Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (11): 76-86.DOI: 10.11686/cyxb2021113
Previous Articles Next Articles
Rong-rong LIU1(), Ping WANG1, Xin-ling DAI1, Ke-yu CHEN1, Guo-liang LI2, Xin-rong WAN2, Bao-ming JI1()
Received:
2021-03-24
Revised:
2021-04-19
Online:
2021-10-19
Published:
2021-10-19
Contact:
Bao-ming JI
Rong-rong LIU, Ping WANG, Xin-ling DAI, Ke-yu CHEN, Guo-liang LI, Xin-rong WAN, Bao-ming JI. Effects of different densities of Brandt’s voles on communities of mycorrhizal fungal in the typical steppe of Inner Mongolia[J]. Acta Prataculturae Sinica, 2021, 30(11): 76-86.
密度处理 Density treatment | 土壤含水量 Soil moisture (%) | pH | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 土壤有机质 SOM (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
低密度Low density | 8.48±0.39a | 7.48±0.07a | 1.48±0.07a | 0.34±0.01a | 11.46±0.36a | 23.10±0.96a | 6.68±0.17a | 1.31±0.03b |
中密度Medium density | 8.74±0.41a | 7.39±0.05a | 1.33±0.05a | 0.33±0.01a | 10.96±0.50a | 19.58±0.60b | 5.27±0.16ab | 1.52±0.18b |
高密度High density | 5.87±0.49b | 7.14±0.23b | 1.14±0.02b | 0.27±0.01b | 11.70±0.29a | 17.31±0.27c | 4.17±0.37b | 2.22±0.25a |
Table 1 Soil characteristics in different densities of Brandt’s voles
密度处理 Density treatment | 土壤含水量 Soil moisture (%) | pH | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 有效磷 AP (mg·kg-1) | 土壤有机质 SOM (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
低密度Low density | 8.48±0.39a | 7.48±0.07a | 1.48±0.07a | 0.34±0.01a | 11.46±0.36a | 23.10±0.96a | 6.68±0.17a | 1.31±0.03b |
中密度Medium density | 8.74±0.41a | 7.39±0.05a | 1.33±0.05a | 0.33±0.01a | 10.96±0.50a | 19.58±0.60b | 5.27±0.16ab | 1.52±0.18b |
高密度High density | 5.87±0.49b | 7.14±0.23b | 1.14±0.02b | 0.27±0.01b | 11.70±0.29a | 17.31±0.27c | 4.17±0.37b | 2.22±0.25a |
环境因子 Environmental variables | 菌丝密度 Hyphal length density | 菌丝侵染率 Mycorrhizal colonization | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index |
---|---|---|---|---|
全氮Total nitrogen | 0.68** | 0.14 | 0.32 | 0.18 |
全磷Total phosphorus | 0.71** | 0.28 | 0.45 | 0.39 |
酸碱度pH | 0.89** | 0.63** | 0.50* | 0.56* |
土壤含水量 Soil moisture | 0.76** | 0.62** | 0.45 | 0.58* |
土壤有机质 Soil organic matter | 0.64** | 0.05 | 0.23 | 0.14 |
硝态氮Nitrate nitrogen | -0.60** | -0.31 | -0.45 | -0.36 |
物种丰富度Species richness | 0.55* | 0.26 | 0.07 | 0.03 |
物种香农威纳指数Shannon-Wiener index | 0.77** | 0.59* | 0.51* | 0.44 |
Table 2 Correlation analysis of hyphal length density, mycorrhizal rate, AMF community diversity and environmental variables
环境因子 Environmental variables | 菌丝密度 Hyphal length density | 菌丝侵染率 Mycorrhizal colonization | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index |
---|---|---|---|---|
全氮Total nitrogen | 0.68** | 0.14 | 0.32 | 0.18 |
全磷Total phosphorus | 0.71** | 0.28 | 0.45 | 0.39 |
酸碱度pH | 0.89** | 0.63** | 0.50* | 0.56* |
土壤含水量 Soil moisture | 0.76** | 0.62** | 0.45 | 0.58* |
土壤有机质 Soil organic matter | 0.64** | 0.05 | 0.23 | 0.14 |
硝态氮Nitrate nitrogen | -0.60** | -0.31 | -0.45 | -0.36 |
物种丰富度Species richness | 0.55* | 0.26 | 0.07 | 0.03 |
物种香农威纳指数Shannon-Wiener index | 0.77** | 0.59* | 0.51* | 0.44 |
1 | Lou P Q, Fu B L, Liu H X, et al. Dynamic evaluation of grassland ecosystem services in Xilingol League. Acta Ecologica Sinica, 2019, 39(11): 3837-3849. |
娄佩卿, 付波霖, 刘海新, 等. 锡林郭勒盟草地生态系统服务功能价值动态估算. 生态学报, 2019, 39(11): 3837-3849. | |
2 | Jiang Y E, Wang D, Yi J, et al. Study on the habitat characteristics of Brandt’s vole. Acta Agrestia Sinica, 2012, 20(1): 179-182. |
蒋永恩, 王登, 易津, 等. 布氏田鼠栖息地特征的研究. 草地学报, 2012, 20(1): 179-182. | |
3 | Zhong W Q. Role of rodent in grassland ecosystem and scientific management. Bulletin of Biology, 2008(1): 1-3. |
钟文勤. 啮齿动物在草原生态系统中的作用与科学管理. 生物学通报, 2008(1): 1-3. | |
4 | Sun F, Chen W Y, Liu L, et al. Effects of plateau pika activities on seasonal plant biomass and soil properties in the alpine meadow ecosystems of the Tibetan Plateau. Grassland Science, 2015, 61(4): 195-203. |
5 | Pang X P, Guo Z G. Effects of plateau pika disturbance levels on the plant diversity and biomass of an alpine meadow. Grassland Science, 2018, 64(3): 159-166. |
6 | Qin Y, Chen J J, Yi S H. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 84: 287-291. |
7 | Chen J J, Yi S H, Qin Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma, 2017, 297: 1-9. |
8 | Liu Y S, Fan J W, Harris W, et al. Effects of plateau pika (Ochotona curzoniae) on net ecosystem carbon exchange of grassland in the Three Rivers Headwaters region, Qinghai-Tibet, China. Plant and Soil, 2013, 366(1): 491-504. |
9 | Yu H L, Fan J W, Li Y Z, et al. Effects of Myospalax baileyi disturbance on plant community at alpine meadow in Three Rivers Headwater region, China. Chinese Journal of Applied Ecology, 2018, 29(6): 1902-1910. |
于海玲, 樊江文, 李愈哲, 等. 高原鼢鼠干扰对三江源区高寒草甸群落特征的影响. 应用生态学报, 2018, 29(6): 1902-1910. | |
10 | Liu Y D, Fan J W, Shi Z J, et al. Relationships between plateau pika (Ochotona curzoniae) densities and biomass and biodiversity indices of alpine meadow steppe on the Qinghai-Tibet Plateau, China. Ecological Engineering, 2017, 102: 509-518. |
11 | Lindtner P, Ujházy K, Svitok M, et al. The European ground squirrel increases diversity and structural complexity of grasslands in the Western Carpathians. Mammal Research, 2018, 63(2): 223-229. |
12 | Pang X P, Wang Q, Guo Z G. The impact of the plateau pika on the relationship between plant aboveground biomass and plant species richness. Land Degradation & Development, 2021, 32(3): 1205-1212. |
13 | Ding J X, Chen K L, Cui H, et al. Disturbance of Ochotona curzoniae on soil respiration in alpine marsh meadow plateau. Ecological Science, 2019, 38(6): 1-7. |
丁俊霞, 陈克龙, 崔航, 等. 高原鼠兔对高寒沼泽草甸土壤呼吸的干扰. 生态科学, 2019, 38(6): 1-7. | |
14 | Hagenah N, Bennett N C. Mole rats act as ecosystem engineers within a biodiversity hotspot, the Cape Fynbos. Journal of Zoology, 2013, 289(1): 19-26. |
15 | Galiano D, Kubiak B B, Overbeck G E, et al. Effects of rodents on plant cover, soil hardness, and soil nutrient content: A case study on tuco-tucos (Ctenomys minutus). Acta Theriologica, 2014, 59(4): 583-587. |
16 | Yu C, Zhang J, Pang X P, et al. Soil disturbance and disturbance intensity: Response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma, 2017, 307: 98-106. |
17 | Kivlin S N, Hawkes C V. Differentiating between effects of invasion and diversity: Impacts of aboveground plant communities on belowground fungal communities. New Phytologist, 2011, 189(2): 526-535. |
18 | Ma J G, Hou F J, Saman. Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau. Pratacultural Science, 2019, 36(12): 3033-3040. |
马建国, 侯扶江, Saman. 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响. 草业科学, 2019, 36(12): 3033-3040. | |
19 | Khalvati M A, Hu Y, Mozafar A, et al. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 2005, 7(6): 706-712. |
20 | Bowles T M, Jackson L E, Cavagnaro T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 2018, 24(1): 171-182. |
21 | Shi W Q, Ding X D, Zhang S R. Effects of arbuscular mycorrhizal fungi on Leymus chinensis growth and soil carbon. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 357-362. |
石伟琦, 丁效东, 张士荣. 丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响. 西北植物学报, 2011, 31(2): 357-362. | |
22 | Mardhiah U, Caruso T, Gurnell A, et al. Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 2016, 99: 137-140. |
23 | Li Y M, Jiang L L, Lv W W, et al. Fungal pathogens pose a potential threat to animal and plant health in desertified and pika-burrowed alpine meadows on the Tibetan Plateau. Canadian Journal of Microbiology, 2019, 65(5): 365-376. |
24 | Chen Y L, Zhang X, Ye J S, et al. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology and Biochemistry, 2014, 69: 371-381. |
25 | Landis F C, Gargas A, Givnish T J. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 2004, 164(3): 493-504. |
26 | Zhong W, Wang G, Zhou Q, et al. Effects of winter food availability on the abundance of Daurian pikas (Ochotona dauurica) in Inner Mongolian grasslands. Journal of Arid Environments, 2008, 72(7): 1383-1387. |
27 | Dai X L, Wang P, Liu R R, et al. Effects of extreme drought on community composition of arbuscular mycorrhizal fungi in the typical grasslands in Inner Mongolia during different growing seasons. Pratacultural Science, 2020, 37(8): 1440-1447. |
代心灵, 王平, 刘荣荣, 等. 极端干旱条件对不同生长季内蒙古典型草原丛枝菌根真菌群落组成的影响. 草业科学, 2020, 37(8): 1440-1447. | |
28 | Lu R K. Methods of agricultural chemical analysis of soil. Beijing: China Agriculture Science and Technique Press, 2000: 12-193. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 12-193. | |
29 | Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter//Sparks D L, Page A L, Helmke P A, et al. Methods of soil analysis. Part 3: Chemical methods. Madison, Wisconsin, USA: Soil Science Society of America, 1996: 961-1010. |
30 | Bremner J M, Mulvaney C S. Nitrogen-total//Page A L, Miller R H, Keeney D R, et al. Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd Edition). Madison: American Society of Agronomy, 1982: 595-624. |
31 | Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, 1954, 939: 1-19. |
32 | Hautier Y, Isbell F, Borer E T, et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2(1): 50-56. |
33 | Sun M F. Research on investigation and evaluation of plant community landscape in Shennong City, Zhuzhou. Changsha: Central South University of Forestry and Technology, 2017. |
孙美芳. 株洲神农城植物群落景观调查与评价研究. 长沙: 中南林业科技大学, 2017. | |
34 | Yang Z Y, Jiang X L. The harm of plateau pika on grassland vegetation and its control threshold value. Pratacultural Science, 2002(4): 63-65 |
杨振宇, 江小蕾. 高原鼠兔对草地植被的危害及防治阈值研究. 草业科学, 2002(4): 63-65 | |
35 | Zhang X L, Li G. Effects of rodents activities on grazing land and ecosystem in alpine meadow. Pratacultural Science, 2015, 32(5): 816-822. |
张兴禄, 李广. 高原鼠兔和高原鼢鼠在高寒草甸生态系统的作用. 草业科学, 2015, 32(5): 816-822. | |
36 | Semenov Y, Ramousse R, Berre M L, et al. Impact of the black-capped marmot (Marmota camtschatica bungei) on floristic diversity of arctic tundra in Northern Siberia. Arctic, Antarctic, and Alpine Research, 2001, 33(2): 204-210. |
37 | Root M, Ebensperger L A. Meta-analysis of the effects of small mammal disturbances on species diversity, richness and plant biomass. Austral Ecology, 2013, 38(3): 289-299. |
38 | Sun F D, Long R J, Lu C X, et al. Effects of rodent activities on primary productivity and soil physical characteristics in alpine meadow. Research of Soil and Water Conservation, 2009, 16: 225-229. |
39 | Zhou W P, Xiang D, Hu Y J, et al. Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33(11): 3383-3393. |
周文萍, 向丹, 胡亚军, 等. 长期围封对不同放牧强度下草地植物和AM真菌群落恢复的影响. 生态学报, 2013, 33(11): 3383-3393. | |
40 | Li C C, Zhou Y X, Gu Q, et al. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan Region. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
李聪聪, 周亚星, 谷强, 等. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制. 草业学报, 2021, 30(1): 46-58. | |
41 | Hiiesalu I, Paertel M, Davison J, et al. Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. |
42 | Wang Z J, Ma K, Cui H Z, et al. Correlations between arbuscular mycorrhizal fungi and distribution of main grassland types in Ningxia. Acta Prataculturae Sinica, 2020, 29(12): 150-160. |
王占军, 马琨, 崔慧珍, 等. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究. 草业学报, 2020, 29(12): 150-160. | |
43 | Lange M, Eisenhauer N M, Eisenhauer N, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6(1): 1-8. |
44 | Ba L, Ning J X, Wang D L, et al. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil, 2012, 352(1): 143-156. |
45 | Cavagnaro R A, Pero E, Dudinszky N, et al. Under pressure from above: Overgrazing decreases mycorrhizal colonization of both preferred and unpreferred grasses in the Patagonian steppe. Fungal Ecology, 2019(40): 92-97. |
46 | Zi H B, A D L J, Ma L, et al. Changes of ratio of root to soil and soil nutrient content at different grassland types alpine meadow. Southwest China Journal of Agricultural Sciences, 2016, 29(12): 2916-2921. |
字洪标, 阿的鲁骥, 马力, 等. 高寒草甸不同类型草地群落根土比、土壤养分变化. 西南农业学报, 2016, 29(12): 2916-2921. | |
47 | Tian F, Cheng Y X, Zhou G L, et al. Relations of density of pika burrows with plant community structure and soil in alpine meadows on the eastern Qinghai-Tibetan Plateau. Pratacultural Science, 2019, 36(4): 1094-1104. |
田富, 程云湘, 周国利, 等. 高原鼠兔洞穴密度与高寒草甸植物群落结构以及土壤因子的关系. 草业科学, 2019, 36(4): 1094-1104. | |
48 | Lara N, Sassi P, Borghi C E. Effect of herbivory and disturbances by tuco-tucos (Ctenomys mendocinus) on a plant community in the southern Puna Desert. Arctic, Antarctic, and Alpine Research, 2007, 39(1): 110-116. |
49 | Malizia A I, Kittlein M J, Busch C. Influence of the subterranean herbivorous rodent Ctenomys mendocinus on vegetation and soil. Zeitschrift fur Saugetierkunde, 2000, 65(3): 172-182. |
50 | Canals R M, Herman D J, Firestone M K. How disturbance by fossorial mammals alters N cycling in a California annual grassland. Ecology, 2003, 84(4): 875-881. |
51 | Zhang Y, Dong S K, Gao Q Z, et al. Responses of alpine vegetation and soils to the disturbance of plateau pika (Ochotona curzoniae) at burrow level on the Qinghai-Tibetan Plateau of China. Ecological Engineering, 2016, 88: 232-236. |
52 | Luo H Z, Liu W, Yang N, et al. Disturbing effects of plateau zokor (Myospalax baileyi) on soil properties and plant biomass in zoige plateau marshes. Southwest China Journal of Agricultural Sciences, 2020, 33(3): 626-630. |
罗华智, 刘伟, 杨楠, 等. 高原鼢鼠对若尔盖高原湿地草原土壤性质和植物生物量的扰动效应. 西南农业学报, 2020, 33(3): 626-630. | |
53 | Liu B Y, Wang Y, Liu M, et al. Response of vegetation community and soil properties of grassland to different density gradients of Ochotona curzoniae in the Sanjiangyuan Region. Pratacultural Science, 2019, 36(4): 1105-1116. |
刘碧颖, 王毅, 刘苗, 等. 三江源草地植被群落与土壤性质对不同鼠兔密度的响应. 草业科学, 2019, 36(4): 1105-1116. | |
54 | Zhu J X, He N P, Wang Q F, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 2015, 511: 777-785. |
55 | Yang Y H, Ji C J, Ma W H, et al. Significant soil acidification across Northern China’s grasslands during 1980s-2000s. Global Change Biology, 2012, 18(7): 2292-2300. |
56 | Li Q Q, Li A W, Yu X L, et al. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. Science of the Total Environment, 2020, 698: 134320. |
57 | Lu M, Yang Y H, Luo Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189(4): 1040-1050. |
58 | Ngwene B, George E, Claussen W, et al. Phosphorus uptake by cowpea plants from sparingly available or soluble sources as affected by nitrogen form and arbuscular-mycorrhiza-fungal inoculation. Journal of Plant Nutrition and Soil Science, 2010, 173(3): 353-359. |
59 | Li X J, Xu T L, Chen B D, et al. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystem. Chinese Journal of Ecology, 2017, 36(10): 2734-2743. |
李雪静, 徐天乐, 陈保冬, 等. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36(10): 2734-2743. | |
60 | Xiang D, Xu T L, Li H, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinica, 2017, 37(11): 1-10. |
向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 2017, 37(11): 1-10. | |
61 | Xiang D, Verbruggen E, Hu Y, et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of Northern China. New Phytologist, 2014, 204(4): 968-978. |
62 | Uhlmann E, Görke C, Petersen A, et al. Comparison of species diversity of arbuscular mycorrhizal fungi in winter-rainfall areas of South Africa and summer-rainfall areas of Namibia. Mycological Progress, 2004, 3(4): 267-274. |
63 | Martínez-García L B, De Dios J, Pugnaire F I. Impacts of changing rainfall patterns on mycorrhizal status of a shrub from arid environments. European Journal of Soil Biology, 2012, 50: 64-67. |
64 | Deveautour C, Donn S, Power S A, et al. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Molecular Ecology, 2018, 27(8): 2152-2163. |
65 | Xiang D, Veresoglou S D, Rillig M C, et al. Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities. Soil Microbiology, 2016, 72(2): 418-427. |
66 | Seck-Mbengue M F, Muller A, Ngwene B, et al. Transport of nitrogen and zinc to rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4+-N and NO3--N). Symbiosis, 2017, 73(3): 191-200. |
67 | Bai E, Li S, Xu W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451. |
[1] | Jing-jing ZHANG, Zun-chi LIU, Chuang YAN, Yun-xia WANG, Kai LIU, Xin-rong SHI, Zhi-you YUAN. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe [J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81. |
[2] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[3] | ZHAO Xin, WU Zi-long, ZHANG Hao, YANG Xu-zhao, HAN Chao, GAO Jie. Arbuscular mycorrhizal fungal infection rates of flora of the Fengfeng mining area coal gob piles and influence on plant Cd content [J]. Acta Prataculturae Sinica, 2020, 29(5): 78-87. |
[4] | Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
[5] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[6] | LI Zheng-yan, XU Zhi-ming, SHI Shang-li, HE Chun-gui. Effects of different crop rotations on alfalfa yield and soil quality in the Jiang-huai area [J]. Acta Prataculturae Sinica, 2019, 28(8): 28-39. |
[7] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[8] | SU Ting-ting, MA Hong-bin, ZHOU Yao, JIA Xi-yang, ZHANG Rui, ZHANG Shuang-qiao, HU Yan-li. Response of typical steppe grassland soil physical and chemical properties to various ecological restoration measures in the Ningxia Loess Hill Region [J]. Acta Prataculturae Sinica, 2019, 28(4): 34-46. |
[9] | LIN Dong, ZHANG De-gang, McCulley Rebecca L.. Changes in soil microbial biomass and structural differentiation over 5 years in a vegetable-pasture rotation field [J]. Acta Prataculturae Sinica, 2019, 28(11): 22-31. |
[10] | NIE Ming-he, SHEN Yan, RAO Li-xian. Quantitative classification and environmental interpretation of plant communities on the Ningxia typical steppe after 1-21 years of restoration [J]. Acta Prataculturae Sinica, 2018, 27(8): 11-20. |
[11] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[12] | JIA Xi-yang, MA Hong-bin, ZHOU Yao, ZHANG Rui, SU Ting-ting, ZHANG Shuang-qiao, ZHANG Jun. Floristic quantitative classification and successional characteristics of typical grassland under different ecological restoration methods in the Loess Hilly Region of Ningxia [J]. Acta Prataculturae Sinica, 2018, 27(2): 15-25. |
[13] | QI Lin, YANG Ying-bo, ZHANG Bo, ZHAO Wei, WANG Xiao-ling, LIU Yu-hua. Arbuscular mycorrhizal fungi (AMF) enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings [J]. Acta Prataculturae Sinica, 2018, 27(12): 103-112. |
[14] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[15] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||