Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (6): 154-167.DOI: 10.11686/cyxb2024277
Xiao-Yue WEN1(
), Ying ZHAO1,2,3(
), Bao-qiang WANG1,2,3, Xian WANG1,4, Xiao-lin ZHU1,4, Yi-zhen WANG1,4, Xiao-hong WEI1,2,3,4
Received:2024-07-16
Revised:2024-09-05
Online:2025-06-20
Published:2025-04-03
Contact:
Ying ZHAO
Xiao-Yue WEN, Ying ZHAO, Bao-qiang WANG, Xian WANG, Xiao-lin ZHU, Yi-zhen WANG, Xiao-hong WEI. Expression analysis of AP2/ERFs genes in alfalfa regulated by exogenous NO under drought stress[J]. Acta Prataculturae Sinica, 2025, 34(6): 154-167.
登录号 Gene ID | 基因名 Gene name | 上游引物序列 Forward primer sequence | 下游引物序列 Reverse primer sequence |
|---|---|---|---|
| MS.gene057432.t1 | MsERF01 | AGATTACCAAACAGCCGCCA | TAGCACCACTGCCACGTAAG |
| MS.gene022984.t1 | MsERF02 | AACCGAAGAGTGAACAGCCT | TCCTGCAAGGGTTGGTTGAA |
| MS.gene31024.t1 | MsERF03 | TCGTAACCCTCCACCAGCTA | CCTTGCAGAAGGAATACCCGA |
| MS.gene011550.t1 | MsERF04 | ATGCGTCAATGGGGCAAATG | TTGAGGTAAGCCGAAGAGCC |
| MS.gene30848.t1 | MsERF05 | TGCCACTACTCAGGCAAAGG | GGCGGCTATAGTCGTGTCAA |
| MS.gene072828.t1 | MsERF06 | CTCTAACAGCCGCCTTGGAA | CAGTAGCCAGCAACACTCCA |
| MS.gene006341.t1 | MsERF07 | GCCGGAGAGTGTGTTTGAGA | ACTCCGGCACTGTATCCTCT |
| MS.gene58366.t1 | MsERF08 | CCACCGCCGCTTGATTTAAC | ACGTGCGAATGCGTCAAAAA |
| MS.gene022105.t1 | MsERF09 | ATGGGCAGCTGAAATACGTGA | TTGTGCCTTTGAATTTGAGTGC |
| MS.gene030784.t1 | MsERF10 | TACCGCGGAGTTAGACAACG | ATGGAAGCGCATGTGAGGAA |
| MS.gene025280.t1 | MsERF11 | CATCGGATGGGACGACAACA | TCTCCGGCACGTAGAAATCG |
| MS.gene067817.t1 | MsERF12 | CAGGAAGATGGCGTTGTTGC | AGCACGGGTCGAAATAGTGT |
| MS.gene016368.t1 | MsERF13 | AGGAATCAATGCCGTGACCA | AGGCGGGGTAGTTGTTGTTT |
Table 1 qRT-PCR primers
登录号 Gene ID | 基因名 Gene name | 上游引物序列 Forward primer sequence | 下游引物序列 Reverse primer sequence |
|---|---|---|---|
| MS.gene057432.t1 | MsERF01 | AGATTACCAAACAGCCGCCA | TAGCACCACTGCCACGTAAG |
| MS.gene022984.t1 | MsERF02 | AACCGAAGAGTGAACAGCCT | TCCTGCAAGGGTTGGTTGAA |
| MS.gene31024.t1 | MsERF03 | TCGTAACCCTCCACCAGCTA | CCTTGCAGAAGGAATACCCGA |
| MS.gene011550.t1 | MsERF04 | ATGCGTCAATGGGGCAAATG | TTGAGGTAAGCCGAAGAGCC |
| MS.gene30848.t1 | MsERF05 | TGCCACTACTCAGGCAAAGG | GGCGGCTATAGTCGTGTCAA |
| MS.gene072828.t1 | MsERF06 | CTCTAACAGCCGCCTTGGAA | CAGTAGCCAGCAACACTCCA |
| MS.gene006341.t1 | MsERF07 | GCCGGAGAGTGTGTTTGAGA | ACTCCGGCACTGTATCCTCT |
| MS.gene58366.t1 | MsERF08 | CCACCGCCGCTTGATTTAAC | ACGTGCGAATGCGTCAAAAA |
| MS.gene022105.t1 | MsERF09 | ATGGGCAGCTGAAATACGTGA | TTGTGCCTTTGAATTTGAGTGC |
| MS.gene030784.t1 | MsERF10 | TACCGCGGAGTTAGACAACG | ATGGAAGCGCATGTGAGGAA |
| MS.gene025280.t1 | MsERF11 | CATCGGATGGGACGACAACA | TCTCCGGCACGTAGAAATCG |
| MS.gene067817.t1 | MsERF12 | CAGGAAGATGGCGTTGTTGC | AGCACGGGTCGAAATAGTGT |
| MS.gene016368.t1 | MsERF13 | AGGAATCAATGCCGTGACCA | AGGCGGGGTAGTTGTTGTTT |
基因 Gene name | 登录号 Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亲水性 GRAVY | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| MsERF01 | MS.gene057432.t1 | 217 | 23830.29 | 4.58 | -0.535 | 细胞核Nucleus |
| MsERF02 | MS.gene022984.t1 | 233 | 26506.06 | 8.91 | -0.758 | 叶绿体Chloroplast |
| MsERF03 | MS.gene31024.t1 | 324 | 35332.93 | 9.76 | -0.572 | 细胞核Nucleus |
| MsERF04 | MS.gene011550.t1 | 199 | 21765.18 | 5.93 | -0.551 | 细胞核Nucleus |
| MsERF05 | MS.gene30848.t1 | 243 | 27717.37 | 6.55 | -0.676 | 叶绿体Chloroplast |
| MsERF06 | MS.gene072828.t1 | 231 | 25918.02 | 5.71 | -0.526 | 细胞核Nucleus |
| MsERF07 | MS.gene006341.t1 | 180 | 20443.92 | 5.76 | -0.687 | 细胞核Nucleus |
| MsERF08 | MS.gene58366.t1 | 210 | 22898.71 | 9.66 | -0.596 | 叶绿体Chloroplast |
| MsERF09 | MS.gene022105.t1 | 176 | 19699.82 | 7.89 | -0.823 | 细胞核Nucleus |
| MsERF10 | MS.gene030784.t1 | 288 | 32496.66 | 7.01 | -0.558 | 细胞核Nucleus |
| MsERF11 | MS.gene025280.t1 | 202 | 22322.82 | 4.58 | -0.446 | 细胞核Nucleus |
| MsERF12 | MS.gene067817.t1 | 259 | 28852.95 | 5.76 | -0.661 | 细胞核Nucleus |
| MsERF13 | MS.gene016368.t1 | 422 | 47454.26 | 5.54 | -0.928 | 细胞核Nucleus |
Table 2 Basic physicochemical properties of 13 MsERFs genes
基因 Gene name | 登录号 Gene ID | 氨基酸数目 Number of amino acids (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亲水性 GRAVY | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| MsERF01 | MS.gene057432.t1 | 217 | 23830.29 | 4.58 | -0.535 | 细胞核Nucleus |
| MsERF02 | MS.gene022984.t1 | 233 | 26506.06 | 8.91 | -0.758 | 叶绿体Chloroplast |
| MsERF03 | MS.gene31024.t1 | 324 | 35332.93 | 9.76 | -0.572 | 细胞核Nucleus |
| MsERF04 | MS.gene011550.t1 | 199 | 21765.18 | 5.93 | -0.551 | 细胞核Nucleus |
| MsERF05 | MS.gene30848.t1 | 243 | 27717.37 | 6.55 | -0.676 | 叶绿体Chloroplast |
| MsERF06 | MS.gene072828.t1 | 231 | 25918.02 | 5.71 | -0.526 | 细胞核Nucleus |
| MsERF07 | MS.gene006341.t1 | 180 | 20443.92 | 5.76 | -0.687 | 细胞核Nucleus |
| MsERF08 | MS.gene58366.t1 | 210 | 22898.71 | 9.66 | -0.596 | 叶绿体Chloroplast |
| MsERF09 | MS.gene022105.t1 | 176 | 19699.82 | 7.89 | -0.823 | 细胞核Nucleus |
| MsERF10 | MS.gene030784.t1 | 288 | 32496.66 | 7.01 | -0.558 | 细胞核Nucleus |
| MsERF11 | MS.gene025280.t1 | 202 | 22322.82 | 4.58 | -0.446 | 细胞核Nucleus |
| MsERF12 | MS.gene067817.t1 | 259 | 28852.95 | 5.76 | -0.661 | 细胞核Nucleus |
| MsERF13 | MS.gene016368.t1 | 422 | 47454.26 | 5.54 | -0.928 | 细胞核Nucleus |
Fig. 1 Construction of phylogenetic tree (A) and protein interaction network (B) based on amino acid sequences of AP2/ERF gene family in alfalfa, Arabidopsis and soybean
| 1 | Gou J, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnology Journal, 2018, 16(4): 951-962. |
| 2 | Xiao Y, Zhang J, Jia T T, et al. Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa). Agricultural Water Management, 2015, 161: 147-154. |
| 3 | Siddiqui M H, Al-Whaibi M H, Basalah M O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 2011, 248: 447-455. |
| 4 | Lian H, Qin C, Shen J, et al. Alleviation of adverse effects of drought stress on growth and nitrogen metabolism in mungbean (Vigna radiata) by sulphur and nitric oxide involves up-regulation of antioxidant and osmolyte metabolism and gene expression. Plants, 2023, 12(17): 3082. |
| 5 | Palmieri M C, Sell S, Huang X, et al. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. Journal of Experimental Botany, 2008, 59(2): 177-186. |
| 6 | de Sousa L F, de Menezes-Silva P E, Lourenço L L, et al. Improving water use efficiency by changing hydraulic and stomatal characteristics in soybean exposed to drought: the involvement of nitric oxide. Physiologia Plantarum, 2020, 168(3): 576-589. |
| 7 | Abedi T, Pakniyat H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 2010, 46(1): 27-34. |
| 8 | Majeed S, Nawaz F, Naeem M, et al. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiology and Biochemistry, 2020, 155: 147-160. |
| 9 | Cai Z S. Effects of exogenous NO on seed germination and drought resistance of alfalfa under water stress. Lanzhou: Gansu Agricultural University, 2013. |
| 蔡卓山. 水分胁迫下外源NO对苜蓿种子萌发和幼苗抗旱生理的影响. 兰州: 甘肃农业大学, 2013. | |
| 10 | Zhao Y, Wei X, Long Y, et al. Transcriptional analysis reveals sodium nitroprusside affects alfalfa in response to PEG-induced osmotic stress at germination stage. Protoplasma, 2020, 257: 1345-1358. |
| 11 | Brouquisse R. Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany, 2019, 70(17): 4319-4322. |
| 12 | Shi K, Liu J, Liang H, et al. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. Journal of Integrative Plant Biology, 2024, 66(4): 683-699. |
| 13 | Feng K, Hou X L, Xing G M, et al. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6): 750-776. |
| 14 | Liu K, Yang Q, Yang T, et al. Transcriptome-based identification and expression profiling of AP2/ERF members in Caragana intermedia and functional analysis of CiDREB3. Molecular Biology Reports, 2021, 48(12): 7953-7965. |
| 15 | Jian W N, Zuo P, Zhang G Z, et al. Cloning and functional analysis of MsERF003 gene in drought stress from Medicago sativa. Molecular Plant Breeding, 2020, 18(17): 5674-5681. |
| 坚伟宁, 左朋, 张国珍, 等. 紫花苜蓿MsERF003的基因克隆及其在干旱胁迫中的功能分析. 分子植物育种, 2020, 18(17): 5674-5681. | |
| 16 | Jung S E, Bang S W, Kim S H, et al. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. International Journal of Molecular Sciences, 2021, 22(14): 7656. |
| 17 | Chen K, Tang W, Zhou Y, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 2022, 170: 287-295. |
| 18 | Wang Z, Zhao X, Ren Z, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant, Cell & Environment, 2022, 45(2): 312-328. |
| 19 | Zhu X, Wang B, Liu W, et al. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. International Journal of Biological Macromolecules, 2023, 253: 127582. |
| 20 | Li Y, Zhang H, Zhang Q, et al. An AP2/ERF gene, IbRAP2-12, from sweet potato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 2019, 281: 19-30. |
| 21 | Wang Y Q, Xia D N, Wen Q L, et al. Overexpression of a tomato AP2/ERF transcription factor SlERF. B1 increases sensitivity to salt and drought stresses. Scientia Horticulturae, 2022, 304: 111332. |
| 22 | Jin X, Yin X, Ndayambaza B, et al. Genome-wide identification and expression profiling of the ERF gene family in Medicago sativa L. under various abiotic stresses. DNA and Cell Biology, 2019, 38(10): 1056-1068. |
| 23 | Zhang H, Gao S, Lercher M J, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Research, 2012, 40(1): 569-572. |
| 24 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(S2): 202-208. |
| 25 | Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46(1): 296-303. |
| 26 | Gao T, Gao Y, Liu X, et al. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiology, 2021, 21(1): 58. |
| 27 | Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 2012, 41: 808-815. |
| 28 | Li X J, Yang J L, Hao B, et al. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC Plant Biology, 2019, 19(1): 451. |
| 29 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| 30 | Froger A, Hall J E. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments, 2007(6): e253. |
| 31 | Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 5618(300): 445-452. |
| 32 | Ke X W, Zhang J P, Liu G H, et al. Identification of adzuki bean AP2/ERF gene family and expression analysis in response to rust infection. Acta Phytopathologica Sinica, 2020(4): 394-404. |
| 柯希望, 张金鹏, 刘国辉, 等. 小豆AP2/ERF基因家族鉴定及其应答锈菌侵染的表达分析. 植物病理学报, 2020(4): 394-404. | |
| 33 | Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Scientific Reports, 2018, 8(1): 15612. |
| 34 | Zhao Y Z. Genome-wide analysis of the AP2/ERF gene family in maize. Chengdu: Sichuan Agricultural University, 2022. |
| 赵御璋. 玉米AP2/ERF基因家族的分析与鉴定. 成都: 四川农业大学, 2022. | |
| 35 | Keller P A, Yvonne J K E. A primer of genome science. Briefings in Functional Genomics and Proteomics, 2002: 318-319, 10.1093/bfgp/1.3.318. |
| 36 | Liu M, Sun W, Ma Z, et al. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biology, 2019, 19(1): 84. |
| 37 | Ghorbani R, Zakipour Z, Alemzadeh A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. |
| 38 | Guo B J, Wei Y F, Xu R B, et al. Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS One, 2016, 11(9): e0161322. |
| 39 | Ma J, Zhang G Z, Ye Y C, et al. Genome-wide identification and expression analysis of HSF transcription factors in alfalfa (Medicago sativa) under abiotic stress. Plants, 2022, 20(11): 2763. |
| 40 | Zhao Y, Xin X Q, Wei X H. Effects of nitric oxide on nitrogen metabolism of alfalfa under drought stress. Acta Prataculturae Sinica, 2021, 30(9): 86-96. |
| 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响. 草业学报, 2021, 30(9): 86-96. | |
| 41 | Barnard E, McFerran N V, Trudgett A, et al. Detection and localisation of protein-protein interactions in Saccharomyces cerevisiae using a split-GFP method. Fungal Genetics and Biology, 2008, 45(5): 597-604. |
| [1] | Kong-qin WEI, Ying-ying ZHANG, Jin-feng HUI, Chun-hui MA, Qian-bing ZHANG. Effect of phosphate-solubilizing bacteria and phosphorus on non-structural carbohydrate content and the carbon∶nitrogen∶phosphorus stoichiometry of alfalfa roots [J]. Acta Prataculturae Sinica, 2025, 34(5): 40-50. |
| [2] | Ya-qi FENG, Jia-hui CHEN, Jing-ni ZHANG, Chao SUI, Ji-wei CHEN, Zhi-peng LIU, Qiang ZHOU, Wen-xian LIU. Development of high-protein and high-yield associated InDel molecular markers based on re-sequencing in alfalfa [J]. Acta Prataculturae Sinica, 2025, 34(4): 137-149. |
| [3] | Xiao-feng WANG, Bu-dong MA, Hai-xia HUANG, Yong-zhong LUO, Jian-wei QI, Zhuo DENG. Effects of drought stress and rehydration on the physiological characteristics of Gymnocarpos przewalskii seedlings [J]. Acta Prataculturae Sinica, 2025, 34(4): 93-103. |
| [4] | Cai-jin CHEN, Ming-fang BAO, Wen-hu WANG, Ji-hong SHANG, Yan-xia ZENG, Xiao-di SHA, Xin-zhong ZHU, Xue-min WANG, Wen-hui LIU. Current situation and prospects for drought-resistance breeding in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(3): 204-223. |
| [5] | Peng-fei HU, Yu-nong YE, Tong-rui WANG, Jing WANG, Xing WANG, Bing-zhe FU, Xue-qin GAO. Analysis of genetic variation in agronomic of half-sib families of Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(3): 85-96. |
| [6] | Chao MA, Xi-jing SUN, Ya-lan FENG, Shuang ZHOU, Ji-hao JU, Yi WU, Tian-ning WANG, Bin-bin GUO, Jun ZHANG. Genome-wide identification of the GLK gene family in alfalfa and their transcript profiles under osmotic stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 174-190. |
| [7] | Yuan TENG, Bing MA, Xian-zhong WU, Xing WANG, Wen LYU, Hong-wu REN, Zhi-tong WANG. Characteristics of soil water infiltration in replanted alfalfa plots after severe drying of deep soil horizons in loess areas [J]. Acta Prataculturae Sinica, 2025, 34(1): 66-79. |
| [8] | Zhuan-lin BEN, Hui-xing JIN, Xiao-juan WU, Le MU, Jiao-jiao ZHANG, Yun-hua HAN, Hui-min YANG. Leaf nutritional traits of alfalfa at the reproductive stage and their correlations with seed yield under different irrigation and nitrogen fertilization levels in the oasis area of the Hexi Corridor [J]. Acta Prataculturae Sinica, 2025, 34(1): 94-106. |
| [9] | Bao WANG, Zhan-ling XIE, Jing GUO, Yong-peng TANG, Qing MENG, Qing-qing PENG, Jia-bao YANG, De-yu DONG, Hong-yan XU, Tai-zhen GAO, Fan ZHANG, Ying-zhu DUAN. Effects of seed soaking of Avena sativa in fungal fermentation broth on rhizosphere fungal community structure and drought resistance of oats [J]. Acta Prataculturae Sinica, 2024, 33(9): 126-139. |
| [10] | Zheng-yan LI, Zhi-ming XU, Yan LI, Yang LI. Effects of short-term continuous cropping of alfalfa on the growth and soil microenvironment of subsequent sorghum-sudan grass hybrid crops in the Jianghuai area [J]. Acta Prataculturae Sinica, 2024, 33(9): 155-168. |
| [11] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
| [12] | Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress [J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132. |
| [13] | Ying-ying ZHANG, Dan-dan HU, Chun-hui MA, Qian-bing ZHANG. Leaf structure and photosynthetic properties of alfalfa in response to bacteria and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(8): 133-144. |
| [14] | Na WEI, Wen-mao JING, Er-wen XU, Rong-xin WANG, Jing-zhong ZHAO, Xue-e MA, Ji-yu ZHANG, Wen-xian LIU. Functional analysis of the MaERF058 gene in response to drought stress in Melilotus albus [J]. Acta Prataculturae Sinica, 2024, 33(8): 159-169. |
| [15] | Wei LI, Han WANG, Chang-qing WANG, Yu-xin PAN, Jian-rong HOU, Wen-juan KANG, Su-qin SHANG, Shang-li SHI. Responses to temperature of population parameters of the pest mite Sancassania alfalfa fed on alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(8): 181-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||