Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 151-160.DOI: 10.11686/cyxb2024090

Previous Articles    

Effects of endophytic fungi seed soaking on growth and root endophytic fungal communities of Avena sativa

Jing GUO1,2(), Yue WANG1,2, Cun-ying QI1,2, Jing LI1,2   

  1. 1.School of Ecology and Environmental Science,Qinghai University of Science and Technology,Xining 810016,China
    2.Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects,Xining 810016,China
  • Received:2024-03-20 Revised:2024-04-17 Online:2025-01-20 Published:2024-11-04
  • Contact: Jing GUO

Abstract:

Endophytic fungi with the capacity to enhance plant growth, bolster plant stress tolerance, and modulate the composition of plant rhizosphere microbial communities offer significant implications for research and development of crop growth promotants. In a plot experiment, two endophytic fungus, Trichoderma rossicum and Floccularia luteovirens were applied. To assess the growth promoting effects of these endophytic fungi on Avena sativa, a range of indicators were measured, encompassing growth characteristics, physiological and biochemical parameters, soil physical and chemical properties, and others. In addition, high-throughput sequencing technology was utilized to assess the influence of endophytic fungus soaking on the composition of A. sativa root endophytic fungal communities. It was found that the application of the two endophytic fungi noticeably enhanced the growth of A. sativa, with increase in plant height, root length, dry weight, fresh weight, and other parameters observed. Particularly noteworthy was the pronounced influence of T. rossicum on the growth traits of A. sativa, while F. luteovirens had the greatest effect on the yield of A. sativa. Additionally, endophytic fungi significantly influenced physiological traits of A. sativaP<0.05). For instance, compared to CK, the peroxidase activity was increased by 87.53%, and 86.03%, respectively, with T. rossicum and F. luteovirens seed soaking, while vitamin C content was increased by 5.56% and 58.11%. Conversely, proline and malondialdehyde levels were decreased, respectively by 64.62% and 54.82% with T. rossicum and by 72.85% and 63.85% with F. luteovirens seed soaking. Furthermore, the two endophytic fungi exerted distinct effects on soil physicochemical properties. Specifically, T. rossicum and F. luteovirens increased soil total phosphorus concentration, while F. luteovirens dramatically elevated soil organic carbon concentration. The high-throughput sequencing findings demonstrated that soaking endophytic fungi significantly influenced the diversity of endophytic fungi in the A. sativa rhizosphere. This was evidenced by increases in the Shannon index, Pielou index, and the number of unique OTUs of endophytic fungi in A. sativa roots, as well as changes in the community structure of endophytic fungi in the A. sativa roots. Additionally, a principal component analysis revealed that T. rossicum enhanced growth and diversified the variety of root endophytic fungi associated with A. sativa, whereas F. luteovirens enhanced productivity and bolstered stress tolerance of A. sativa. This study highlights the significant stimulatory impact of endophytic fungus soaking on the growth of A. sativa, enhancing its stress resistance, and altering the root endophytic fungal community. These findings pave the way for the utilization of F. luteovirens and T. rossicum as microbial fertilizers, thereby providing valuable fungal resources for the development of plant growth-promoting preparations in subsequent research.

Key words: endophytic fungi, Avena sativa, seed soaking, growth promotion, community structure