Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (3): 85-96.DOI: 10.11686/cyxb2023143
Previous Articles Next Articles
Xue WANG(), Xiao-jing LIU(), Jing WANG, Yong WU, Chang-chun TONG
Received:
2023-04-29
Revised:
2023-06-05
Online:
2024-03-20
Published:
2023-12-27
Contact:
Xiao-jing LIU
Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping[J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96.
光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | 光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | ||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | DA | 8.91±0.06ab | 20.44±0.30a | 净光合速率Net photosynthetic rate (Pn,μmol·m-2·s-1) | DA | 30.97±0.40a | 18.79±0.13a |
IA | 8.52±0.17bc | 15.47±0.13b | IA | 25.52±0.26b | 16.00±1.46b | ||
DO | 7.93±0.31c | 7.93±0.31d | DO | 10.55±0.29c | 10.55±0.29c | ||
IO | 9.40±0.26a | 8.81±0.16c | IO | 11.24±0.17c | 15.22±0.24b | ||
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | DA | 305.25±1.35b | 356.45±1.21b | 气孔导度Stomatal conductance (Gs,μmol·m-2·s-1) | DA | 600.73±26.21a | 753.06±15.87a |
IA | 322.43±1.61a | 429.02±6.09a | IA | 419.63±28.30b | 668.73±9.63b | ||
DO | 280.15±4.25c | 280.15±4.25c | DO | 220.00±14.92d | 220.00±14.92c | ||
IO | 266.93±2.85d | 274.50±5.71c | IO | 341.15±7.73c | 229.73±3.06c |
Table 1 Photosynthetic gas exchange parameters of alfalfa and oat under different planting methods
光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | 光合气体参数 Photosynthetic gas parameter | 种植方式 Planting methods | 年份 Years | ||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | DA | 8.91±0.06ab | 20.44±0.30a | 净光合速率Net photosynthetic rate (Pn,μmol·m-2·s-1) | DA | 30.97±0.40a | 18.79±0.13a |
IA | 8.52±0.17bc | 15.47±0.13b | IA | 25.52±0.26b | 16.00±1.46b | ||
DO | 7.93±0.31c | 7.93±0.31d | DO | 10.55±0.29c | 10.55±0.29c | ||
IO | 9.40±0.26a | 8.81±0.16c | IO | 11.24±0.17c | 15.22±0.24b | ||
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | DA | 305.25±1.35b | 356.45±1.21b | 气孔导度Stomatal conductance (Gs,μmol·m-2·s-1) | DA | 600.73±26.21a | 753.06±15.87a |
IA | 322.43±1.61a | 429.02±6.09a | IA | 419.63±28.30b | 668.73±9.63b | ||
DO | 280.15±4.25c | 280.15±4.25c | DO | 220.00±14.92d | 220.00±14.92c | ||
IO | 266.93±2.85d | 274.50±5.71c | IO | 341.15±7.73c | 229.73±3.06c |
种植方式 Planting methods | 碳水化合物含量Carbohydrate content (%) | 碳水化合物积累量Carbohydrate accumulation (g) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 5.11±0.01c | 5.02±0.03c | 1.52±0.01bc | 1.79±0.17b |
IA | 4.87±0.01d | 4.88±0.03c | 1.30±0.07c | 1.47±0.19c |
DO | 11.48±0.06b | 11.48±0.06b | 1.82±0.14b | 1.82±0.14b |
IO | 12.44±0.06a | 12.56±0.06a | 2.50±0.32a | 2.51±0.06a |
Table 2 Carbohydrate content and accumulation of alfalfa and oat under different planting methods
种植方式 Planting methods | 碳水化合物含量Carbohydrate content (%) | 碳水化合物积累量Carbohydrate accumulation (g) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 5.11±0.01c | 5.02±0.03c | 1.52±0.01bc | 1.79±0.17b |
IA | 4.87±0.01d | 4.88±0.03c | 1.30±0.07c | 1.47±0.19c |
DO | 11.48±0.06b | 11.48±0.06b | 1.82±0.14b | 1.82±0.14b |
IO | 12.44±0.06a | 12.56±0.06a | 2.50±0.32a | 2.51±0.06a |
种植方式 Planting methods | 氮积累量Nitrogen accumulation | 蛋白总量Total protein content | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 1.05±0.01a | 1.22±0.07a | 6.57±0.05a | 7.61±0.43a |
IA | 0.86±0.06b | 0.89±0.07b | 5.36±0.37b | 5.54±0.44b |
DO | 0.36±0.03c | 0.36±0.03c | 2.25±0.16c | 2.25±0.16c |
IO | 0.47±0.04c | 0.49±0.00c | 2.96±0.27c | 3.09±0.02c |
Table 3 N accumulation and total protein content of alfalfa and oat under different planting methods (g)
种植方式 Planting methods | 氮积累量Nitrogen accumulation | 蛋白总量Total protein content | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
DA | 1.05±0.01a | 1.22±0.07a | 6.57±0.05a | 7.61±0.43a |
IA | 0.86±0.06b | 0.89±0.07b | 5.36±0.37b | 5.54±0.44b |
DO | 0.36±0.03c | 0.36±0.03c | 2.25±0.16c | 2.25±0.16c |
IO | 0.47±0.04c | 0.49±0.00c | 2.96±0.27c | 3.09±0.02c |
项目 Item | 地上生物量 Aboveground biomass | 蒸腾速率 Transpiration rate (Tr) | 净光合 速率 Net photosynthetic rate (Pn) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | 气孔导度 Stomatal conductance (Gs) | 核酮糖-1,5-二磷酸羧化酶 Ribulose-1,5-bisphosphate carboxylase (RuBPCase) | 碳水化合物含量 Carbohydrate content (Carbo) | 硝酸还原酶 Nitrate reductase (NR) | 亚硝酸还原酶 Nitrate reductase (NiR) | 谷氨酰胺合成酶 Glutamine synthetase (GS) | 谷氨酸 合酶 Glutamate synthase (GOGAT) | 氮积累量 Nitrogen accumulation (NA) | 蛋白总量Total protein content (TP) | 总根长Total root length (RL) | 根表面积Root surface area (RSA) | 根平均直径Root average diameter (RAD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | 0.936 | |||||||||||||||
Pn | 0.940 | 0.994** | ||||||||||||||
Ci | 0.631 | 0.700 | 0.771 | |||||||||||||
Gs | 0.925 | 0.993** | 0.999** | 0.782 | ||||||||||||
RuBPCase | -0.607 | -0.791 | -0.828 | -0.920 | -0.848 | |||||||||||
Carbo | -0.772 | -0.891 | -0.926 | -0.933 | -0.937 | 0.972* | ||||||||||
NR | 0.970* | 0.978* | 0.991** | 0.772 | 0.986* | -0.781 | -0.902 | |||||||||
NiR | 0.885 | 0.947 | 0.976* | 0.892 | 0.979* | -0.904 | -0.979* | 0.970* | ||||||||
GS | 0.945 | 0.966* | 0.988* | 0.833 | 0.985* | -0.831 | -0.937 | 0.995** | 0.989* | |||||||
GOGAT | 0.867 | 0.936 | 0.968* | 0.906 | 0.972* | -0.919 | -0.986* | 0.960* | 0.999** | 0.982* | ||||||
NA | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | |||||
TP | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | 1.000** | ||||
RL | 0.946 | 0.915 | 0.950* | 0.845 | 0.943 | -0.776 | -0.901 | 0.978* | 0.966* | 0.986* | 0.959* | 0.933 | 0.933 | |||
RSA | 0.895 | 0.957* | 0.983* | 0.876 | 0.985* | -0.897 | -0.974* | 0.976* | 0.999** | 0.991** | 0.998** | 0.974* | 0.974* | 0.966* | ||
RAD | 0.868 | 0.952* | 0.977* | 0.882 | 0.982* | -0.921 | -0.985* | 0.962* | 0.998** | 0.981* | 0.998** | 0.971* | 0.971* | 0.947 | 0.998** | |
RV | 0.850 | 0.935 | 0.965* | 0.907 | 0.971* | -0.933 | -0.991** | 0.951* | 0.997** | 0.975* | 0.999** | 0.956* | 0.956* | 0.946 | 0.996** | 0.998** |
Table 4 The correlation between root system and carbon-nitrogen metabolism indicators
项目 Item | 地上生物量 Aboveground biomass | 蒸腾速率 Transpiration rate (Tr) | 净光合 速率 Net photosynthetic rate (Pn) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | 气孔导度 Stomatal conductance (Gs) | 核酮糖-1,5-二磷酸羧化酶 Ribulose-1,5-bisphosphate carboxylase (RuBPCase) | 碳水化合物含量 Carbohydrate content (Carbo) | 硝酸还原酶 Nitrate reductase (NR) | 亚硝酸还原酶 Nitrate reductase (NiR) | 谷氨酰胺合成酶 Glutamine synthetase (GS) | 谷氨酸 合酶 Glutamate synthase (GOGAT) | 氮积累量 Nitrogen accumulation (NA) | 蛋白总量Total protein content (TP) | 总根长Total root length (RL) | 根表面积Root surface area (RSA) | 根平均直径Root average diameter (RAD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tr | 0.936 | |||||||||||||||
Pn | 0.940 | 0.994** | ||||||||||||||
Ci | 0.631 | 0.700 | 0.771 | |||||||||||||
Gs | 0.925 | 0.993** | 0.999** | 0.782 | ||||||||||||
RuBPCase | -0.607 | -0.791 | -0.828 | -0.920 | -0.848 | |||||||||||
Carbo | -0.772 | -0.891 | -0.926 | -0.933 | -0.937 | 0.972* | ||||||||||
NR | 0.970* | 0.978* | 0.991** | 0.772 | 0.986* | -0.781 | -0.902 | |||||||||
NiR | 0.885 | 0.947 | 0.976* | 0.892 | 0.979* | -0.904 | -0.979* | 0.970* | ||||||||
GS | 0.945 | 0.966* | 0.988* | 0.833 | 0.985* | -0.831 | -0.937 | 0.995** | 0.989* | |||||||
GOGAT | 0.867 | 0.936 | 0.968* | 0.906 | 0.972* | -0.919 | -0.986* | 0.960* | 0.999** | 0.982* | ||||||
NA | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | |||||
TP | 0.933 | 0.998** | 0.999** | 0.746 | 0.998** | -0.823 | -0.918 | 0.985* | 0.966* | 0.979* | 0.958* | 1.000** | ||||
RL | 0.946 | 0.915 | 0.950* | 0.845 | 0.943 | -0.776 | -0.901 | 0.978* | 0.966* | 0.986* | 0.959* | 0.933 | 0.933 | |||
RSA | 0.895 | 0.957* | 0.983* | 0.876 | 0.985* | -0.897 | -0.974* | 0.976* | 0.999** | 0.991** | 0.998** | 0.974* | 0.974* | 0.966* | ||
RAD | 0.868 | 0.952* | 0.977* | 0.882 | 0.982* | -0.921 | -0.985* | 0.962* | 0.998** | 0.981* | 0.998** | 0.971* | 0.971* | 0.947 | 0.998** | |
RV | 0.850 | 0.935 | 0.965* | 0.907 | 0.971* | -0.933 | -0.991** | 0.951* | 0.997** | 0.975* | 0.999** | 0.956* | 0.956* | 0.946 | 0.996** | 0.998** |
1 | Zhang D, Long H Y, Jin J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression. Acta Prataculturae Sinica, 2018, 27(10): 15-22. |
张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10): 15-22. | |
2 | Li L, Sun J H, Zhang F S, et al. Root distribution and interactions between intercropped species. Oecologia, 2005, 147(2): 280-290. |
3 | Li J T, Qin X M, Qin H Y, et al. Effects of maize and soybean intercrop on maize root morphological traits and its nitrogen and phosphorus nutrient absorption. Journal of Southern Agriculture, 2022, 53(5): 1348-1356. |
李金婷, 覃潇敏, 覃宏宇, 等. 间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53(5): 1348-1356. | |
4 | Shao Z Q, Liu S Q, Gou Q D, et al. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. Journal of Northeast Agricultural Sciences, 2023, 48(4): 6-11. |
邵泽强, 刘书奇, 勾千冬, 等. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6-11. | |
5 | Sekiya N, Yano K. Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?: Hydrogen stable isotope investigation of xylem waters. Field Crops Research, 2004, 86(2/3): 167-173. |
6 | Wang Y Q, Chao C S, Dai J, et al. Difference in carbon and nitrogen metabolism of rapeseed (Brassica napus L.) with contrasting nitrogen efficiency at seedling stage. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 589-601. |
王玉乾, 巢成生, 代晶, 等. 不同氮效率油菜苗期碳氮代谢差异. 中国油料作物学报, 2022, 44(3): 589-601. | |
7 | Zhao Y J, Liu X J, Tong C C, et al. Effect of alfalfa||maize intercropping on nitrogen metabolism related enzyme activity of maize. Grassland and Turf, 2019, 39(3): 63-71. |
赵雅姣, 刘晓静, 童长春, 等. 紫花苜蓿‖玉米间作对玉米氮代谢相关酶活性的影响. 草原与草坪, 2019, 39(3): 63-71. | |
8 | Deng X Y, Wang X C, Yang W Y, et al. Effects of nitrogen strategies on carbon and nitrogen metabolism of maize in wheat/maize/soybean relay intercropping system. Acta Prataculturae Sinica, 2012, 21(4): 52-61. |
邓小燕, 王小春, 杨文钰, 等. “麦/玉/豆”模式下氮肥运筹对玉米碳氮代谢的影响. 草业学报, 2012, 21(4): 52-61. | |
9 | Lin F, Liu X J, Tong C C, et al. A study of root system characteristics and carbon and nitrogen metabolism of alfalfa and four grass forages in monoculture or intercropped. Acta Prataculturae Sinica, 2019, 28(9): 45-54. |
蔺芳, 刘晓静, 童长春, 等. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究. 草业学报, 2019, 28(9): 45-54. | |
10 | Li J, Wang W L, Zhao X, et al. Effect of roots partitions on interspecific competition and nitrogen fixation in the pea-maize intercropping. Agricultural Research in the Arid Areas, 2016, 34(6): 177-183. |
11 | Yang C, Wang G G, Wang M L. Production and trade of wild oat forage in China. Pratacultural Science, 2017, 34(5): 1129-1135. |
杨春, 王国刚, 王明利. 我国的燕麦草生产和贸易. 草业科学, 2017, 34(5): 1129-1135. | |
12 | Ogindo H O, Walker S. Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping systems in a semi-arid region of Southern Africa. Physics and Chemistry of the Earth, 2005, 30: 799-808. |
13 | Liu Y N. Growth, yield and water use efficiency in winter wheat and alfalfa intercropping systems on the dryland of Loess Plateau. Lanzhou: Lanzhou University, 2020. |
刘亚男. 黄土旱塬区冬小麦/紫花苜蓿间作系统作物生长动态、产量与水分利用效率研究. 兰州: 兰州大学, 2020. | |
14 | Sun Y W, Lyu L, Wang Q, et al. The ecological benefit analysis on the alfalfa/legume intercropping. Acta Agrestia Sinica, 2023, 31(3): 884-892. |
孙元伟, 吕陇, 王琦, 等. 紫花苜蓿/豆科牧草间作的生态效益分析. 草地学报, 2023, 31(3): 884-892. | |
15 | Zhang J Q. The effect of different mixed planting modes of maize and legume on silage quality. Lanzhou: Gansu Agricultural University, 2018. |
张建强. 玉米与豆科不同混播模式对青贮品质的影响. 兰州: 甘肃农业大学, 2018. | |
16 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
17 | Yang H, Zhao Y J, Liu X J. Effects on photosynthesis characteristics and yield regulations in the alfalfa/oat intercropping. Acta Agrestia Sinica, 2023, 31(1): 187-195. |
杨航, 赵雅姣, 刘晓静. 紫花苜蓿/燕麦间作的光合特征及其对产量的调控效应. 草地学报, 2023, 31(1): 187-195. | |
18 | Li C J, Li Y Y, Yu C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in Northwest China. Plant and Soil, 2011, 342: 221-231. |
19 | Lynch J P, Brown K M. New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1598-1604. |
20 | Zhang Z L, Qu W G, Li X F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2009. |
张志良, 瞿伟管, 李小芳. 植物生理学实验指导. 北京: 高等教育出版社, 2009. | |
21 | Zou Q. Experimental guidance for plant physiology. Beijing: China Agriculture Press, 2006: 56-125. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2006: 56-125. | |
22 | Rajasekhar V K, Mohr H. Appearance of nitrite in cotyledons of the mustard (Sinapis alba L.) seedling as affected by nitrate, phytochrome and photooxidative damage of plastids. Planta, 1986, 168: 369-376. |
23 | Zheng C F, Lin Z W. Rapid determination of glutamate synthase activity. Plant Physiology Communications, 1985(4): 43-46. |
郑朝峰, 林振武. 谷氨酸合酶活力的快速测定. 植物生理学通讯, 1985(4): 43-46. | |
24 | Zhang D S, Li H B, Shen J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1547-1555. |
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555. | |
25 | Gao H X, Meng W W, Zhang C C, et al. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security, 2019, 8: 1-2. |
26 | Wang X, Liu X J, Zhao Y J, et al. Dynamic characteristics of nitrogen nutrition in alfalfa/sweet sorghum intercropping under different root interaction intensities. Acta Agrestia Sinica, 2022, 30(1): 76-83. |
汪雪, 刘晓静, 赵雅姣, 等. 不同根系交互强度下紫花苜蓿/甜高粱体内氮营养动态特征研究. 草地学报, 2022, 30(1): 76-83. | |
27 | Sun B R, Gao Y Z, Yang H J, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2019, 439(1/2): 145-161. |
28 | Zhao C, Zhou H Y, Chai Q, et al. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Prataculturae Sinica, 2014, 23(2): 133-139. |
赵财, 周海燕, 柴强, 等. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133-139. | |
29 | Sun G Q, Zhang J H, Wang D Y, et al. Root distribution in tillage layers and yields of pumpkin and oil sunflower in an intercropping system. Chinese Journal of Ecology, 2021, 40(10): 3147-3158. |
孙国庆, 张俊花, 王登燕, 等. 南瓜油葵间作耕作层根系分布与植株产量. 生态学杂志, 2021, 40(10): 3147-3158. | |
30 | Gong X W, Liu C J, Feng N J, et al. Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Plant Physiology Journal, 2017, 53(10): 1867-1876. |
宫香伟, 刘春娟, 冯乃杰, 等. S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017, 53(10): 1867-1876. | |
31 | Li Y J, Gao Y Z. Effects of maize/alfalfa intercropping system and different fertilization methods on photosynthetic characteristics of maize. Journal of Northeast Normal University (Natural Science Edition), 2022, 54(1): 119-125. |
李艳君, 高英志. 玉米/紫花苜蓿间作和不同施肥方式对玉米光合特性的影响. 东北师范大学学报(自然科学版), 2022, 54(1): 119-125. | |
32 | Wang X, Liu X J, Zhao Y J, et al. Effects of alfalfa/oat intercropping on carbon and nitrogen metabolism and matter accumulation of oat. Acta Agrestia Sinica, 2021, 29(10): 2258-2264. |
汪雪, 刘晓静, 赵雅姣, 等. 紫花苜蓿/燕麦间作对燕麦碳、氮代谢及其物质积累的影响研究. 草地学报, 2021, 29(10): 2258-2264. | |
33 | Man B J, Liu J L, He J H, et al. Effect of oat-potato intercropping on photosynthetic characteristics and yield of oat. Journal of Triticeae Crops, 2021, 41(1): 118-126. |
满本菊, 刘吉利, 贺锦红, 等. 燕麦马铃薯间作对燕麦光合特性及产量的影响. 麦类作物学报, 2021, 41(1): 118-126. | |
34 | Lin F, Liu X J, Tong C C, et al. Characteristics of light energy utilization of intercropping alfalfa/gramineae forage based on yield effect. Chinese Journal of Applied Ecology, 2020, 31(9): 2963-2976. |
蔺芳, 刘晓静, 童长春, 等. 基于产量效应的间作紫花苜蓿/禾本科牧草光能利用特征. 应用生态学报, 2020, 31(9): 2963-2976. | |
35 | Gao Y, Wu P T, Zhao X N, et al. Characteristics of light environment and soil temperature in the spring wheat/spring maize intercropping system. Research of Soil and Water Conservation, 2015, 22(3): 163-169. |
高莹, 吴普特, 赵西宁, 等. 春小麦/春玉米间作模式光温环境特征研究. 水土保持研究, 2015, 22(3): 163-169. | |
36 | Yuan Y, Dong Q Q, Jia P Y, et al. Effects of different fertilizers on growth, nitrogen metabolism and yield of maize and peanut under intercropping. Journal of Shenyang Agricultural University, 2022, 53(2): 129-139. |
袁洋, 董奇琦, 贾佩岩, 等. 间作下不同肥料对玉米花生生长发育、氮代谢及产量的影响. 沈阳农业大学学报, 2022, 53(2): 129-139. | |
37 | Song Y X, Yang W Y, Li Z X, et al. Effect of maize-soybean relay cropping shade on nitrogen metabolism of soybean seedlings. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 390-394. |
宋艳霞, 杨文钰, 李卓玺, 等. 套作遮荫对大豆不同品种苗期氮代谢的影响. 中国油料作物学报, 2010, 32(3): 390-394. | |
38 | Wang Y F, Yin W, Hu F L, et al. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agronomica Sinica, 2021, 47(5): 929-941. |
王一帆, 殷文, 胡发龙, 等. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47(5): 929-941. | |
39 | Wang S Y, Li H, Liu Q, et al. Interactive effects of nitrogen and potassium on root growth and leaf enzyme activities of sweet potato. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 167-173. |
汪顺义, 李欢, 刘庆, 等. 氮钾互作对甘薯根系发育及碳氮代谢酶活性的影响. 华北农学报, 2015, 30(5): 167-173. | |
40 | Wang J, Nie Z J, Fu H C, et al. Effects of exogenous Zn2+ on root growth and some key enzymes in nitrogen metabolism in winter wheat seedlings. Journal of Henan Agricultural University, 2018, 52(3): 307-312. |
王佳, 聂兆君, 扶海超, 等. 外源Zn2+对冬小麦幼苗根系生长及部分氮代谢关键酶的影响. 河南农业大学学报, 2018, 52(3): 307-312. |
[1] | Qin FENG, Xiao-li HE, Bin WANG, Teng-fei WANG, Wang NI, Xia MA, Xue-hua MING, Jian-qiang DENG, Jian LAN. A study of mixed sowing effects for oat and common vetch in the Ningxia Yellow River Irrigation Area [J]. Acta Prataculturae Sinica, 2024, 33(3): 107-119. |
[2] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[3] | Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region [J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84. |
[4] | Ying TANG, Xiao-jing LIU, Ya-jiao ZHAO, Lin DONG. Characteristics and driving factors of lactic acid bacteria communities in silage made from alfalfa in different regions of Gansu Province [J]. Acta Prataculturae Sinica, 2024, 33(2): 112-124. |
[5] | Kong-qin WEI, Jun-wei ZHAO, Qian-bing ZHANG. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
[6] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[7] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
[8] | Jia-min ZHANG, Hao GUAN, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Shi-yong CHEN, Yong-mei JIANG, Li GAN, Qing-ping ZHOU, Li-xue YANG. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration [J]. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
[9] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[10] | Chun-yan REN, Guo-ling LIANG, Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(9): 116-129. |
[11] | Yong-hong SHI, Peng GAO, Zhi-hong FANG, Xiang ZHAO, Wei HAN, Jiang-ming WEI, Lin LIU, Jin-zhen LI. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars [J]. Acta Prataculturae Sinica, 2023, 32(9): 130-142. |
[12] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
[13] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[14] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[15] | Rui-jie YANG, Shu-qin HE, Shu-feng ZHOU, Jing-yue YANG, Yu-xian JIN, Zi-cheng ZHENG. Root regulation of soil scourability in hybrid sorghum grass during the growing period [J]. Acta Prataculturae Sinica, 2023, 32(7): 149-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||