-526. |
3 | Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269. |
4 | Negacz K, Malek Ž, de Vos A, et al. Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 2022, 203(8): 104775. |
5 | Ayuso-Calles M, Flores-Félix J D, Rivas R. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy, 2021, 11(9): 1759. |
6 | Zhao S, Zhang Q, Liu M, et al. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 2021, 22(9): 4609. |
7 | Bashir K, Matsui A, Rasheed S, et al. Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Research, 2019, 8: 658. |
8 | Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 2020, 21(1): 49-68. |
9 | Chamkhi I, El Omari N, Balahbib A, et al. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi Journal of Biological Sciences, 2022, 29(2): 1246-1259. |
10 | Hartmann A, Rothballer M, Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2007, 312(1/2): 7-14. |
11 | Odelade K A, Babalola O O. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health, 2019, 16(20): 3873. |
12 | Zhou Y F, Bai Y S, Yue T, et al. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria. Microbiology China, 2023, 50(2): 644-666. |
周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展. 微生物学通报, 2023, 50(2): 644-666. | |
13 | Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297. |
14 | Hyder S, Rizvi Z F, los Santos-Villalobos S, et al. Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of Plant Nutrition, 2023, 46(10): 1-30. |
15 | Singh R P, Jha P N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One, 2016, 11(6): 0155026. |
16 | Liu H, Li S S, Qiang R W, et al. Response of soil microbial community structure to phosphate fertilizer reduction and combinations of microbial fertilizer. Frontiers in Environmental Science, 2022, 10: 899727. |
17 | Samet M, Ghazala I, Karray F, et al. Isolation of bacterial strains from compost teas and screening of their PGPR properties. Research Square, 2022, 29(50): 1-21. |
18 | Wang T, Cheng K, Huo X, et al. Bioorganic fertilizer promotes pakchoi growth and shapes the soil microbial structure. Frontiers in Plant Science, 2022, 13: 1040437. |
19 | Samaras A, Kamou N, Tzelepis G, et al. Root transcriptional and metabolic dynamics induced by the plant growth promoting rhizobacterium (PGPR) Bacillus subtilis Mbi600 on cucumber plants. Plants, 2022, 11(9): 1218. |
20 | Ansari F A, Jabeen M, Ahmad I. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, 2021, 18(12): 3855-3870. |
21 | El-Ballat E M, Elsilk S E, Ali H M, et al. Metal-resistant PGPR strain Azospirillum brasilense EMCC1454 enhances growth and chromium stress tolerance of chickpea (Cicer arietinum L.) by modulating redox potential, osmolytes, antioxidants, and stress-related gene expression. Plants, 2023, 12(11): 2110. |
22 | Zhou L X, Liu W, Duan H, et al. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality. Chemosphere, 2023, 313: 137409. |
23 | Liu D, Chen L, Zhu X, et al. Klebsiella pneumoniae SnebYK mediates resistance against Heterodera glycines and promotes soybean growth. Frontiers in Microbiology, 2018, 9: 1134. |
24 | Mukhtar S, Zareen M, Khaliq Z, et al. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Journal of Applied Microbiology, 2020, 128(2): 556-573. |
25 | Li M, Guo R, Yu F, et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 2018, 19(2): 443. |
26 | Liu M, Philp J, Wang Y, et al. Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 2022, 12(1): 8381. |
27 | Wang D, Poinsot V, Li W, et al. Genomic insights and functional analysis reveal plant growth promotion traits of Paenibacillus mucilaginosus G78. Genes, 2023, 14(2): 392. |
28 | Singh S, Tripathi A, Chanotiya C S, et al. Cold stress alleviation using individual and combined inoculation of ACC deaminase producing microbes in Ocimum sanctum. Environmental Sustainability, 2020, 3(3): 289-301. |
29 | Tulumello J, Chabert N, Rodriguez J, et al. Rhizobium alamii improves water stress tolerance in a non-legume. Science of the Total Environment, 2021, 797: 148895. |
30 | Shabaan M, Asghar H N, Zahir Z A, et al. Salt-tolerant PGPR confer salt tolerance to maize through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Frontiers in Microbiology, 2022, 13: 901865. |
31 | Abdel Latef A A H, Omer A M, Badawy A A, et al. Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants, 2021, 10(1): 110. |
32 | Shen T, Lei Y, Pu X, et al. Identification and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease. Applied Soil Ecology, 2021, 157: 103724. |
33 | Cervantes-Vázquez T J Á, Valenzuela-García A A, Cervantes-Vázquez M G, et al. Morphophysiological, enzymatic, and elemental activity in greenhouse tomato saladette seedlings from the effect of plant growth-promoting rhizobacteria. Agronomy, 2021, 11(5): 1008. |
34 | Cherif-Silini H, Thissera B, Bouket A C, et al. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. International Journal of Molecular Sciences, 2019, 20(16): 3989. |
35 | Ghanbarzadeh Z, Mohsenzadeh S, Rowshan V, et al. Mitigation of water deficit stress in Dracocephalum moldavica by symbiotic association with soil microorganisms. Scientia Horticulturae, 2020, 272: 109549. |
36 | Radhakrishnan R, Hashem A, Abd Allah E F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 2017, 8(8): 667. |
37 | Liu Y, Gao J, Bai Z, et al. Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria. Microorganisms, 2021, 9(1): 161. |
38 | Agarwal H, Dowarah B, Baruah P M, et al. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Microbiological Research, 2020, 238(1): 126503. |
39 | Yousuf P Y, Shabir P A, Hakeem K R. miRNAomic approach to plant nitrogen starvation. International Journal of Genomics, 2021, 2021: 8560323. |
40 | Anas M, Liao F, Verma K K, et al. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 2020, 53(1): 47. |
41 | Soumare A, Diedhiou A G, Thuita M, et al. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants, 2020, 9(8): 1011. |
42 | Olenska E, Malek W, Wojcik M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment, 2020, 743: 140682. |
43 | Mahmud K, Makaju S, Ibrahim R, et al. Current progress in nitrogen fixing plants and microbiome research. Plants, 2020, 9(1): 97. |
44 | Martins D S, Reis V M, Schultz N, et al. Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant and Soil, 2020, 454(1/2): 155-169. |
45 | Molina-Favero C, Creus C M, Simontacchi M, et al. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 2008, 21(7): 1001-1009. |
46 | Gallart M, Paungfoo-Lonhienne C, Gonzalez A, et al. Nitrogen source influences the effect of plant growth-promoting rhizobacteria (PGPR) on Macadamia integrifolia. Agronomy, 2021, 11(6): 1064. |
47 | Wu F, Li J, Chen Y, et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera abel. Forests, 2019, 10(4): 348. |
48 | El Attar I, Hnini M, Taha K, et al. Phosphorus availability and its sustainable use. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 5036-5048. |
49 | Zeng Q, Ding X, Wang J, et al. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 2022, 29(30): 45089-45106. |
50 | Li C, Li Q, Wang Z, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 2019, 9(1): 15291. |
51 | Zhang H, Han L, Jiang B, et al. Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting. World Journal of Microbiology and Biotechnology, 2021, 37(7): 109. |
52 | Glick B R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 2012: 963401. |
53 | Benbrik B, Elabed A, Iraqui M, et al. A phosphocompost amendment enriched with PGPR consortium enhancing plants growth in deficient soil. Communications in Soil Science and Plant Analysis, 2021, 52(11): 1236-1247. |
54 | Song J, Xu G F, Zhao X, et al. Screening of indigenous phosphate-solubilizing bacteria from Liquidambar formosana hance rhizosphere and its potential applications for improving plant growth. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 95-104. |
宋娟, 徐国芳, 赵邢, 等. 枫香根际解有机磷细菌筛选及其促生效应. 南京林业大学学报(自然科学版), 2020, 44(3): 95-104. | |
55 | Ahammed G J, Chen Y, Liu C, et al. Light regulation of potassium in plants. Plant Physiology and Biochemistry, 2022, 170: 316-324. |
56 | Suo Y K, Liu L H, Zhang L, et al. Research progress of potassium solubilization by potassium solubilizing bacteria. Contemporary Chemical Industry, 2021, 50(4): 924-929. |
索雲凯, 刘丽红, 张雷, 等. 解钾菌解钾作用研究进展. 当代化工, 2021, 50(4): 924-929. | |
57 | Sattar A, Naveed M, Ali M, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology, 2019, 133: 146-159. |
58 | Olaniyan F T, Alori E T, Adekiya A O, et al. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology, 2022, 72(1): 45. |
59 | Meena V S, Maurya B R, Verma J P, et al. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 2015, 81: 340-347. |
60 | Raji M, Thangavelu M. Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Archives of Microbiology, 2021, 203(6): 3147-3161. |
61 | Chen L, Li K K, Mi G H, et al. Screening and identification of potassium-solubilizing bacteria and their promoting effects on maize in black soil of Northeast China. Microbiology China, 2021, 48(5): 1560-1570. |
陈腊, 李可可, 米国华, 等. 解钾促生菌的筛选鉴定及对东北黑土区玉米的促生效应. 微生物学通报, 2021, 48(5): 1560-1570. | |
62 | Bittner A, Ciesla A, Gruden K, et al. Organelles and phytohormones: A network of interactions in plant stress responses. Journal of Experimental Botany, 2022, 73(21): 7165-7181. |
63 | Tsukanova K A, Сhеbоtаr V K, Meyer J J M, et al. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. South African Journal of Botany, 2017, 113: 91-102. |
64 | Bunsangiam S, Thongpae N, Limtong S, et al. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Scientific Reports, 2021, 11(1): 13094. |
65 | Sun H, Zhang J, Liu W, et al. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 81. |
66 | Wang X, Zhang J, Wang X, et al. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Horticultural Plant Journal, 2022, 8(1): 22-34. |
67 | Zhang C, Yu Z, Zhang M, et al. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. Journal of Experimental Botany, 2022, 73(11): 3711-3725. |
68 | Pantoja-Guerra M, Valero-Valero N, Ramírez C A. Total auxin level in the soil-plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chemical and Biological Technologies in Agriculture, 2023, 10(1): 6. |
69 | Defez R, Andreozzi A, Romano S, et al. Bacterial IAA-delivery into Medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms, 2019, 7(10): 403. |
70 | Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 2016, 21(3): 218-229. |
71 | Jimenez-Vazquez K R, Garcia-Cardenas E, Barrera-Ortiz S, et al. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. The Plant Journal, 2020, 103(5): 1639-1654. |
72 | Fan M Y, Li N, Jia Y T, et al. Study on the mitigation of cadmium stress in rice by cadmium-resistant Bacillus aryabhattai. Journal of Agro-Environment Science, 2021, 40(2): 279-286. |
范美玉, 黎妮, 贾雨田, 等. 耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究. 农业环境科学学报, 2021, 40(2): 279-286. | |
73 | Uniyal S, Bhandari M, Singh P, et al. Cytokinin biosynthesis in cyanobacteria: Insights for crop improvement. Frontiers in Genetics, 2022, 13: 933226. |
74 | Grosskinsky D K, Tafner R, Moreno M V, et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 2016, 6: 23310. |
75 | Liu F, Xing S, Ma H, et al. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 2013, 97(20): 9155-9164. |
76 | Park Y G, Mun B G, Kang S M, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One, 2017, 12(3): e0173203. |
77 | Ramon U, Weiss D, Illouz-Eliaz N. Underground gibberellin activity: Differential gibberellin response in tomato shoots and roots. New Phytologist, 2021, 229(3): 1196-1200. |
78 | Kang S M, Khan A L, You Y H, et al. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, 2014, 24(1): 106-112. |
79 | Lee K E, Radhakrishnan R, Kang S M, et al. Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion. Journal of Microbiology and Biotechnology, 2015, 25(9): 1467-1475. |
80 | Kang S M, Khan A L, Waqas M, et al. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 2019, 14(1): 416-423. |
81 | Hewage K A H, Yang J F, Wang D, et al. Chemical manipulation of abscisic acid signaling: A new approach to abiotic and biotic stress management in agriculture. Advanced Science, 2020, 7(18): 2001265. |
82 | Shahzad R, Khan A L, Bilal S, et al. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017, 136: 68-77. |
83 | Cohen A C, Bottini R, Pontin M, et al. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum, 2015, 153(1): 79-90. |
84 | Velez-Bermudez I C, Schmidt W. Iron sensing in plants. Frontiers in Plant Science, 2023, 14: 1145510. |
85 | Liang G. Iron uptake, signaling, and sensing in plants. Plant Communications, 2022, 3(5): 100349. |
86 | Sarwar S, Khaliq A, Yousra M, et al. Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil. Communications in Soil Science and Plant Analysis, 2020, 51(12): 1680-1692. |
87 | Carroll C S, Moore M M. Ironing out siderophore biosynthesis: A review of non-ribosomal peptide synthetase (NRPS)- independent siderophore synthetases. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53(4): 356-381. |
88 | Singh T B, Sahai V, Goyal D, et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Current Microbiology, 2020, 77(11): 3633-3642. |
89 | Rahimi S, Talebi M, Baninasab B, et al. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings. Plant Physiology and Biochemistry, 2020, 155: 406-415. |
90 | Patani A, Prajapati D, Ali D, et al. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum Mill.). Frontiers in Plant Science, 2023, 14: 1168155. |
91 | Russo A, Pollastri S, Ruocco M, et al. Volatile organic compounds in the interaction between plants and beneficial microorganisms. Journal of Plant Interactions, 2022, 17(1): 840-852. |
92 | Zhou C, Ma Z, Zhu L, et al. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 2016, 17(6): 976. |
93 | Ahmad M, Zahir Z A, Khalid M, et al. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiology and Biochemistry, 2013, 63: 170-176. |
94 | Manzoor N, Ali L, Ahmed T, et al. Recent advancements and development in nano-enabled agriculture for improving abiotic stress tolerance in plants. Frontiers in Plant Science, 2022, 13: 951752. |
95 | Munir N, Hanif M, Abideen Z, et al. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy, 2022, 12(9): 2069. |
96 | Abd El-Daim I A, Bejai S, Meijer J. Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Scientific Reports, 2019, 9(1): 16282. |
97 | Shultana R, Kee Zuan A T, Yusop M R, et al. Bacillus tequilensis strain “UPMRB9” improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS One, 2021, 16(12): e0260869. |
98 | Zhou X, Zhang X, Ma C, et al. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere, 2022, 307(4): 136138. |
99 | Bhat B A, Tariq L, Nissar S, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbiology, 2022, 133(5): 2717-2741. |
100 | Rabiei Z, Hosseini S J, Pirdashti H, et al. Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress. Heliyon, 2020, 6(10): e05321. |
101 | Din B U, Sarfraz S, Xia Y, et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicology and Environmental Safety, 2019, 183: 109466. |
102 | Lee D G, Lee J M, Choi C G, et al. Effect of plant growth-promoting rhizobacterial treatment on growth and physiological characteristics of Triticum aestivum L. under salt stress. Applied Biological Chemistry, 2021, 64(1): 89. |
103 | Lotfi N, Soleimani A, Cakmakci R, et al. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Scientific Reports, 2022, 12(1): 12725. |
104 | Gowtham H G, Singh B, Murali M,et al. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 2020, 234: 126422. |
105 | SkZ A, Vardharajula S, Vurukonda S S K P. Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Annals of Microbiology, 2018, 68(6): 331-349. |
106 | Chiappero J, del Rosario C L, Alderete L G S, et al. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Industrial Crops and Products, 2019, 139: 111553. |
107 | Ashraf A, Bano A, Ali S A. Characterisation of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant. Plant Biology, 2019, 21(4): 762-769. |
108 | Jha Y, Mohamed H I. Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanzen, 2022, 75(1): 77-95. |
109 | Mesa-Marin J, Del-Saz N F, Rodriguez-Llorente I D, et al. PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation. Frontiers in Plant Science, 2018, 9: 1500. |
110 | Ju W, Liu L, Jin X, et al. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, 2020, 254: 126724. |
111 | Husna, Hussain A, Shah M, et al. Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response. Microbiological Research, 2023, 266: 127237. |
112 | Abbaszadeh-Dahaji P, Atajan F A, Omidvari M, et al. Mitigation of copper stress in maize (Zea mays) and sunflower (Helianthus annuus) plants by copper-resistant Pseudomonas strains. Current Microbiology, 2021, 78(4): 1335-1343. |
113 | Egamberdieva D, Wirth S, Bellingrath-Kimura S D, et al. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 2019, 10: 2791. |
114 | Pan J, Peng F, Xue X, et al. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: A meta-analysis. Sustainability, 2019, 11(2): 378. |
115 | Pereira S I A, Abreu D, Moreira H, et al. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 2020, 6(10): e05106. |
116 | Slimani A, Raklami A, Oufdou K, et al. Isolation and characterization of PGPR and their potential for drought alleviation in barley plants. Gesunde Pflanzen, 2022, 75(2): 377-391. |
117 | Rashid U, Yasmin H, Hassan M N, et al. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports, 2022, 41: 549-569. |
118 | Raza A, Charagh S, Garcia-Caparros P, et al. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food, 2022, 13(1): 196-217. |
119 | Mitra D, Díaz Rodríguez A M, Parra Cota F I, et al. Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiological and Molecular Plant Pathology, 2021, 115: 101679. |
120 | Ahmad M, Imtiaz M, Shoib Nawaz M, et al. What did we learn from current progress in heat stress tolerance in plants? Can microbes be a solution? Frontiers in Plant Science, 2022, 13: 794782. |
121 | Liu X, Xu N, Wu Y, et al. Photosynthesis, chilling acclimation and the response of antioxidant enzymes to chilling stress in mulberry seedlings. Journal of Forestry Research, 2018, 30(6): 2021-2029. |
122 | Zubair M, Hanif A, Farzand A, et al. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 2019, 7(9): 337. |
123 | Shah V, Daverey A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 2020, 18: 100774. |
124 | Ghori N H, Ghori T, Hayat M Q, et al. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828. |
125 | Pramanik K, Mitra S, Sarkar A, et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 2018, 351: 317-329. |
[1] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[2] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[3] | Chao-nan MENG, Yu-jie ZHAO, Jia-xin CHEN, Yi-lu ZHANG, Yan-jia WANG, Li-rong FENG, Yu-gang SUN, Chang-hong GUO. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion [J]. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
[4] | Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197. |
[5] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
[6] | Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage [J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100. |
[7] | Jie ZHANG, Kai CHENG, Ying-chun WANG. Analysis of the calcium-dependent protein kinase RtCDPK16 response to abiotic stress in Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2023, 32(2): 97-109. |
[8] | Xiao-ting LIU, Tuo YAO. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(8): 178-187. |
[9] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[10] | Yi-chao CHEN, Xiao-ying SUN, Zhi-jie XIE, Pan ZHOU, Lu ZHANG, Xue-li GAO, Dong LI, Xiao-feng LIU. Screening of rhizosphere growth promoting bacteria and their application in tailings improvement [J]. Acta Prataculturae Sinica, 2022, 31(7): 50-63. |
[11] | Chun-jie LI, Ming-xiao LANG, Zhen-jiang CHEN, Tai-xiang CHEN, Jing LIU, Yuan-yuan JIN, Xue-kai WEI. Effects of Epichloë endophytic fungi on the germination of grass seeds [J]. Acta Prataculturae Sinica, 2022, 31(3): 192-206. |
[12] | Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117. |
[13] | Jia-ju ZHANG, Jie YU, Ming-na LI, Jun-mei KANG, Qing-chuan YANG, Rui-cai LONG. Identification and functional analysis of lncRNA167 and its cleavage product miR167c in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 164-180. |
[14] | HOU Jie-ru, DUAN Xiao-yue, LI Zhou, PENG Yan. Cloning and expression analysis of TrSAMDC1 in white clover [J]. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
[15] | YANG Liu-hui, YIN Hang, HUANG Qin-mei, ZHANG Yan-ni, HE Miao, ZHOU Yun-wei. An analysis of the response of the LpWRKY20 gene to abiotic stress and its role in drought resistance [J]. Acta Prataculturae Sinica, 2020, 29(1): 193-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||