Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (4): 104-123.DOI: 10.11686/cyxb2024185
Ting MA(
), Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA(
)
Received:2024-05-20
Revised:2024-06-25
Online:2025-04-20
Published:2025-02-19
Contact:
Hui-ling MA
Ting MA, Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA. Differentially expressed genes and related pathways in root systems of Astragalus cicer under NaCl stress[J]. Acta Prataculturae Sinica, 2025, 34(4): 104-123.
| 名称Name | 描述Description | 上游引物Forward primer | 下游引物Reverse primer |
|---|---|---|---|
| CHI | 查尔酮异构酶Chalcone isomerase | TGCACCACCGAGGAAATAGG | GGGTATGGCAGCAACAATGG |
| CHR1 | 查尔酮还原酶1 Chalcone reductase 1 | AGCTCTTGGGAACAAACGTG | AGCTAGCAGGGGACCAAATG |
| F3'H | 类黄酮3'-羟化酶Flavonoid 3'-hydroxylase | CGTCCAGCACCAAAGGGTAT | GCCATAGCTCGTGACCCAAA |
| CHS | 查尔酮合成酶Chalcone synthase | CCAGGTGGTCCTGCAATTCT | GAGGACACAAGCACTCGACA |
| CHS1A-like | 查尔酮合成酶1A-like Chalcone synthase 1A-like | TGTCACACATGCGTCTGAACT | CCTGCCACTGTCTTGGCAAT |
| CYP450 | 细胞色素P450 Cytochrome P450 | ACGCATTTTGCGCCAATGAT | TGGCCACCCAAGTTCTACAC |
| C4H | 反肉桂酸4单加氧酶Trans-cinnamate 4-monooxygenase | TGCGCACACACACAAAAGAG | CTCCACATGAGGGACCAACC |
| PYL | 脱落酸感受器Abscisic acid receptor | TGATGATGAACGCCACGTCA | TCCATGCGGAACATCAACCA |
| bZIP | bZIP转录因子bZIP transcription factor | TATGGTCCTAGTTTGGCGGC | ACAACACCAGCTCTCACCAA |
| Actin | 肌动蛋白Actin | TGTTCCCTGGCATTGCTGAT | CTTTCTCTCGGGTGGTGCAA |
Table 1 Sequence of primer for differentially expressed genes in A. cicer roots (5′-3′)
| 名称Name | 描述Description | 上游引物Forward primer | 下游引物Reverse primer |
|---|---|---|---|
| CHI | 查尔酮异构酶Chalcone isomerase | TGCACCACCGAGGAAATAGG | GGGTATGGCAGCAACAATGG |
| CHR1 | 查尔酮还原酶1 Chalcone reductase 1 | AGCTCTTGGGAACAAACGTG | AGCTAGCAGGGGACCAAATG |
| F3'H | 类黄酮3'-羟化酶Flavonoid 3'-hydroxylase | CGTCCAGCACCAAAGGGTAT | GCCATAGCTCGTGACCCAAA |
| CHS | 查尔酮合成酶Chalcone synthase | CCAGGTGGTCCTGCAATTCT | GAGGACACAAGCACTCGACA |
| CHS1A-like | 查尔酮合成酶1A-like Chalcone synthase 1A-like | TGTCACACATGCGTCTGAACT | CCTGCCACTGTCTTGGCAAT |
| CYP450 | 细胞色素P450 Cytochrome P450 | ACGCATTTTGCGCCAATGAT | TGGCCACCCAAGTTCTACAC |
| C4H | 反肉桂酸4单加氧酶Trans-cinnamate 4-monooxygenase | TGCGCACACACACAAAAGAG | CTCCACATGAGGGACCAACC |
| PYL | 脱落酸感受器Abscisic acid receptor | TGATGATGAACGCCACGTCA | TCCATGCGGAACATCAACCA |
| bZIP | bZIP转录因子bZIP transcription factor | TATGGTCCTAGTTTGGCGGC | ACAACACCAGCTCTCACCAA |
| Actin | 肌动蛋白Actin | TGTTCCCTGGCATTGCTGAT | CTTTCTCTCGGGTGGTGCAA |
样本 Sample | 原始读数 Raw reads | 原始数据量 Raw bases (Gb) | 干净读数 Clean reads | 干净数据量 Clean bases (Gb) | Q30 (%) | GC (%) | 总对比率 Total mapped (%) |
|---|---|---|---|---|---|---|---|
| r_0_1 | 25608576 | 7.68 | 24842810 | 7.45 | 95.58 | 42.49 | 70.68 |
| r_0_2 | 22654911 | 6.80 | 22160067 | 6.65 | 95.77 | 42.37 | 71.75 |
| r_0_3 | 23401444 | 7.02 | 22736208 | 6.82 | 95.45 | 42.27 | 70.54 |
| r_12_1 | 24325553 | 7.30 | 23233562 | 6.97 | 95.25 | 42.27 | 69.73 |
| r_12_2 | 23471096 | 7.04 | 22839301 | 6.85 | 95.95 | 40.19 | 65.84 |
| r_12_3 | 21972596 | 6.59 | 21124167 | 6.34 | 95.28 | 42.35 | 70.40 |
| r_48_1 | 22903659 | 6.87 | 21974443 | 6.59 | 95.51 | 41.66 | 69.90 |
| r_48_2 | 23716748 | 7.12 | 22832712 | 6.85 | 95.50 | 41.74 | 70.40 |
| r_48_3 | 23380813 | 7.01 | 22673020 | 6.80 | 95.88 | 41.64 | 70.86 |
| r_72_1 | 23445027 | 7.03 | 22237254 | 6.67 | 95.73 | 41.95 | 70.89 |
| r_72_2 | 23476556 | 7.04 | 22400966 | 6.72 | 95.93 | 41.81 | 71.57 |
| r_72_3 | 27057092 | 8.12 | 26181124 | 7.85 | 94.97 | 41.80 | 67.48 |
Table 2 Quality control statistics of sequencing data for each sample
样本 Sample | 原始读数 Raw reads | 原始数据量 Raw bases (Gb) | 干净读数 Clean reads | 干净数据量 Clean bases (Gb) | Q30 (%) | GC (%) | 总对比率 Total mapped (%) |
|---|---|---|---|---|---|---|---|
| r_0_1 | 25608576 | 7.68 | 24842810 | 7.45 | 95.58 | 42.49 | 70.68 |
| r_0_2 | 22654911 | 6.80 | 22160067 | 6.65 | 95.77 | 42.37 | 71.75 |
| r_0_3 | 23401444 | 7.02 | 22736208 | 6.82 | 95.45 | 42.27 | 70.54 |
| r_12_1 | 24325553 | 7.30 | 23233562 | 6.97 | 95.25 | 42.27 | 69.73 |
| r_12_2 | 23471096 | 7.04 | 22839301 | 6.85 | 95.95 | 40.19 | 65.84 |
| r_12_3 | 21972596 | 6.59 | 21124167 | 6.34 | 95.28 | 42.35 | 70.40 |
| r_48_1 | 22903659 | 6.87 | 21974443 | 6.59 | 95.51 | 41.66 | 69.90 |
| r_48_2 | 23716748 | 7.12 | 22832712 | 6.85 | 95.50 | 41.74 | 70.40 |
| r_48_3 | 23380813 | 7.01 | 22673020 | 6.80 | 95.88 | 41.64 | 70.86 |
| r_72_1 | 23445027 | 7.03 | 22237254 | 6.67 | 95.73 | 41.95 | 70.89 |
| r_72_2 | 23476556 | 7.04 | 22400966 | 6.72 | 95.93 | 41.81 | 71.57 |
| r_72_3 | 27057092 | 8.12 | 26181124 | 7.85 | 94.97 | 41.80 | 67.48 |
| 项目Item | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 |
|---|---|---|---|---|---|---|
| 上调 Up-regulated | 8027 | 10053 | 11042 | 11821 | 7633 | 4653 |
| 下调 Down-regulated | 38024 | 35600 | 31827 | 5515 | 3768 | 4345 |
| 总数 Total | 46051 | 45653 | 42869 | 17336 | 11401 | 8998 |
Table 3 Number of differentially expressed genes in six comparative groups
| 项目Item | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 |
|---|---|---|---|---|---|---|
| 上调 Up-regulated | 8027 | 10053 | 11042 | 11821 | 7633 | 4653 |
| 下调 Down-regulated | 38024 | 35600 | 31827 | 5515 | 3768 | 4345 |
| 总数 Total | 46051 | 45653 | 42869 | 17336 | 11401 | 8998 |
| GO条目GO term | 描述Description |
|---|---|
| GO:0003824 | 催化活性 Catalytic activity |
| GO:0043169 | 阳离子结合 Cation binding |
| GO:0046872 | 金属离子结合 Metal ion binding |
| GO:0005515 | 蛋白结合 Protein binding |
| GO:0043167 | 离子结合 Ion binding |
| GO:0016740 | 转移酶活性 Transferase activity |
| GO:0016491 | 氧化还原酶活性 Oxidoreductase activity |
| GO:00048037 | 辅因子结合 Cofactor binding |
| GO:00050662 | 辅酶结合 Coenzyme binding |
| GO:0006629 | 脂质代谢过程 Lipid metabolic process |
| GO:0016301 | 激酶活性 Kinase activity |
| GO:00166787 | 水解酶活性 Hydrolase activity |
| GO:008233 | 肽酶活性 Peptidase activity |
| GO:0008152 | 代谢过程 Metabolic process |
| GO:00043412 | 大分子修饰 Macromolecule modification |
| GO:0005198 | 结构分子活性 Structural molecule activity |
| GO:0003735 | 核糖体的结构成分Structural constituent of ribosome |
| GO:0022613 | 核糖核蛋白复合物生物发生Ribonucleoprotein complex biogenesis |
| GO:0042254 | 核糖体生物发生Ribosome biogenesis |
| GO:070011 | 肽酶活性,作用于L-氨基酸肽Peptidase activity, acting on L-amino acid peptides |
| GO:1901564 | 有机氮化合物代谢过程Organonitrogen compound metabolic process |
| GO:0019538 | 蛋白质代谢过程Protein metabolic process |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process |
| GO:0005525 | GTP结合GTP binding |
| GO:00009058 | 生物合成过程Biosynthetic process |
| GO:1901576 | 有机物生物合成过程Organic substance biosynthetic process |
| GO:00020037 | 血红素结合Heme binding |
| GO:0046906 | 四吡咯结合Tetrapyrrole binding |
| GO:0005975 | 碳水化合物代谢过程Carbohydrate metabolic process |
| GO:0016684 | 氧化还原酶活性,作用于过氧化物作为受体Oxidoreductase activity, acting on peroxide as acceptor |
| GO:0004601 | 过氧化物酶活性Peroxidase activity |
| GO:0071555 | 细胞壁组织Cell wall organization |
| GO:0016798 | 水解酶活性,作用于糖基键Hydrolase activity, acting on glycosyl bonds |
| GO:0071554 | 细胞壁组织或生物发生Cell wall organization or biogenesis |
| GO:00045229 | 外部封装结构组织External encapsulating structure organization |
| GO:0004553 | 水解酶活性,水解O-糖基化合物Hydrolase activity, hydrolyzing O-glycosyl compounds |
| GO:0006073 | 细胞葡聚糖代谢过程Cellular glucan metabolic process |
| GO:00044042 | 葡聚糖代谢过程Glucan metabolic process |
| GO:0005199 | 细胞壁的结构成分Structural constituent of cell wall |
| GO:00009664 | 植物型细胞壁组织Plant-type cell wall organization |
| GO:0071669 | 植物型细胞壁组织或生物发生Plant-type cell wall organization or biogenesis |
| GO:00030312 | 外部封装结构External encapsulating structure |
| GO:0005618 | 细胞壁Cell wall |
| GO:0042546 | 细胞壁生物发生Cell wall biogenesis |
| GO:00006032 | 几丁质分解代谢过程Chitin catabolic process |
| GO:0046348 | 氨基糖分解代谢过程Amino sugar catabolic process |
| GO:004264 | 细胞多糖代谢过程Cellular polysaccharide metabolic process |
| GO:004262 | 细胞碳水化合物代谢过程Cellular carbohydrate metabolic process |
| GO:0005976 | 多糖代谢过程Polysaccharide metabolic process |
| GO:00044711 | 单体生物合成过程Single-organism biosynthetic process |
| GO:0005982 | 淀粉代谢过程Starch metabolic process |
| GO:0005985 | 蔗糖代谢过程Sucrose metabolic process |
| GO:0005984 | 二糖代谢过程Disaccharide metabolic process |
| GO:00044723 | 单体碳水化合物代谢过程Single-organism carbohydrate metabolic process |
Table 4 Annotational information of the GO term
| GO条目GO term | 描述Description |
|---|---|
| GO:0003824 | 催化活性 Catalytic activity |
| GO:0043169 | 阳离子结合 Cation binding |
| GO:0046872 | 金属离子结合 Metal ion binding |
| GO:0005515 | 蛋白结合 Protein binding |
| GO:0043167 | 离子结合 Ion binding |
| GO:0016740 | 转移酶活性 Transferase activity |
| GO:0016491 | 氧化还原酶活性 Oxidoreductase activity |
| GO:00048037 | 辅因子结合 Cofactor binding |
| GO:00050662 | 辅酶结合 Coenzyme binding |
| GO:0006629 | 脂质代谢过程 Lipid metabolic process |
| GO:0016301 | 激酶活性 Kinase activity |
| GO:00166787 | 水解酶活性 Hydrolase activity |
| GO:008233 | 肽酶活性 Peptidase activity |
| GO:0008152 | 代谢过程 Metabolic process |
| GO:00043412 | 大分子修饰 Macromolecule modification |
| GO:0005198 | 结构分子活性 Structural molecule activity |
| GO:0003735 | 核糖体的结构成分Structural constituent of ribosome |
| GO:0022613 | 核糖核蛋白复合物生物发生Ribonucleoprotein complex biogenesis |
| GO:0042254 | 核糖体生物发生Ribosome biogenesis |
| GO:070011 | 肽酶活性,作用于L-氨基酸肽Peptidase activity, acting on L-amino acid peptides |
| GO:1901564 | 有机氮化合物代谢过程Organonitrogen compound metabolic process |
| GO:0019538 | 蛋白质代谢过程Protein metabolic process |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process |
| GO:0005525 | GTP结合GTP binding |
| GO:00009058 | 生物合成过程Biosynthetic process |
| GO:1901576 | 有机物生物合成过程Organic substance biosynthetic process |
| GO:00020037 | 血红素结合Heme binding |
| GO:0046906 | 四吡咯结合Tetrapyrrole binding |
| GO:0005975 | 碳水化合物代谢过程Carbohydrate metabolic process |
| GO:0016684 | 氧化还原酶活性,作用于过氧化物作为受体Oxidoreductase activity, acting on peroxide as acceptor |
| GO:0004601 | 过氧化物酶活性Peroxidase activity |
| GO:0071555 | 细胞壁组织Cell wall organization |
| GO:0016798 | 水解酶活性,作用于糖基键Hydrolase activity, acting on glycosyl bonds |
| GO:0071554 | 细胞壁组织或生物发生Cell wall organization or biogenesis |
| GO:00045229 | 外部封装结构组织External encapsulating structure organization |
| GO:0004553 | 水解酶活性,水解O-糖基化合物Hydrolase activity, hydrolyzing O-glycosyl compounds |
| GO:0006073 | 细胞葡聚糖代谢过程Cellular glucan metabolic process |
| GO:00044042 | 葡聚糖代谢过程Glucan metabolic process |
| GO:0005199 | 细胞壁的结构成分Structural constituent of cell wall |
| GO:00009664 | 植物型细胞壁组织Plant-type cell wall organization |
| GO:0071669 | 植物型细胞壁组织或生物发生Plant-type cell wall organization or biogenesis |
| GO:00030312 | 外部封装结构External encapsulating structure |
| GO:0005618 | 细胞壁Cell wall |
| GO:0042546 | 细胞壁生物发生Cell wall biogenesis |
| GO:00006032 | 几丁质分解代谢过程Chitin catabolic process |
| GO:0046348 | 氨基糖分解代谢过程Amino sugar catabolic process |
| GO:004264 | 细胞多糖代谢过程Cellular polysaccharide metabolic process |
| GO:004262 | 细胞碳水化合物代谢过程Cellular carbohydrate metabolic process |
| GO:0005976 | 多糖代谢过程Polysaccharide metabolic process |
| GO:00044711 | 单体生物合成过程Single-organism biosynthetic process |
| GO:0005982 | 淀粉代谢过程Starch metabolic process |
| GO:0005985 | 蔗糖代谢过程Sucrose metabolic process |
| GO:0005984 | 二糖代谢过程Disaccharide metabolic process |
| GO:00044723 | 单体碳水化合物代谢过程Single-organism carbohydrate metabolic process |
通路 Pathway | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | |
| 谷胱甘肽代谢Glutathione metabolism | 226 | 0.017998 | 203 | 0.230062 | 185 | 0.601430 | 88 | 0.107723 | 80 | 8.11×10-5 | 43 | 0.999999 |
| 苯丙素生物合成Phenylpropanoid biosynthesis | 181 | 0.029187 | 130 | 0.999747 | 150 | 0.996604 | 122 | 5.14×10-9 | 77 | 3.15×10-7 | 69 | 7.50×10-5 |
| 类黄酮生物合成Flavonoid biosynthesis | 50 | 0.044437 | 19 | 0.998379 | 32 | 0.996604 | 40 | 4.03×10-7 | 26 | 2.46×10-5 | 9 | 0.514547 |
| 异黄酮生物合成Isoflavonoid biosynthesis | 28 | 0.043979 | 29 | 0.029884 | 26 | 0.078672 | 9 | 0.323606 | 5 | 0.517800 | 9 | 0.041910 |
| 氮代谢Nitrogen metabolism | 69 | 0.076543 | 72 | 0.039353 | 61 | 0.260467 | 39 | 0.001606 | 37 | 1.91×10-6 | 20 | 0.057638 |
| 核糖体Ribosome | 1144 | 0.759257 | 1395 | 3.56×10-9 | 1397 | 2.89×10-10 | 447 | 0.797177 | 386 | 2.73×10-6 | 270 | 0.697308 |
| 糖酵解/糖异生Glycolysis/gluconeogenesis | 253 | 0.810499 | 274 | 0.390901 | 261 | 0.602382 | 139 | 0.002737 | 73 | 0.366838 | 270 | 0.697308 |
| 过氧化物酶体Peroxisome | 223 | 0.581605 | 223 | 0.571524 | 207 | 0.837838 | 68 | 0.990070 | 36 | 0.999167 | 38 | 0.988140 |
| 淀粉和蔗糖代谢Starch and sucrose metabolism | 222 | 0.196406 | 185 | 0.916342 | 233 | 0.048074 | 160 | 9.97×10-13 | 101 | 2.30×10-8 | 103 | 9.56×10-11 |
| 植物激素信号传导Plant hormone signal transduction | 175 | 0.201220 | 125 | 0.996328 | 134 | 0.970479 | 90 | 0.002681 | 76 | 4.14×10-6 | 55 | 0.009351 |
| 戊糖和葡萄糖醛酸相互转化Pentose and glucuronate interconversions | 85 | 0.282619 | 70 | 0.813382 | 69 | 0.818722 | 58 | 4.37×10-5 | 41 | 8.50×10-5 | 44 | 1.42×10-6 |
| 苯丙氨酸代谢Phenylalanine metabolism | 77 | 0.293092 | 78 | 0.255123 | 75 | 0.329733 | 42 | 0.014276 | 20 | 0.395872 | 28 | 0.011094 |
| 玉米素生物合成Zeatin biosynthesis | 22 | 0.432711 | 15 | 0.891593 | 12 | 0.970132 | 16 | 0.016634 | 16 | 0.000350 | 3 | 0.862414 |
| 氧化磷酸化Oxidative phosphorylation | 297 | 0.992129 | 331 | 0.763437 | 323 | 0.822461 | 121 | 0.920165 | 75 | 0.945121 | 85 | 0.402692 |
Table 5 KEGG pathway analysis of six comparative groups of differentially expressed genes
通路 Pathway | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | |
| 谷胱甘肽代谢Glutathione metabolism | 226 | 0.017998 | 203 | 0.230062 | 185 | 0.601430 | 88 | 0.107723 | 80 | 8.11×10-5 | 43 | 0.999999 |
| 苯丙素生物合成Phenylpropanoid biosynthesis | 181 | 0.029187 | 130 | 0.999747 | 150 | 0.996604 | 122 | 5.14×10-9 | 77 | 3.15×10-7 | 69 | 7.50×10-5 |
| 类黄酮生物合成Flavonoid biosynthesis | 50 | 0.044437 | 19 | 0.998379 | 32 | 0.996604 | 40 | 4.03×10-7 | 26 | 2.46×10-5 | 9 | 0.514547 |
| 异黄酮生物合成Isoflavonoid biosynthesis | 28 | 0.043979 | 29 | 0.029884 | 26 | 0.078672 | 9 | 0.323606 | 5 | 0.517800 | 9 | 0.041910 |
| 氮代谢Nitrogen metabolism | 69 | 0.076543 | 72 | 0.039353 | 61 | 0.260467 | 39 | 0.001606 | 37 | 1.91×10-6 | 20 | 0.057638 |
| 核糖体Ribosome | 1144 | 0.759257 | 1395 | 3.56×10-9 | 1397 | 2.89×10-10 | 447 | 0.797177 | 386 | 2.73×10-6 | 270 | 0.697308 |
| 糖酵解/糖异生Glycolysis/gluconeogenesis | 253 | 0.810499 | 274 | 0.390901 | 261 | 0.602382 | 139 | 0.002737 | 73 | 0.366838 | 270 | 0.697308 |
| 过氧化物酶体Peroxisome | 223 | 0.581605 | 223 | 0.571524 | 207 | 0.837838 | 68 | 0.990070 | 36 | 0.999167 | 38 | 0.988140 |
| 淀粉和蔗糖代谢Starch and sucrose metabolism | 222 | 0.196406 | 185 | 0.916342 | 233 | 0.048074 | 160 | 9.97×10-13 | 101 | 2.30×10-8 | 103 | 9.56×10-11 |
| 植物激素信号传导Plant hormone signal transduction | 175 | 0.201220 | 125 | 0.996328 | 134 | 0.970479 | 90 | 0.002681 | 76 | 4.14×10-6 | 55 | 0.009351 |
| 戊糖和葡萄糖醛酸相互转化Pentose and glucuronate interconversions | 85 | 0.282619 | 70 | 0.813382 | 69 | 0.818722 | 58 | 4.37×10-5 | 41 | 8.50×10-5 | 44 | 1.42×10-6 |
| 苯丙氨酸代谢Phenylalanine metabolism | 77 | 0.293092 | 78 | 0.255123 | 75 | 0.329733 | 42 | 0.014276 | 20 | 0.395872 | 28 | 0.011094 |
| 玉米素生物合成Zeatin biosynthesis | 22 | 0.432711 | 15 | 0.891593 | 12 | 0.970132 | 16 | 0.016634 | 16 | 0.000350 | 3 | 0.862414 |
| 氧化磷酸化Oxidative phosphorylation | 297 | 0.992129 | 331 | 0.763437 | 323 | 0.822461 | 121 | 0.920165 | 75 | 0.945121 | 85 | 0.402692 |
| 1 | Fan C. Genetic mechanisms of salt stress responses in halophytes. Plant Signaling and Behavior, 2020, 15(1): e1704528. |
| 2 | Chele K H, Tinte M M, Piater L A, et al. Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Molecular Diversity Preservation International, 2021, 11(11): 724. |
| 3 | Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes. Annals of Botany, 2015, 115(3): 327-331. |
| 4 | Liu J X, Zhang H L, Zou R S, et al. Research progress in Na+antiport and physiological growth mechanisms of different halophytes adapted to salt stress. Biotechnology Bulletin, 2023, 39(1): 59-71. |
| 刘佳欣, 张会龙, 邹荣松, 等. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展. 生物技术通报, 2023, 39(1): 59-71. | |
| 5 | Fu L, Liu J Z, Tao B X, et al. Adaptive mechanism of halophytes to saline soil environment: a review. Jiangsu Agricultural Sciences, 2021, 49(15): 32-39. |
| 付丽, 刘加珍, 陶宝先, 等. 盐生植物对盐渍土壤环境的适应机制研究综述. 江苏农业科学, 2021, 49(15): 32-39. | |
| 6 | Liang X Y, Li J F, Yang Y Q, et al. Designing salt stress-resilient crops: Current progress and future challenges. Journal of Integrative Plant Biology, 2024, 66(3): 303-329. |
| 7 | Chen C X, Shang X L, Sun M Y, et al. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. International Journal of Molecular Sciences, 2022, 23(4): 2272-2281. |
| 8 | Li H Y, Chen X Q, Niu F J, et al. Time-course transcriptome analysis in wheat root in response to high salinity. Journal of Plant Genetic Resources, 2022, 23(2): 592-630. |
| 李红燕, 陈向前, 牛凤娟, 等. 小麦根系响应高盐胁迫的时序转录组分析. 植物遗传资源学报, 2022, 23(2): 592-630. | |
| 9 | Deng C H, Zhang Z B, Yan G R, et al. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports, 2020, 10(1): 20669. |
| 10 | Frosi G, Ferreira-Neto J R C, Bezerra-Neto J P, et al. Transcriptome of Cenostigma pyramidale roots, a woody legume, under different salt stress times. Physiologlia Plantarum, 2021, 173(4): 1463-1480. |
| 11 | Fang X, Mo J J, Zhou H K, et al. Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress. Scientific Reports, 2023, 13(1): 19065. |
| 12 | Li R X, Fu R, Li M, et al. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress. Plant Cell Reports, 2023, 42(11): 1809-1824. |
| 13 | Shi H F, Guo Z F. Advances in research on germplasm resources and genetic breeding of Astragalus sinicus. Pratacultural Science, 2020, 37(12): 2507-2519. |
| 施海帆, 郭振飞. 紫云英种质资源与遗传育种研究进展. 草业科学, 2020, 37(12): 2507-2519. | |
| 14 | Issah G, Schoenau J J, Lardner H A, et al. Nitrogen fixation and resource partitioning in alfalfa (Medicago sativa L.), cicer milkvetch (Astragalus cicer L.) and sainfoin (Onobrychis viciifolia Scop.) using 15N enrichment under controlled environment conditions. Agronomy, 2020, 10(9): 1438-1452. |
| 15 | Pitcher L R, MacAdam J W, Ward R E, et al. Beef steer performance on irrigated monoculture legume pastures compared with grass- and concentrate-fed steers. Animals (Basel), 2022, 12(8): 1017-1032. |
| 16 | Hou W J, Ma X, Zhang Z Y, et al. Effects of mixed saline-alkali stress on seed germination and physiological characteristics of Astragalus cicer. Grassland and Turf, 2020, 40(3): 90-98. |
| 侯文静, 马祥, 张志莹, 等. 混合盐碱胁迫对鹰嘴紫云英种子萌发及幼苗生理特性的影响. 草原与草坪, 2020, 40(3): 90-98. | |
| 17 | Yang Y Y, Mao G L, Ma D M, et al. Germination characteristics of four forage seeds under different concentrations of NaCl or NaHCO3 stress. Acta Agrestia Sinica, 2022, 30(3): 637-645. |
| 杨迎月, 毛桂莲, 麻冬梅, 等. 四种牧草种子在不同浓度NaCl或NaHCO3胁迫下的萌发特性. 草地学报, 2022, 30(3): 637-645. | |
| 18 | Wang J H. The root system development of cicer milk vetch in the first year of growth. Pratacultural Science, 1990(1): 53-60. |
| 王建华. 鹰嘴紫云英生长第一年根系发育动态的研究. 草业科学, 1990(1): 53-60. | |
| 19 | Wang H Q, Zhao X Y, Xuan W, et al. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. Molecular Plant, 2023, 16(10): 1678-1694. |
| 20 | Zhang J Q. Molecular mechanism of apomixis embryogenesis of wild Kentucky bluegrass in Gansu province. Lanzhou: Gansu Agricultural University, 2023. |
| 张金青. 甘肃野生草地早熟禾无融合生殖胚发生的分子遗传机理研究. 兰州: 甘肃农业大学, 2023. | |
| 21 | Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. |
| 22 | Davidson N M, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology, 2014, 15(7): 410-424. |
| 23 | Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323-339. |
| 24 | Love M I, Huber W G, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550-571. |
| 25 | Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7(1): 191-202. |
| 26 | Chen F Q, Fang P, Zeng W J, et al. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One, 2020, 15(5): e0233616. |
| 27 | Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ∆∆ Ct method. Methods, 2001, 25(4): 402-408. |
| 28 | Zhang X J, Yao Y, Li X T, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Scientific Reports, 2020, 10(1): 4236. |
| 29 | Jia C P, Guo B, Wang B K, et al. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. Frontiers in Plant Science, 2022, 13(12): 1023696. |
| 30 | Nefissi O R, Arasappan D, Abid G, et al. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 2021, 22(15): 8155-8172. |
| 31 | Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771-794. |
| 32 | Inukai S, Kock K H, Bulyk M L. Transcription factor-DNA binding: Beyond binding site motifs. Current Opinion in Genetics & Development, 2017, 43(4): 110-119. |
| 33 | Han G L, Yuan F, Guo J R, et al. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Science, 2019, 285(8): 55-67. |
| 34 | Li Y, Chu Z N, Luo J Y, et al. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnology Journal, 2018, 16(6): 1201-1213. |
| 35 | Sun B G, Zhao Y J, Shi S Y, et al. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136: 127-142. |
| 36 | Teng K, Tan P H, Guo W E, et al. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger gene, ZjZFN1,improved salt tolerance in Arabidopsis. Frontiers in Plant Science, 2018, 9: 1159-1172. |
| 37 | Liu C X, Xu X Y, Kan J L, et al. Genome-wide analysis of the C3H zinc finger family reveals its functions in salt stress responses of Pyrus betulaefolia. PeerJ, 2020, 8: e9328. |
| 38 | Fraser C M, Chapple C. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book, 2011, 9: e0152. |
| 39 | Li Y, Kim J I, Pysh L, et al. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology, 2015, 169(4): 2409-2421. |
| 40 | Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell, 2007, 19(1): 148-162. |
| 41 | Xie M, Zhang J, Tschaplinski T J, et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontiers in Plant Science, 2018, 9(1): 1427-1436. |
| 42 | Chen K Q, Song M R, Guo Y N, et al. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnology Journal, 2019, 17(12): 2341-2355. |
| 43 | Liu W X, Feng Y, Yu S H, et al. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 2021, 22(23): 12824-12842. |
| 44 | Yu Z M, Dong W, Teixeira D S J A, et al. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Protoplasma, 2021, 258(4): 803-815. |
| 45 | Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185. |
| 46 | Pratyusha D S, Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports, 2022, 41(12): 2245-2260. |
| 47 | Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. |
| [1] | Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198. |
| [2] | Bing ZENG, Pan-pan SHANG, Bing-na SHEN, Yin-chen WANG, Ming-hao QU, Yang YUAN, Lei BI, Xing-yun YANG, Wen-wen LI, Xiao-li ZHOU, Yu-qian ZHENG, Wen-qiang GUO, Yan-long FENG, Bing ZENG. Differentially expressed genes and related pathways in root systems of Dactylis glomerata under flooding stress [J]. Acta Prataculturae Sinica, 2024, 33(2): 93-111. |
| [3] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
| [4] | Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis [J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156. |
| [5] | Mei-shan CHEN, Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU. Relationship between plasticity and invasiveness in the anatomical structure of the fine roots of the invasive species Xanthium strumarium [J]. Acta Prataculturae Sinica, 2023, 32(5): 118-126. |
| [6] | Pan-pan SHANG, Bing ZENG, Ming-hao QU, Ming-yang LI, Xing-yun YANG, Yu-qian ZHENG, Bing-na SHEN, Lei BI, Cheng YANG, Bing ZENG. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 112-128. |
| [7] | Bing-na SHEN, Pan-pan SHANG, Bing(student) ZENG, Lin-xiang LI, Xing-yun YANG, Lei BI, Yu-qian ZHENG, Ming-hao QU, Wen-wen LI, Xiao-li ZHOU, Jun RAO, Bing(teacher) ZENG. Comparative metabolomics analysis of root systems of two Dactylis glomerata cultivars in response to submergence stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 40-57. |
| [8] | Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
| [9] | Shi-ping SU, Xiao-e LIU, Jie XI. Physiological response of Viola tricolor to NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(8): 90-98. |
| [10] | Feng-ling GAN, Jie WEI, Sha-sha LI. Response of root-soil friction characteristics of three common grasses to soil water content in purple soil bunds [J]. Acta Prataculturae Sinica, 2022, 31(7): 28-37. |
| [11] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
| [12] | Zhi-min YANG, Rui XING, Yun-jia DING, Li-li ZHUANG. Analysis of differentially expressed genes in relation to tiller development and plant height based on transcriptomic sequencing of two tall fescue cultivars [J]. Acta Prataculturae Sinica, 2022, 31(1): 145-163. |
| [13] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
| [14] | Jing ZHOU, Si-qi CHEN, Wen-jiao SHI, Fu-lin YANG, Hui LIN, Zhan-xi LIN. Transcriptome analyses of functional genes in young leaves and roots of Giant Juncao [J]. Acta Prataculturae Sinica, 2021, 30(2): 143-155. |
| [15] | Fang-zhen WANG, Cheng-hang YANG, Zi-hua HE, Zi-ru LIN, Hao-yuan ZENG, Qing MA. Analysis of differentially expressed protein kinase related genes in the xerophyte Pugionium cornutum under salt treatment [J]. Acta Prataculturae Sinica, 2021, 30(10): 116-124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||