Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (3): 73-84.DOI: 10.11686/cyxb2023155
Previous Articles Next Articles
Gen-sheng BAO1,2(), Yuan LI1,3, Xiao-yun FENG1,3, Peng ZHANG1,3, Si-yu MENG1,3
Received:
2023-05-09
Revised:
2023-08-28
Online:
2024-03-20
Published:
2023-12-27
Contact:
Gen-sheng BAO
Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region[J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84.
物种 Species | 测试指标 Measurements | 主区效应Main block effects (M) | 裂区效应Split block effects (S) | 交互效应 M×S | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
燕麦 Oat | 地上生物量 AB | 17.46 | 0.01 | 7.84 | <0.01 | 3.63 | <0.01 |
地下生物量 BB | 106.94 | <0.01 | 8.40 | <0.01 | 26.32 | <0.01 | |
根表面积RSA | 116.63 | <0.01 | 15.99 | <0.01 | 11.39 | <0.01 | |
根体积RV | 287.58 | <0.01 | 4.76 | 0.02 | 7.59 | <0.01 | |
根系平均直径RAD | 53.13 | <0.01 | 3.71 | 0.05 | 13.78 | <0.01 | |
连接数 Co | 79.98 | <0.01 | 40.69 | <0.01 | 11.02 | <0.01 | |
根尖数RT | 15.19 | <0.01 | 6.39 | <0.01 | 0.87 | 0.50 | |
分叉数 F | 148.56 | <0.01 | 176.19 | <0.01 | 21.50 | <0.01 | |
内部连接 Ic | 148.31 | <0.01 | 16.45 | <0.01 | 8.96 | <0.01 | |
外部连接 Ec | 402.64 | <0.01 | 193.66 | <0.01 | 45.83 | <0.01 | |
分形维数 FD | 11.86 | <0.01 | 4.61 | 0.02 | 1.00 | 0.43 | |
拓扑指数 TI | 88.36 | <0.01 | 124.32 | <0.01 | 58.55 | <0.01 | |
豌豆 Pea | 地上生物量 AB | 21.21 | 0.01 | 23.26 | <0.01 | 8.43 | <0.01 |
地下生物量 BB | 1.89 | 0.17 | 17.82 | <0.01 | 1.23 | 0.32 | |
根表面积RSA | 5.98 | 0.01 | 90.73 | <0.01 | 47.08 | <0.01 | |
根体积RV | 28.67 | <0.01 | 52.26 | <0.01 | 38.84 | <0.01 | |
根系平均直径RAD | 2.19 | 0.14 | 4.78 | 0.02 | 11.78 | <0.01 | |
连接数 Co | 25.37 | <0.01 | 171.74 | <0.01 | 49.22 | <0.01 | |
根尖数RT | 3.32 | 0.06 | 86.61 | <0.01 | 17.54 | <0.01 | |
分叉数 F | 6.81 | <0.01 | 107.12 | <0.01 | 40.50 | <0.01 | |
内部连接 Ic | 34.34 | <0.01 | 302.06 | <0.01 | 82.50 | <0.01 | |
外部连接 Ec | 39.60 | <0.01 | 419.59 | <0.01 | 97.37 | <0.01 | |
分形维数 FD | 0.18 | 0.84 | 4.89 | 0.02 | 2.10 | 0.12 | |
拓扑指数 TI | 190.28 | <0.01 | 0.21 | 0.82 | 19.31 | <0.01 |
Table 1 ANOVA of above- and belowground biomass and root morphological parameters in monocropped, mixed and alternate-row intercropped planting patterns for oat and pea under different nitrogen levels
物种 Species | 测试指标 Measurements | 主区效应Main block effects (M) | 裂区效应Split block effects (S) | 交互效应 M×S | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
燕麦 Oat | 地上生物量 AB | 17.46 | 0.01 | 7.84 | <0.01 | 3.63 | <0.01 |
地下生物量 BB | 106.94 | <0.01 | 8.40 | <0.01 | 26.32 | <0.01 | |
根表面积RSA | 116.63 | <0.01 | 15.99 | <0.01 | 11.39 | <0.01 | |
根体积RV | 287.58 | <0.01 | 4.76 | 0.02 | 7.59 | <0.01 | |
根系平均直径RAD | 53.13 | <0.01 | 3.71 | 0.05 | 13.78 | <0.01 | |
连接数 Co | 79.98 | <0.01 | 40.69 | <0.01 | 11.02 | <0.01 | |
根尖数RT | 15.19 | <0.01 | 6.39 | <0.01 | 0.87 | 0.50 | |
分叉数 F | 148.56 | <0.01 | 176.19 | <0.01 | 21.50 | <0.01 | |
内部连接 Ic | 148.31 | <0.01 | 16.45 | <0.01 | 8.96 | <0.01 | |
外部连接 Ec | 402.64 | <0.01 | 193.66 | <0.01 | 45.83 | <0.01 | |
分形维数 FD | 11.86 | <0.01 | 4.61 | 0.02 | 1.00 | 0.43 | |
拓扑指数 TI | 88.36 | <0.01 | 124.32 | <0.01 | 58.55 | <0.01 | |
豌豆 Pea | 地上生物量 AB | 21.21 | 0.01 | 23.26 | <0.01 | 8.43 | <0.01 |
地下生物量 BB | 1.89 | 0.17 | 17.82 | <0.01 | 1.23 | 0.32 | |
根表面积RSA | 5.98 | 0.01 | 90.73 | <0.01 | 47.08 | <0.01 | |
根体积RV | 28.67 | <0.01 | 52.26 | <0.01 | 38.84 | <0.01 | |
根系平均直径RAD | 2.19 | 0.14 | 4.78 | 0.02 | 11.78 | <0.01 | |
连接数 Co | 25.37 | <0.01 | 171.74 | <0.01 | 49.22 | <0.01 | |
根尖数RT | 3.32 | 0.06 | 86.61 | <0.01 | 17.54 | <0.01 | |
分叉数 F | 6.81 | <0.01 | 107.12 | <0.01 | 40.50 | <0.01 | |
内部连接 Ic | 34.34 | <0.01 | 302.06 | <0.01 | 82.50 | <0.01 | |
外部连接 Ec | 39.60 | <0.01 | 419.59 | <0.01 | 97.37 | <0.01 | |
分形维数 FD | 0.18 | 0.84 | 4.89 | 0.02 | 2.10 | 0.12 | |
拓扑指数 TI | 190.28 | <0.01 | 0.21 | 0.82 | 19.31 | <0.01 |
Fig.1 Effect of nitrogen addition on above- and belowground biomass of monocropped, mixed and alternate-row intercropped planting patterns for oat and pea
Fig.3 Effect of nitrogen addition on root morphology in root topological index and fractal dimension in monocropped, mixed and alternate-row intercropped planting patterns for oat and pea
Fig.4 Structural equation model (SEM) based on effects of nitrogen addition and intercropped planting patterns on root architecture and root biomass for oat and pea
1 | Wang Y F, Lyu W W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3: 668-683. |
2 | Shen M G, Wang S P, Jiang N, et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 633-651. |
3 | Liu X, Ma Z W, Huang X T, et al. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau? Global Ecology and Conservation, 2020, 23: e01066. |
4 | Wang Y X, Sun Y, Wang Z F, et al. Grazing management options for restoration of alpine grasslands on the Qinghai-Tibet Plateau. Ecosphere, 2018, 9(11): e02515. |
5 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
6 | Schaub S, Finger R, Leiber F, et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nature Communications, 2020, 11(1): 768. |
7 | Bai Y F, Yu Z, Yang Q C, et al. Mechanisms regulating the productivity and stability of artificial grasslands in China: Issues, progress, and prospects. Chinese Science Bulletin, 2018, 63(5/6): 511-520. |
白永飞, 玉柱, 杨青川, 等. 人工草地生产力和稳定性的调控机理研究: 问题、进展与展望. 科学通报, 2018, 63(5/6): 511-520. | |
8 | Panchal P, Preece C, Peñuelas J, et al. Soil carbon sequestration by root exudates. Trends in Plant Science, 2022, 27(8): 749-757. |
9 | Yan H L, Gu S S, Li S Z, et al. Grass-legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems & Environment, 2022, 338: 108087. |
10 | Wang X Y, Gao Y Z. Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation. Chinese Science Bulletin, 2020, 65(2/3): 142-149. |
王新宇, 高英志. 禾本科/豆科间作促进豆科共生固氮机理研究进展. 科学通报, 2020, 65(2/3): 142-149. | |
11 | Li C J, Hoffland E, Kuyper T W, et al. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6(6): 653-660. |
12 | Li X F, Wang Z G, Bao X G, et al. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4(11): 943-950. |
13 | Yu Y, Stomph T J, Makowski D, et al. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management. Field Crops Research, 2016, 198: 269-279. |
14 | Yu Y, Stomph T J, Makowski D, et al. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 2015, 184: 133-144. |
15 | Brooker R W, Bennett A E, Cong W F, et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206(1): 107-117. |
16 | Li R, Zhang Z X, Tang W, et al. Common vetch cultivars improve yield of oat row intercropping on the Qinghai-Tibetan plateau by optimizing photosynthetic performance. European Journal of Agronomy, 2020, 117: 126088. |
17 | Zhu Y Q, Zheng W, Wang X, et al. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures. Acta Prataculturae Sinica, 2018, 27(1): 73-85. |
朱亚琼, 郑伟, 王祥,等. 混播方式对豆禾混播草地植物根系构型特征的影响. 草业学报, 2018, 27(1): 73-85. | |
18 | Wang Z K, Zhang X M, Ma Q H, et al. Seed mixture of oats and common vetch on fertilizer and water-use reduction in a semi-arid alpine region. Soil and Tillage Research, 2022, 219: 105329. |
19 | Kong X P, Zhang M L, De Smet I, et al. Designer crops: optimal root system architecture for nutrient acquisition. Trends in Biotechnology, 2014, 32(12): 597-598. |
20 | Ehrmann J, Ritz K. Plant: Soil interactions in temperate multi-cropping production systems. Plant and Soil, 2014, 376(1/2): 1-29. |
21 | Homulle Z, George T S, Karley A J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant and Soil, 2021(1/2), 471: 1-26. |
22 | Hassan A, Dresbøll D B, Rasmussen C R, et al. Root distribution in intercropping systems-a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 2021, 67(1): 15-28. |
23 | Zhang D S, Lyu Y, Li H B, et al. Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrient-use efficiency. New Phytologist, 2020, 226(1): 244-253. |
24 | Bouma T, Nielsen K, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
25 | Fitter A. An architectural approach to the comparative ecology of plant root systems. New Phytologist, 1987, 106: 61-77. |
26 | Zhu Y Q, Li S S, Wang N X, et al. Effects of rhizobium-root system-arbuscular mycorrhizal fungi features on nitrogen fixation and transfer efficiency of mixed sowing meadow. Chinese Journal of Grassland, 2022, 44(11): 18-31. |
朱亚琼, 黎松松, 王宁欣, 等. 根瘤菌-根系构型-丛枝菌根真菌对混播草地氮素固定与转移效率的影响. 中国草地学报, 2022, 44(11): 18-31. | |
27 | Taylor B N, Menge D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4(9): 655-661. |
28 | Ramirez-Garcia J, Martens H J, Quemada M, et al. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. Journal of Plant Ecology, 2015, 8(4): 380-389. |
29 | Corre-Hellou G, Brisson N, Launay M, et al. Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crops Research, 2007, 103(1): 76-85. |
30 | Zhang H M, Jennings A, Barlow P W, et al. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences, 1999, 96(11): 6529-6534. |
31 | He J T, Ma X, Ju Z L, et al. Effects of intercropping between oat and broad bean on crop growth and yield in alpine region. Acta Agrestia Sinica, 2022, 30(9): 2514-2521. |
何纪桐, 马祥, 琚泽亮, 等. 高寒地区燕麦与蚕豆间作对作物生长发育及产量的影响. 草地学报, 2022, 30(9): 2514-2521. | |
32 | Gang Y H, Zhang H B, Chen Y L, et al. Mixture combination and mixed ratio of triticale and legumes in the eastern agricultural region of Qinghai. Pratacultural Science, 2021, 38(11): 2274-2285. |
刚永和, 张海博, 陈永珑, 等. 青海东部农区小黑麦与豆科牧草的混播组合与混播比例. 草业科学, 2021, 38(11): 2274-2285. | |
33 | Khan T, Nadeem F, Gao Y, et al. A larger root system in oat (Avena nuda L.) is coupled with enhanced biomass accumulation and hormonal alterations under low nitrogen. Applied Ecology and Environmental Research, 2019, 17(2): 4631-4653. |
34 | Lynch J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytologist, 2019, 223(2): 548-564. |
35 | Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162(1): 9-24. |
36 | Zheng C C, Bochmann H, Liu Z G, et al. Plant root plasticity during drought and recovery: What do we know and where to go? Frontiers in Plant Science, 2023, 14: 1084355. |
37 | Wang J Y, Wang H Q, Liang X D, et al. Response of root morphology and N absorption to nitrate nitrogen supply in hydroponic oats. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1049-1055. |
王俊英, 王华青, 梁晓东, 等. 水培燕麦根系形态和氮吸收流量对硝态氮供应浓度的响应. 植物营养与肥料学报, 2016, 22(4): 1049-1055. | |
38 | Li L, Sun J, Zhang F, et al. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290. |
39 | Li Y Y, Hu H S, Cheng X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in faba bean/maize intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. |
李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. | |
40 | Wu X J, Yang M, Lu Y X, et al. Effects of mixing ratio and nitrogen fertilization on root characteristics in the common vetch/oat mixture. Acta Prataculturae Sinica, 2020, 29(9): 106-116. |
吴晓娟, 杨梅, 芦奕晓, 等. 混播比例和施氮肥对箭筈豌豆/燕麦草地根系特性的影响. 草业学报, 2020, 29(9): 106-116. |
[1] | Qin FENG, Xiao-li HE, Bin WANG, Teng-fei WANG, Wang NI, Xia MA, Xue-hua MING, Jian-qiang DENG, Jian LAN. A study of mixed sowing effects for oat and common vetch in the Ningxia Yellow River Irrigation Area [J]. Acta Prataculturae Sinica, 2024, 33(3): 107-119. |
[2] | Wen-long LI, Feng LI, Zhong-juan ZHANG, Dian-qing WANG, Huan WANG, Hui-qing JIN, Mu-re TE, Zhi-ling HU, Ya TAO. A performance evaluation of two crops of forage oats per year in the northern Ordos Plateau [J]. Acta Prataculturae Sinica, 2024, 33(1): 159-168. |
[3] | Jia-min ZHANG, Hao GUAN, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Shi-yong CHEN, Yong-mei JIANG, Li GAN, Qing-ping ZHOU, Li-xue YANG. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration [J]. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
[4] | Chun-yan REN, Guo-ling LIANG, Wen-hui LIU, Kai-qiang LIU, Jia-lei DUAN. Screening and adaptability evaluation of early maturing oats in alpine regions of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(9): 116-129. |
[5] | Yong-hong SHI, Peng GAO, Zhi-hong FANG, Xiang ZHAO, Wei HAN, Jiang-ming WEI, Lin LIU, Jin-zhen LI. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars [J]. Acta Prataculturae Sinica, 2023, 32(9): 130-142. |
[6] | Zhen-fen ZHANG, Rong HUANG, Xiang-yang LI, Bo YAO, Gui-qin ZHAO. Seed-borne bacterial diversity of oat and functional analysis based on Illumina MiSeq high-throughput sequencing [J]. Acta Prataculturae Sinica, 2023, 32(7): 96-108. |
[7] | Xiao-ming CHEN, Dong-ying HAN, Gui-long SONG. Effect of arsenic stress on arsenic uptake and root morphological changes in seashore paspalum [J]. Acta Prataculturae Sinica, 2023, 32(6): 112-119. |
[8] | Shao-ying MA, Gui-ping CHEN, Na WANG, Lei MA, Rong-fang LIAN, Sheng LI, Xu-cheng ZHANG. Identification of potential autotoxic substances in pea soil and analysis of their autotoxic effects [J]. Acta Prataculturae Sinica, 2023, 32(6): 134-145. |
[9] | Zi-fan WANG, Xiao-qing ZHANG, Zhi-ming ZHONG, Xin QUAN. Effects of oat hay and oat cubes on feeding behavior and production performance of Pengbo semi-fine wool sheep [J]. Acta Prataculturae Sinica, 2023, 32(5): 171-179. |
[10] | Yi-dan YAN, Ying-ying NIE, Li-jun XU, Xing-fa GAO, Yan-zhang RAO, Xiong RAO, Hong-zhi ZHANG, Cha-shu ZHAO, Yan-ping ZHU, Yu-bo ZHU. Potential excavation and evaluation of functional oat varieties in winter fallow field of southwest mountainous area [J]. Acta Prataculturae Sinica, 2023, 32(4): 42-53. |
[11] | Mao-jian WANG, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area [J]. Acta Prataculturae Sinica, 2023, 32(3): 13-29. |
[12] | Le-le SU, Yan QIN, Zhao-min WANG, Yong-chao ZHANG, Wen-hui LIU. Soil nutrient and microbial activity responses to nitrogen and phosphorus addition in oats and arrowhead peas in monocrop and mixed sowings [J]. Acta Prataculturae Sinica, 2023, 32(3): 56-66. |
[13] | Lu-ping WEI, Qing-ping ZHOU, Fang LIU, Ji-zhen LIN, Yuan ZHAN, Hui WANG. Variation in ear characteristics and estimation of photosynthetic contributions to oat ear development using techniques of ear shading and glume removal [J]. Acta Prataculturae Sinica, 2023, 32(2): 110-118. |
[14] | Jian-xin LIU, Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI. Effects of exogenous hydrogen sulfide on amino acid metabolism in naked oat leaves under saline-alkali stress [J]. Acta Prataculturae Sinica, 2023, 32(2): 119-130. |
[15] | Xue-ling YE, Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU. Advances and perspectives in forage oat breeding [J]. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||