Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (2): 93-111.DOI: 10.11686/cyxb2023117
Previous Articles Next Articles
Bing ZENG1(), Pan-pan SHANG1, Bing-na SHEN1, Yin-chen WANG2, Ming-hao QU1, Yang YUAN2, Lei BI1, Xing-yun YANG1, Wen-wen LI1, Xiao-li ZHOU1, Yu-qian ZHENG1, Wen-qiang GUO1, Yan-long FENG1, Bing ZENG1()
Received:
2023-04-11
Revised:
2023-06-29
Online:
2024-02-20
Published:
2023-12-12
Bing ZENG, Pan-pan SHANG, Bing-na SHEN, Yin-chen WANG, Ming-hao QU, Yang YUAN, Lei BI, Xing-yun YANG, Wen-wen LI, Xiao-li ZHOU, Yu-qian ZHENG, Wen-qiang GUO, Yan-long FENG, Bing ZENG. Differentially expressed genes and related pathways in root systems of Dactylis glomerata under flooding stress[J]. Acta Prataculturae Sinica, 2024, 33(2): 93-111.
基因编号 Gene ID | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
DG4C05841 | GAGAAGGTGACCGAGAAC | GAGTGGGTGAAGAGGATG |
DG3C00580 | CGGCTACAGAAGAGGAGAGT | TGAAGAACAACAACGACAGACA |
DG3C06505 | CACTACTCCAAGACATGCCCGAATG | AAGCAGCACCGATCCATCACAAC |
DG3C01167 | TGCTCTGAACGACAACTT | ATGAACTCTTCTTCTCTCTGG |
DG7C01296 | ACTGCTGTGAAAGTGGTGCTGATC | TTCGCCGAGGATTCTGTTACAACTG |
DG7C02648 | TCAACAAGATGCGGTCCAACTGAG | GTACTTACACCACGTCGAGTTCCAC |
Actin | GATCTTCGCCTCGCCAGGTTATC | ATATCGCCGTGCTTCATCCATGTC |
Table 1 Sequence list of primers for differentially expressed genes in D. glomerata roots
基因编号 Gene ID | 正向引物Forward primer (5'-3') | 反向引物Reverse primer (5'-3') |
---|---|---|
DG4C05841 | GAGAAGGTGACCGAGAAC | GAGTGGGTGAAGAGGATG |
DG3C00580 | CGGCTACAGAAGAGGAGAGT | TGAAGAACAACAACGACAGACA |
DG3C06505 | CACTACTCCAAGACATGCCCGAATG | AAGCAGCACCGATCCATCACAAC |
DG3C01167 | TGCTCTGAACGACAACTT | ATGAACTCTTCTTCTCTCTGG |
DG7C01296 | ACTGCTGTGAAAGTGGTGCTGATC | TTCGCCGAGGATTCTGTTACAACTG |
DG7C02648 | TCAACAAGATGCGGTCCAACTGAG | GTACTTACACCACGTCGAGTTCCAC |
Actin | GATCTTCGCCTCGCCAGGTTATC | ATATCGCCGTGCTTCATCCATGTC |
样品编号 Sample number | 原始数据 Raw reads | 过滤数据 Clean reads | Q20 (%) | Q30 (%) | GC (%) | 总比对率 Total mapping rate | 唯一比对率 Unique mapping rate | 多比对率 Multiple mapping rate | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B (%) | A | C (%) | A | D (%) | ||||||
AB0h-1 | 44620874 | 42773100 | 98.04 | 94.27 | 53.94 | 31478723 | 73.59 | 30319134 | 70.88 | 1159589 | 2.71 |
AB0h-2 | 46136466 | 44761494 | 98.00 | 94.28 | 54.79 | 32380485 | 72.34 | 31351666 | 70.04 | 1028819 | 2.30 |
AB0h-3 | 44129532 | 42808268 | 97.99 | 94.22 | 53.97 | 30601830 | 71.49 | 29397803 | 68.67 | 1204027 | 2.81 |
AB8h-1 | 43448316 | 42799686 | 98.17 | 94.69 | 54.83 | 29514489 | 68.96 | 28122605 | 65.71 | 1391884 | 3.25 |
AB8h-2 | 41701902 | 39685822 | 98.07 | 94.31 | 52.56 | 27539115 | 69.39 | 26220686 | 66.07 | 1318429 | 3.32 |
AB8h-3 | 42842338 | 41560508 | 98.10 | 94.44 | 55.58 | 29288776 | 70.47 | 28052239 | 67.50 | 1236537 | 2.98 |
AB24h-1 | 43175864 | 41932282 | 97.94 | 94.19 | 56.10 | 27742677 | 66.16 | 25974820 | 61.94 | 1767857 | 4.22 |
AB24h-2 | 47368352 | 46014046 | 97.98 | 94.24 | 55.61 | 30684212 | 66.68 | 29002064 | 63.03 | 1682148 | 3.66 |
AB24h-3 | 49040614 | 47826980 | 97.91 | 94.05 | 55.25 | 31306578 | 65.46 | 29261089 | 61.18 | 2045489 | 4.28 |
Table 2 Quality control results of sequencing data for each sample
样品编号 Sample number | 原始数据 Raw reads | 过滤数据 Clean reads | Q20 (%) | Q30 (%) | GC (%) | 总比对率 Total mapping rate | 唯一比对率 Unique mapping rate | 多比对率 Multiple mapping rate | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B (%) | A | C (%) | A | D (%) | ||||||
AB0h-1 | 44620874 | 42773100 | 98.04 | 94.27 | 53.94 | 31478723 | 73.59 | 30319134 | 70.88 | 1159589 | 2.71 |
AB0h-2 | 46136466 | 44761494 | 98.00 | 94.28 | 54.79 | 32380485 | 72.34 | 31351666 | 70.04 | 1028819 | 2.30 |
AB0h-3 | 44129532 | 42808268 | 97.99 | 94.22 | 53.97 | 30601830 | 71.49 | 29397803 | 68.67 | 1204027 | 2.81 |
AB8h-1 | 43448316 | 42799686 | 98.17 | 94.69 | 54.83 | 29514489 | 68.96 | 28122605 | 65.71 | 1391884 | 3.25 |
AB8h-2 | 41701902 | 39685822 | 98.07 | 94.31 | 52.56 | 27539115 | 69.39 | 26220686 | 66.07 | 1318429 | 3.32 |
AB8h-3 | 42842338 | 41560508 | 98.10 | 94.44 | 55.58 | 29288776 | 70.47 | 28052239 | 67.50 | 1236537 | 2.98 |
AB24h-1 | 43175864 | 41932282 | 97.94 | 94.19 | 56.10 | 27742677 | 66.16 | 25974820 | 61.94 | 1767857 | 4.22 |
AB24h-2 | 47368352 | 46014046 | 97.98 | 94.24 | 55.61 | 30684212 | 66.68 | 29002064 | 63.03 | 1682148 | 3.66 |
AB24h-3 | 49040614 | 47826980 | 97.91 | 94.05 | 55.25 | 31306578 | 65.46 | 29261089 | 61.18 | 2045489 | 4.28 |
差异表达基因比较组合 Comparative combinations of differentially expressed genes | 差异表达基因数目 Number of differentially expressed genes | 上调基因数目 Number of up-regulated genes | 下调基因数目 Number of down-regulated genes |
---|---|---|---|
AB8h vs AB0h | 5788 | 2872 | 2916 |
AB24h vs AB0h | 8807 | 4123 | 4684 |
AB24h vs AB8h | 1687 | 515 | 1172 |
Table 3 Statistical of number of differentially expressed genes
差异表达基因比较组合 Comparative combinations of differentially expressed genes | 差异表达基因数目 Number of differentially expressed genes | 上调基因数目 Number of up-regulated genes | 下调基因数目 Number of down-regulated genes |
---|---|---|---|
AB8h vs AB0h | 5788 | 2872 | 2916 |
AB24h vs AB0h | 8807 | 4123 | 4684 |
AB24h vs AB8h | 1687 | 515 | 1172 |
转录因子 Transcription factors | 比较组合 Comparison group | 差异基因数 Number of differentially expressed genes | 上调差异基因数 Number of up-regulated genes | 下调差异基因数 Number of down-regulated genes | 主要富集通路 Primary pathways enrichment |
---|---|---|---|---|---|
MYB | AB8h vs AB0h | 39 | 19 | 20 | 昼夜节律-植物 Circadian rhythm-plant |
AB24h vs AB0h | 71 | 32 | 39 | ||
NB-ARC | AB8h vs AB0h | 39 | 23 | 16 | 植物-病原互作 Plant-pathogen interaction |
AB24h vs AB0h | 56 | 20 | 32 | ||
WRKY | AB8h vs AB0h | 16 | 4 | 12 | 植物-病原互作、植物MAPK信号通路 Plant-pathogen interaction, plant MAPK signaling pathway |
AB24h vs AB0h | 17 | 5 | 12 | ||
GRAS | AB8h vs AB0h | 4 | 2 | 2 | 植物激素信号转导 Plant hormone signal transduction |
AB24h vs AB0h | 11 | 7 | 4 | ||
AP2 | AB8h vs AB0h | 27 | 8 | 19 | 植物激素信号转导、植物MAPK信号通路 Plant hormone signal transduction, plant MAPK signaling pathway |
AB24h vs AB0h | 41 | 28 | 13 |
Table 4 Statistics on the number of differential genes of important transcription factors
转录因子 Transcription factors | 比较组合 Comparison group | 差异基因数 Number of differentially expressed genes | 上调差异基因数 Number of up-regulated genes | 下调差异基因数 Number of down-regulated genes | 主要富集通路 Primary pathways enrichment |
---|---|---|---|---|---|
MYB | AB8h vs AB0h | 39 | 19 | 20 | 昼夜节律-植物 Circadian rhythm-plant |
AB24h vs AB0h | 71 | 32 | 39 | ||
NB-ARC | AB8h vs AB0h | 39 | 23 | 16 | 植物-病原互作 Plant-pathogen interaction |
AB24h vs AB0h | 56 | 20 | 32 | ||
WRKY | AB8h vs AB0h | 16 | 4 | 12 | 植物-病原互作、植物MAPK信号通路 Plant-pathogen interaction, plant MAPK signaling pathway |
AB24h vs AB0h | 17 | 5 | 12 | ||
GRAS | AB8h vs AB0h | 4 | 2 | 2 | 植物激素信号转导 Plant hormone signal transduction |
AB24h vs AB0h | 11 | 7 | 4 | ||
AP2 | AB8h vs AB0h | 27 | 8 | 19 | 植物激素信号转导、植物MAPK信号通路 Plant hormone signal transduction, plant MAPK signaling pathway |
AB24h vs AB0h | 41 | 28 | 13 |
1 | An M Z, Han B, Jiang H, et al. Research progress of Dactylis species origin and phylogeny analysis. Acta Agrestia Sinica, 2021, 29 (12): 2637-2644. |
安明珠, 韩博, 姜华, 等. 鸭茅物种起源与系统发育分析研究进展. 草地学报, 2021, 29(12): 2637-2644. | |
2 | Zeng B, Luo D, Xie W G, et al. Research progress on the genetic diversity, origin and distribution of Dactylis glomerata species. Acta Agrestia Sinica, 2014, 22(3): 448-454. |
曾兵, 罗登, 谢文刚, 等. 鸭茅物种的起源、分布及其遗传多样性研究进展. 草地学报, 2014, 22(3): 448-454. | |
3 | Peng Y, Zhang X Q. Progress in studies on genetic diversity of Dactylis glomerata L. Journal of Plant Genetic Resources, 2003(2): 179-183. |
彭燕, 张新全. 鸭茅种质资源多样性研究进展. 植物遗传资源学报, 2003(2): 179-183. | |
4 | Xie G Q, Wang D P, Yang S T, et al. Comparative test of eight orchardgrass cultivars (lines) in Chengdu Plain. Journal of Grassland and Forage Science, 2019(6): 39-44, 52. |
解关琦, 王登平, 杨盛婷, 等. 8个鸭茅品种(系)在成都平原品种比较试验. 草学, 2019(6): 39-44, 52. | |
5 | Zheng M L, Mao P C, Tai J H, et al. Effect of feeding white clover and orchard grass mixed silage on slaughter performance and meat quality of Hu sheep. Henan Agricultural Science, 2021, 50(5): 142-148. |
郑明利, 毛培春, 邰建辉, 等. 白三叶和鸭茅混合青贮饲喂对湖羊屠宰性能及肉品质的影响. 河南农业科学, 2021, 50(5): 142-148. | |
6 | Ministry of Emergency Management of the People’s Republic of China. The top 10 national natural disasters in 2022. China Disaster Reduction, 2023(3): 8-9. |
中华人民共和国应急管理部. 2022年全国十大自然灾害. 中国减灾, 2023(3): 8-9. | |
7 | Nie G P, Chen M M, Yang L Y, et al. Plant response to waterlogging stress: research progress. Chinese Agricultural Science Bulletin, 2021, 37(18): 57-64. |
聂功平, 陈敏敏, 杨柳燕, 等. 植物响应淹水胁迫的研究进展. 中国农学通报, 2021, 37(18): 57-64. | |
8 | Deng X, Yang D, Sun H, et al. Time-course analysis and transcriptomic identification of key response strategies of Nelumbo nucifera to complete submergence. Horticulture Research, 2022, 9: uhac001. |
9 | Qi B Y, Yang Y, Yin Y L, et al. De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biology, 2014, 14(1): 1-12. |
10 | Komatsu S, Yamamoto A, Nakamura T, et al. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Journal of Proteome Research, 2011, 10(9): 3993-4004. |
11 | Gunawardena A H, Pearce D M, Jackson M B, et al. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta, 2001, 212(2): 205-214. |
12 | Shang P P, Zeng B, Qu M H, et al. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress. Acta Prataculturae Sinica, 2023, 32(4): 112-128. |
尚盼盼, 曾兵, 屈明好, 等. 红三叶响应淹水胁迫的相关通路及差异表达基因分析. 草业学报, 2023, 32(4): 112-128. | |
13 | Zhu X, Li X, Jiu S, et al. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. Royal Society Open Science, 2018, 5(6): 172253. |
14 | Thirunavukkarasu N, Hossain F, Mohan S, et al. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PLoS One, 2013, 8(8): e70433. |
15 | Qiao D, Zhang Y, Xiong X, et al. Transcriptome analysis on responses of orchard grass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas, 2020, 157(1): 1-16. |
16 | Xue C M. Transcriptomic analysis of chilling tolerance mechanisms of maize different tissues under whole-plant and distal chilling. Changchun: Jilin University, 2022. |
薛春梅. 转录组学解析整株和远端冷胁迫玉米不同组织耐冷机制. 长春: 吉林大学, 2022. | |
17 | Li H S. Plant physiological and biochemical experiment principle and technology. Beijing: Higher Education Press, 2000: 134-260. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 134-260. | |
18 | Pan L, Xue L. Plant physiological mechanisms in adapting to waterlogging stress: A review. Chinese Journal of Ecology, 2012, 31(10): 2662-2672. |
潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展. 生态学杂志, 2012, 31(10): 2662-2672. | |
19 | Xiang H T, Li W, He N, et al. Physiological response and effect of S3307 on water stress of adzuki bean root. Journal of Agricultural Science and Technology, 2022, 24(9): 39-49. |
项洪涛, 李琬, 何宁, 等. 小豆根系对水分胁迫的生理响应及S3307的缓解效应. 中国农业科技导报, 2022, 24(9): 39-49. | |
20 | Wu L, Zhang W W, Ge X M, et al. A review of the response mechanisms of plants to waterlogging stress. World Forestry Research, 2012, 25(6): 27-33. |
吴麟, 张伟伟, 葛晓敏, 等. 植物对淹水胁迫的响应机制研究进展. 世界林业研究, 2012, 25(6): 27-33. | |
21 | Li L T, Liu W J, Zhang G X. Physiological response and tolerance evaluation of Chionanthus retusus from different provenances under waterlogging stress. Chinese Wild Plant Resources, 2022, 41(10): 19-24, 29. |
李立婷, 刘文静, 张鸽香. 不同种源流苏树对淹水胁迫的生理响应及耐涝性评价. 中国野生植物资源, 2022, 41(10): 19-24, 29. | |
22 | Xiong X G, Xiong J, Zou X Y, et al. Research progress in selenium metabolism in plants and its influencing factors. Acta Agriculturae Jiangxi, 2022, 34(1): 63-70. |
熊信果, 熊婧, 邹小云, 等. 植物硒代谢及其影响因素研究进展. 江西农业学报, 2022, 34(1): 63-70. | |
23 | Shan Y, Ren X N, Li X M. Research progress on effects of abiotic stress on plant carbohydrates and their related enzymes in their metabolism. Journal of Anhui Agricultural Sciences, 2021, 49(20): 6-9. |
单羽, 任晓宁, 李雪梅. 非生物胁迫对植物碳水化合物及其代谢相关酶影响的研究进展. 安徽农业科学, 2021, 49(20): 6-9. | |
24 | Xu D, Dhiman R, Garibay A, et al. Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development. The Plant Journal, 2020, 101(1): 156-170. |
25 | Yin L X. Effect of saline-alkaline stress on lignin biosynthesis in maize revealed by transcriptome and biochemical. Southwest China Journal of Agricultural Sciences, 2023, 36(3): 1-18. |
尹丽兴. 基于转录组测序和生化分析揭示盐碱胁迫对玉米木质素生物合成的影响. 西南农业学报, 2023, 36(3): 1-18. | |
26 | Yang Y, Wang W, Liu H, et al. Effects of aluminum stress on root elongation of different aluminum tolerance wheat cultivars. Journal of Plant Nutrition and Fertilizers, 2010, 16(3): 584-590. |
杨野, 王伟, 刘辉, 等. 铝胁迫对不同耐铝小麦品种根伸长生长影响的研究. 植物营养与肥料学报, 2010, 16(3): 584-590. | |
27 | Jackson M B, Drew M C. Effects of flooding on growth and metabolism of Herbaceous plants. Physiological Ecology, 1984, 3: 47-128. doi:10.1016/b978-0-12-424120-6.50008-0. |
28 | Vogt T. Phenylpropanoid biosynthesis. Molecular Plant, 2010, 3(1): 2-20. |
29 | Zhao Q, Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science, 2011, 16(4): 227-233. |
30 | Amthor J S. Efficiency of lignin biosynthesis: a quantitative analysis. Annals of Botany, 2003, 91(6): 673-695. |
31 | Wang L, Li D, Zhang Y, et al. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS One, 2016, 11(3): e0149912. |
32 | Nguyen T N, Son S, Jordan M C, et al. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biology, 2016, 16(1): 1-16. |
33 | Chen W, Yao Q, Patil G B, et al. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-seq. Frontiers in Plant Science, 2016, 1044(7): 1-19. |
34 | Arora K, Panda K K, Mittal S, et al. RNA-seq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports, 2017, 7(1): 10950. |
35 | Wang Y C, Mao J X, Wang S Q, et al. Study on the evaluation of waterlogging tolerance about different Dactylis glomerata L. germplasm resources and the difference on microstructure of root under waterlogging stress. Pakistan Journal of Botany, 2021, 53(5): 1583-1592. |
36 | Voesenek L A C J, Bailey‐Serres J. Flood adaptive traits and processes: an overview. New Phytologist, 2015, 206(1): 57-73. |
37 | Zhang X X, Liu X, Zhou M, et al. PacBio full-length sequencing integrated with RNA-seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii. Frontiers in Plant Science, 2022, 13: 1030584. |
38 | Pais I P, Moreira R, Semedo J N, et al. Wheat crop under waterlogging: potential soil and plant effects. Plants, 2022, 12(1): 149. |
39 | Feng J, Zhao S, Chen X, et al. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallographica (Section D- Biological Crystallography), 2015, 71(Pt 2): 367-375. |
40 | Sarowar S, Lee J Y, Ahn E R, et al. A role of hexokinases in plant resistance to oxidative stress and pathogen infection. Journal of Plant Biology, 2008, 51(5): 341-346. |
41 | Sun M H. Apple glucose sensor MdHXK1 improves salt tolerance by interacting with and phosphorylating Na+/H+ exchanger MdNHX1. Tai’an: Shandong Agricultural University, 2017. |
孙美红. 苹果葡萄糖感受器MdHXK1磷酸化Na+/H+交换蛋白MdNHX1调控耐盐性的分子机理. 泰安: 山东农业大学, 2017. | |
42 | Zhou Y. Identification of hexokinase gene family in Glycine max and functional research of GmHXK2 under salt stress. Zhengzhou: Zhengzhou University, 2021. |
周玥. 大豆己糖激酶基因家族鉴定及盐胁迫下GmHXK2的功能研究. 郑州: 郑州大学, 2021. | |
43 | Cheng W H, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell, 2002, 14(11): 2723-2743. |
44 | Liu F, VanToai T, Moy L P, et al. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 2005, 137(3): 1115-1129. |
45 | Zhang J Y, Huang S N, Wang G, et al. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2016, 106: 244-252. |
46 | Luan H Y, Wang C J, Chen C Y, et al. Transcriptome analysis of barley root in response to waterlogging stress. Journal of Triticeae Crops, 2023, 43(2): 150-156. |
栾海业, 王春吉, 陈昌宇, 等. 大麦根系响应湿害胁迫的转录组分析. 麦类作物学报, 2023, 43(2): 150-156. | |
47 | Kęska K, Szcześniak M W, Makałowska I, et al. Long-term waterlogging as factor contributing to hypoxia stress tolerance enhancement in cucumber: comparative transcriptome analysis of waterlogging sensitive and tolerant accessions. Genes, 2021, 12(2): 189. |
48 | Zhang P, Lyu D, Jia L, et al. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics, 2017, 18(1): 1-14. |
49 | Zhao N, Li C, Yan Y, et al. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. International Journal of Molecular Sciences, 2018, 19(5): 1455. |
50 | Zhu H, Ai H, Cao L, et al. Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress. Ecotoxicology and Environmental Safety, 2018, 160: 349-356. |
51 | Han J, Bai Y H, Zhu X D, et al. Molecular mechanism of glutathione response to abiotic stresses in plant. Molecular Plant Breeding, 2020, 18(5): 1672-1680. |
韩键, 白云赫, 朱旭东, 等. 植物谷胱甘肽应答非生物胁迫的分子机制. 分子植物育种, 2020, 18(5): 1672-1680. | |
52 | Song W, Shan C H, Ning M, et al. Advances in research of glutathione-S-transferase in response to cold stress in plants. The Food Industry, 2020, 41(7): 239-244. |
宋文, 单春会, 宁明, 等. 谷胱甘肽-S-转移酶在植物响应冷胁迫方面的研究进展. 食品工业, 2020, 41(7): 239-244. | |
53 | George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010, 167(4): 311-318. |
54 | Zeng N, Yang Z, Zhang Z, et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress. International Journal of Molecular Sciences, 2019, 20(6): 1359. |
55 | Wang J T, Chen M X, Li L B, et al. Identification and bioinformatics analysis of APX genes family in Brassica species. Journal of Nuclear Agriculture Sciences, 2020, 34(9): 1906-1920. |
王钧涛, 陈木溪, 李立斌, 等. 几种芸薹属作物APX家族基因的鉴定与序列分析. 核农学报, 2020, 34(9): 1906-1920. | |
56 | Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57(1): 781-803. |
57 | Liu J H, Peng T, Dai W. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Molecular Biology Reporter, 2014, 32(2): 303-317. |
58 | Ren M H, Zhang Y P, Xu T, et al. Identification and expression analysis of R2R3-MYB subfamily in alfalfa under drought stress. Acta Agrestia Sinica, 2023, 31(4): 1-16. |
任明辉, 张雨蓬, 许涛, 等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析. 草地学报, 2023, 31(4): 1-16. | |
59 | Yang A, Dai X, Zhang W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 2012, 63(7): 2541-2556. |
60 | Pratyusha D S, Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports, 2022, 41(12): 2245-2260. |
61 | Karpinska B, Karlsson M, Srivastava M, et al. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 2004, 56(2): 255-270. |
62 | Xu X, Feng G, Huang L, et al. Genome-wide identification, structural analysis and expression profiles of GRAS gene family in orchardgrass. Molecular Biology Reports, 2020, 47(3): 1845-1857. |
63 | Tan Y J, Sun X Y, Wu Y Y, et al. Identification and expression analysis of transcription factors in Liriodendron tulipifera under flooding stress. Molecular Plant Breeding, 2020, 18(24): 8047-8054. |
谭胤静, 孙小艳, 伍祎翌, 等. 北美鹅掌楸淹水胁迫转录因子的鉴定及表达分析. 分子植物育种, 2020, 18(24): 8047-8054. | |
64 | Xu L, Feng G, Yang Z, et al. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchard grass (Dactylis glomerata). Molecular Biology Reports, 2020, 47(7): 5225-5241. |
[1] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[2] | Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis [J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156. |
[3] | Mei-shan CHEN, Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU. Relationship between plasticity and invasiveness in the anatomical structure of the fine roots of the invasive species Xanthium strumarium [J]. Acta Prataculturae Sinica, 2023, 32(5): 118-126. |
[4] | Pan-pan SHANG, Bing ZENG, Ming-hao QU, Ming-yang LI, Xing-yun YANG, Yu-qian ZHENG, Bing-na SHEN, Lei BI, Cheng YANG, Bing ZENG. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 112-128. |
[5] | Bing-na SHEN, Pan-pan SHANG, Bing(student) ZENG, Lin-xiang LI, Xing-yun YANG, Lei BI, Yu-qian ZHENG, Ming-hao QU, Wen-wen LI, Xiao-li ZHOU, Jun RAO, Bing(teacher) ZENG. Comparative metabolomics analysis of root systems of two Dactylis glomerata cultivars in response to submergence stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 40-57. |
[6] | Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
[7] | Feng-ling GAN, Jie WEI, Sha-sha LI. Response of root-soil friction characteristics of three common grasses to soil water content in purple soil bunds [J]. Acta Prataculturae Sinica, 2022, 31(7): 28-37. |
[8] | Xing-yun YANG, Dan-dan QIAO, Ya-jie ZHANG, Shao-qing WANG, Jun-cai REN, Ming-yang LI, Ming-hao QU, Pan-pan SHANG, Cheng YANG, Lin-kai HUANG, Bing ZENG. A differential gene expression analysis of miRNA in Dactylis glomerata in response to flooding stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 150-162. |
[9] | Zhi-min YANG, Rui XING, Yun-jia DING, Li-li ZHUANG. Analysis of differentially expressed genes in relation to tiller development and plant height based on transcriptomic sequencing of two tall fescue cultivars [J]. Acta Prataculturae Sinica, 2022, 31(1): 145-163. |
[10] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[11] | Jing ZHOU, Si-qi CHEN, Wen-jiao SHI, Fu-lin YANG, Hui LIN, Zhan-xi LIN. Transcriptome analyses of functional genes in young leaves and roots of Giant Juncao [J]. Acta Prataculturae Sinica, 2021, 30(2): 143-155. |
[12] | Fang-zhen WANG, Cheng-hang YANG, Zi-hua HE, Zi-ru LIN, Hao-yuan ZENG, Qing MA. Analysis of differentially expressed protein kinase related genes in the xerophyte Pugionium cornutum under salt treatment [J]. Acta Prataculturae Sinica, 2021, 30(10): 116-124. |
[13] | SHU Xin-yue, JIANG Bo, MA Li, ZHENG Ai-ping. Transcriptome analysis of Tilletia horrida at different infection time points [J]. Acta Prataculturae Sinica, 2020, 29(9): 190-202. |
[14] | QIAN Chen, LIU Zhi-wei, ZHONG Xiao-xian, WU Juan-zi, ZHANG Jian-li, PAN Yu-mei. Transcriptomic analysis of the self-incompatibility mechansim in Paspalum vaginatum by comparison with an artificial self-compatible mutant [J]. Acta Prataculturae Sinica, 2019, 28(5): 132-142. |
[15] | GONG Wen-long, WANG Zan, ZHAO Gui-qin, MA Lin, WEI Bao, GONG Pan, LIU Xi-qiang. Development of EST-SSR molecular markers and analysis of genetic diversity of erect milk vetch (Astragalus adsurgens) [J]. Acta Prataculturae Sinica, 2019, 28(11): 147-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||