Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (12): 121-133.DOI: 10.11686/cyxb2025019
Zi-qiang HONG1(
), Zheng-zhen ZHANG2, Ming SU1, Fan-guo LI1, Tian ZHOU1, Hong-liang WU1(
), Jian-hong KANG1(
)
Received:2025-01-17
Revised:2025-03-19
Online:2025-12-20
Published:2025-10-20
Contact:
Hong-liang WU,Jian-hong KANG
Zi-qiang HONG, Zheng-zhen ZHANG, Ming SU, Fan-guo LI, Tian ZHOU, Hong-liang WU, Jian-hong KANG. Responses of maize dry matter accumulation, translocation and grain yield to potassium application rates under drip irrigation conditions in the arid areas of Northwest China[J]. Acta Prataculturae Sinica, 2025, 34(12): 121-133.
年份 Year | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 2022 | 7.68 | 11.86 | 0.80 | 49.00 | 16.89 | 87.62 |
| 2023 | 7.71 | 12.56 | 0.63 | 41.00 | 16.43 | 81.31 |
Table 1 Basic physical and chemical properties of plough soil in experimental land from 2022 to 2023
年份 Year | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 2022 | 7.68 | 11.86 | 0.80 | 49.00 | 16.89 | 87.62 |
| 2023 | 7.71 | 12.56 | 0.63 | 41.00 | 16.43 | 81.31 |
生育时期 Growth period | 2022 | 2023 | ||||
|---|---|---|---|---|---|---|
灌水定额 Irrigation quota (m3·hm-2) | 灌水次数 Number of times of irrigation | 灌水总量 Amount of irrigation (m3·hm-2) | 灌水定额 Irrigation quota (m3·hm-2) | 灌水次数 Number of times of irrigation | 灌水总量 Amount of irrigation (m3·hm-2) | |
| S | 240 | 1 | 240 | 240 | 1 | 240 |
| VE~V6 | 240 | 1 | 240 | 240 | 1 | 240 |
| V6~V12 | 280 | 3 | 840 | 280 | 3 | 840 |
| V12~VT | 300 | 2 | 600 | 320 | 2 | 640 |
| VT~R3 | 300/320/350 | 3 | 970 | 350 | 3 | 1050 |
| R3~R6 | 200 | 1 | 200 | 200 | 1 | 200 |
| 合计Total | 11 | 3090 | 11 | 3210 | ||
Table 2 Irrigation frequency and amount for each growth period of maize under drip irrigation
生育时期 Growth period | 2022 | 2023 | ||||
|---|---|---|---|---|---|---|
灌水定额 Irrigation quota (m3·hm-2) | 灌水次数 Number of times of irrigation | 灌水总量 Amount of irrigation (m3·hm-2) | 灌水定额 Irrigation quota (m3·hm-2) | 灌水次数 Number of times of irrigation | 灌水总量 Amount of irrigation (m3·hm-2) | |
| S | 240 | 1 | 240 | 240 | 1 | 240 |
| VE~V6 | 240 | 1 | 240 | 240 | 1 | 240 |
| V6~V12 | 280 | 3 | 840 | 280 | 3 | 840 |
| V12~VT | 300 | 2 | 600 | 320 | 2 | 640 |
| VT~R3 | 300/320/350 | 3 | 970 | 350 | 3 | 1050 |
| R3~R6 | 200 | 1 | 200 | 200 | 1 | 200 |
| 合计Total | 11 | 3090 | 11 | 3210 | ||
年份 Year | 处理 Treatment | 花前转运量 DMR (kg·hm-2) | 花前转运率 DMRE (%) | 花前转运贡献率 DMRCG (%) | 花后积累量 DMA (kg·hm-2) | 花后积累贡献率 DMAC (%) |
|---|---|---|---|---|---|---|
| 2022 | K0 | 2496.20d | 18.00c | 14.89c | 16178.22d | 85.11a |
| K1 | 4071.84c | 25.88b | 22.30b | 17036.04c | 77.98b | |
| K2 | 5060.46a | 30.63a | 23.58ab | 17492.74b | 74.91cd | |
| K3 | 5216.28a | 30.23a | 27.08a | 18740.72a | 74.06d | |
| K4 | 4801.65ab | 29.86a | 21.39b | 17092.65c | 74.72cd | |
| K5 | 4560.42b | 29.34a | 20.58b | 15957.90d | 76.44bc | |
| 2023 | K0 | 1485.55b | 13.26ab | 8.82b | 18878.95e | 91.19a |
| K1 | 1518.34b | 13.21b | 8.67b | 19642.89d | 91.34a | |
| K2 | 1841.25a | 14.99ab | 10.33ab | 20861.20b | 89.68ab | |
| K3 | 1998.07a | 15.33ab | 10.91a | 21961.62a | 89.09b | |
| K4 | 1881.24a | 15.18ab | 9.82ab | 21641.23a | 90.18ab | |
| K5 | 1708.10ab | 15.71a | 9.28ab | 20230.82c | 90.72ab | |
| 年份Year (Y) | ** | ** | ** | ** | ** | |
| 施钾量Potassium application (K) | ** | ** | ** | ** | ** | |
| 年份×施钾量Y×K | ** | ** | ** | ** | ** | |
Table 3 Changes in maize dry matter translocation and analysis of variance (ANOVA) under different potassium applications
年份 Year | 处理 Treatment | 花前转运量 DMR (kg·hm-2) | 花前转运率 DMRE (%) | 花前转运贡献率 DMRCG (%) | 花后积累量 DMA (kg·hm-2) | 花后积累贡献率 DMAC (%) |
|---|---|---|---|---|---|---|
| 2022 | K0 | 2496.20d | 18.00c | 14.89c | 16178.22d | 85.11a |
| K1 | 4071.84c | 25.88b | 22.30b | 17036.04c | 77.98b | |
| K2 | 5060.46a | 30.63a | 23.58ab | 17492.74b | 74.91cd | |
| K3 | 5216.28a | 30.23a | 27.08a | 18740.72a | 74.06d | |
| K4 | 4801.65ab | 29.86a | 21.39b | 17092.65c | 74.72cd | |
| K5 | 4560.42b | 29.34a | 20.58b | 15957.90d | 76.44bc | |
| 2023 | K0 | 1485.55b | 13.26ab | 8.82b | 18878.95e | 91.19a |
| K1 | 1518.34b | 13.21b | 8.67b | 19642.89d | 91.34a | |
| K2 | 1841.25a | 14.99ab | 10.33ab | 20861.20b | 89.68ab | |
| K3 | 1998.07a | 15.33ab | 10.91a | 21961.62a | 89.09b | |
| K4 | 1881.24a | 15.18ab | 9.82ab | 21641.23a | 90.18ab | |
| K5 | 1708.10ab | 15.71a | 9.28ab | 20230.82c | 90.72ab | |
| 年份Year (Y) | ** | ** | ** | ** | ** | |
| 施钾量Potassium application (K) | ** | ** | ** | ** | ** | |
| 年份×施钾量Y×K | ** | ** | ** | ** | ** | |
年份 Year | 处理 Treatment | 方程参数 Parameters of equation | R2 | 干物质积累参数Dry matter accumulation parameters | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | K | Tmax (d) | Wmax (g) | Vmax (g·plant-1·d-1) | Vmean (g·plant-1·d-1) | |||
| 2022 | K0 | 401.90 | 20.93 | 0.06 | 0.99 | 5.85bc | 200.95f | 6.02c | 8.05c |
| K1 | 438.78 | 24.57 | 0.07 | 0.98 | 5.92ab | 219.39d | 7.22b | 9.70b | |
| K2 | 453.10 | 27.77 | 0.07 | 0.99 | 5.99a | 226.55b | 7.91a | 10.61a | |
| K3 | 484.81 | 25.30 | 0.07 | 0.99 | 5.91ab | 242.41a | 8.26a | 11.31a | |
| K4 | 445.82 | 21.28 | 0.06 | 0.99 | 5.81c | 222.91c | 7.10b | 9.86b | |
| K5 | 418.89 | 21.65 | 0.07 | 0.99 | 5.82c | 209.45e | 6.76b | 9.40b | |
| 2023 | K0 | 421.96 | 15.24 | 0.05 | 0.99 | 5.75b | 210.98e | 5.10f | 6.20e |
| K1 | 440.51 | 15.27 | 0.05 | 0.99 | 5.75b | 220.25d | 5.35d | 6.52d | |
| K2 | 468.68 | 15.17 | 0.05 | 0.99 | 5.73b | 234.32c | 5.76c | 7.12c | |
| K3 | 499.88 | 14.14 | 0.05 | 0.99 | 5.68c | 249.94a | 6.03a | 7.61a | |
| K4 | 481.81 | 15.46 | 0.05 | 0.99 | 5.75b | 240.90b | 5.94b | 7.30b | |
| K5 | 442.17 | 15.54 | 0.05 | 0.99 | 5.79a | 221.08d | 5.26e | 6.27e | |
| 年份Year (Y) | - | - | - | - | ** | ** | ** | ** | |
| 施钾量Potassium application (K) | - | - | - | - | * | ** | ** | ** | |
| 年份×施钾量Y×K | - | - | - | - | ** | ** | ** | ** | |
Table 4 Logistic equation regression analysis and analysis of variance (ANOVA) of aboveground dry matter accumulation of maize under different potassium applications
年份 Year | 处理 Treatment | 方程参数 Parameters of equation | R2 | 干物质积累参数Dry matter accumulation parameters | |||||
|---|---|---|---|---|---|---|---|---|---|
| A | B | K | Tmax (d) | Wmax (g) | Vmax (g·plant-1·d-1) | Vmean (g·plant-1·d-1) | |||
| 2022 | K0 | 401.90 | 20.93 | 0.06 | 0.99 | 5.85bc | 200.95f | 6.02c | 8.05c |
| K1 | 438.78 | 24.57 | 0.07 | 0.98 | 5.92ab | 219.39d | 7.22b | 9.70b | |
| K2 | 453.10 | 27.77 | 0.07 | 0.99 | 5.99a | 226.55b | 7.91a | 10.61a | |
| K3 | 484.81 | 25.30 | 0.07 | 0.99 | 5.91ab | 242.41a | 8.26a | 11.31a | |
| K4 | 445.82 | 21.28 | 0.06 | 0.99 | 5.81c | 222.91c | 7.10b | 9.86b | |
| K5 | 418.89 | 21.65 | 0.07 | 0.99 | 5.82c | 209.45e | 6.76b | 9.40b | |
| 2023 | K0 | 421.96 | 15.24 | 0.05 | 0.99 | 5.75b | 210.98e | 5.10f | 6.20e |
| K1 | 440.51 | 15.27 | 0.05 | 0.99 | 5.75b | 220.25d | 5.35d | 6.52d | |
| K2 | 468.68 | 15.17 | 0.05 | 0.99 | 5.73b | 234.32c | 5.76c | 7.12c | |
| K3 | 499.88 | 14.14 | 0.05 | 0.99 | 5.68c | 249.94a | 6.03a | 7.61a | |
| K4 | 481.81 | 15.46 | 0.05 | 0.99 | 5.75b | 240.90b | 5.94b | 7.30b | |
| K5 | 442.17 | 15.54 | 0.05 | 0.99 | 5.79a | 221.08d | 5.26e | 6.27e | |
| 年份Year (Y) | - | - | - | - | ** | ** | ** | ** | |
| 施钾量Potassium application (K) | - | - | - | - | * | ** | ** | ** | |
| 年份×施钾量Y×K | - | - | - | - | ** | ** | ** | ** | |
| 年份Year | 处理Treatment | V6~V12 | V12~VT | VT~R3 | R3~R6 | 平均Mean |
|---|---|---|---|---|---|---|
| 2022 | K0 | 351.60d | 485.34c | 295.57e | 192.00b | 331.13 |
| K1 | 354.31d | 660.12a | 312.00d | 201.49a | 381.98 | |
| K2 | 366.49cd | 702.82a | 334.88b | 193.62b | 399.45 | |
| K3 | 440.41a | 666.57a | 365.00a | 201.73a | 418.43 | |
| K4 | 399.00b | 603.91b | 320.30c | 195.52b | 379.68 | |
| K5 | 376.45cd | 582.07b | 296.42e | 184.93c | 359.97 | |
| 2023 | K0 | 301.19d | 354.32d | 306.52e | 223.26e | 296.32 |
| K1 | 304.44d | 385.42c | 319.26d | 232.05d | 310.29 | |
| K2 | 339.89a | 405.14b | 345.90b | 241.39bc | 333.08 | |
| K3 | 326.30b | 442.95a | 368.46a | 250.94a | 347.16 | |
| K4 | 323.77bc | 414.16b | 366.07a | 245.07ab | 337.27 | |
| K5 | 316.03c | 318.32e | 332.62c | 236.18cd | 300.79 |
Table 5 Changes in maize population growth rate under different potassium applications (kg·hm-2·d-1)
| 年份Year | 处理Treatment | V6~V12 | V12~VT | VT~R3 | R3~R6 | 平均Mean |
|---|---|---|---|---|---|---|
| 2022 | K0 | 351.60d | 485.34c | 295.57e | 192.00b | 331.13 |
| K1 | 354.31d | 660.12a | 312.00d | 201.49a | 381.98 | |
| K2 | 366.49cd | 702.82a | 334.88b | 193.62b | 399.45 | |
| K3 | 440.41a | 666.57a | 365.00a | 201.73a | 418.43 | |
| K4 | 399.00b | 603.91b | 320.30c | 195.52b | 379.68 | |
| K5 | 376.45cd | 582.07b | 296.42e | 184.93c | 359.97 | |
| 2023 | K0 | 301.19d | 354.32d | 306.52e | 223.26e | 296.32 |
| K1 | 304.44d | 385.42c | 319.26d | 232.05d | 310.29 | |
| K2 | 339.89a | 405.14b | 345.90b | 241.39bc | 333.08 | |
| K3 | 326.30b | 442.95a | 368.46a | 250.94a | 347.16 | |
| K4 | 323.77bc | 414.16b | 366.07a | 245.07ab | 337.27 | |
| K5 | 316.03c | 318.32e | 332.62c | 236.18cd | 300.79 |
年份 Years | 二次函数拟合方程 Quadratic function fitting | R2 | 经济最佳施钾量Economic optimal potassium application (kg·hm-2) | 经济最高产量Economic maximum yield (kg·hm-2) |
|---|---|---|---|---|
| 2022 | y=-0.0756x2+29.768x+11998 | 0.8892 | 167.25 | 14861 |
| 2023 | y=-0.0408x2+18.406x+12420 | 0.8298 | 170.66 | 14372 |
Table 6 Quadratic relationship between different potassium applications and yield in 2022 and 2023
年份 Years | 二次函数拟合方程 Quadratic function fitting | R2 | 经济最佳施钾量Economic optimal potassium application (kg·hm-2) | 经济最高产量Economic maximum yield (kg·hm-2) |
|---|---|---|---|---|
| 2022 | y=-0.0756x2+29.768x+11998 | 0.8892 | 167.25 | 14861 |
| 2023 | y=-0.0408x2+18.406x+12420 | 0.8298 | 170.66 | 14372 |
年份 Year | 处理 Treatment | SN (ear·hm-2) | KNE (grain·ear-1) | HGW (g) |
|---|---|---|---|---|
| 2022 | K0 | 59038.33d | 623.40c | 35.67c |
| K1 | 59785.67c | 628.80bc | 36.74c | |
| K2 | 59414.00cd | 625.40c | 40.82ab | |
| K3 | 62380.00a | 698.60ab | 42.54a | |
| K4 | 61386.00b | 716.40a | 37.06c | |
| K5 | 60914.00b | 706.20a | 38.74bc | |
| 2023 | K0 | 61265.33e | 509.60b | 37.91b |
| K1 | 62453.67d | 522.40b | 37.96b | |
| K2 | 62826.67c | 551.00b | 38.08b | |
| K3 | 64746.67a | 620.20a | 39.88ab | |
| K4 | 63232.67b | 609.20a | 41.18a | |
| K5 | 62384.33d | 544.60b | 39.74ab | |
| Y | ** | ** | NS | |
| K | ** | ** | ** | |
| Y×K | ** | NS | ** | |
Table 7 Changes in maize yield components and analysis of variance (ANOVA) under different potassium applications
年份 Year | 处理 Treatment | SN (ear·hm-2) | KNE (grain·ear-1) | HGW (g) |
|---|---|---|---|---|
| 2022 | K0 | 59038.33d | 623.40c | 35.67c |
| K1 | 59785.67c | 628.80bc | 36.74c | |
| K2 | 59414.00cd | 625.40c | 40.82ab | |
| K3 | 62380.00a | 698.60ab | 42.54a | |
| K4 | 61386.00b | 716.40a | 37.06c | |
| K5 | 60914.00b | 706.20a | 38.74bc | |
| 2023 | K0 | 61265.33e | 509.60b | 37.91b |
| K1 | 62453.67d | 522.40b | 37.96b | |
| K2 | 62826.67c | 551.00b | 38.08b | |
| K3 | 64746.67a | 620.20a | 39.88ab | |
| K4 | 63232.67b | 609.20a | 41.18a | |
| K5 | 62384.33d | 544.60b | 39.74ab | |
| Y | ** | ** | NS | |
| K | ** | ** | ** | |
| Y×K | ** | NS | ** | |
变量 Variable | 作用因子 Effect of factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficients | 间接通径系数Indirect path coefficients | |||
|---|---|---|---|---|---|---|---|
| 合计Total | 穗数SN | 穗粒数KNE | 百粒重HGW | ||||
产量 Yield | 穗数SN | 0.907** | 0.211 | 0.377 | 0.190 | 0.187 | |
| 穗粒数KNE | 0.838* | 0.140 | 0.236 | 0.126 | 0.110 | ||
| 百粒重HGW | 0.942** | 0.646 | 1.079 | 0.571 | 0.508 | ||
Table 8 Path analysis between maize grain yield and yield components under different potassium applications
变量 Variable | 作用因子 Effect of factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficients | 间接通径系数Indirect path coefficients | |||
|---|---|---|---|---|---|---|---|
| 合计Total | 穗数SN | 穗粒数KNE | 百粒重HGW | ||||
产量 Yield | 穗数SN | 0.907** | 0.211 | 0.377 | 0.190 | 0.187 | |
| 穗粒数KNE | 0.838* | 0.140 | 0.236 | 0.126 | 0.110 | ||
| 百粒重HGW | 0.942** | 0.646 | 1.079 | 0.571 | 0.508 | ||
| [1] | Guo J J, Fan J L, Xiang Y Z, et al. Synchronizing nitrogen supply and uptake by rainfed maize using mixed urea and slow-release nitrogen fertilizer. Nutrient Cycling in Agroecosystems, 2022, 122(2): 157-171. |
| [2] | Jiang C Z, You Y L, Lai X F, et al. Maximizing food equivalent unit yield for forage maize production without notably compromising dry matter yield and feed quality in a semi-arid region. Industrial Crops and Products, 2024, 218(1): 118942. |
| [3] | Dordas C. Variation in dry matter and nitrogen accumulation and remobilization in barley as affected by fertilization, cultivar, and source-sink relations. European Journal of Agronomy, 2012, 37(1): 31-42. |
| [4] | Srivastava A K, Shankar A, Chandran A K N, et al. Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany, 2020, 71(2): 608-619. |
| [5] | Li J F, Lu J W, Ren T, et al. Crop straw can optimize potassium fertilization strategies in rice cropping system. Better Crops with Plant Food, 2014, 98(3): 13-15. |
| [6] | Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64(1): 451-476. |
| [7] | Zhang Z Z, Mu R R, Wang J, et al. Effect of potassium application rate on absorption, transport and yield of maize potassium. Chinese Agricultural Science Bulletin, 2024, 40(8): 47-56. |
| 张正珍, 慕瑞瑞, 王佳, 等. 施钾量对玉米钾素吸收、转运及产量的影响. 中国农学通报, 2024, 40(8): 47-56. | |
| [8] | Yang X, Zhang L, Liu X F. Optimizing water-fertilizer integration with drip irrigation management to improve crop yield, water, and nitrogen use efficiency: A Meta-analysis study. Scientia Horticulturae, 2024, 338: 113653. |
| [9] | Xiao D P, Liu D L, Feng P Y, et al. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agricultural Water Management, 2021, 246: 106685. |
| [10] | Kong L L, Hou Y P, Yin C X, et al. Optimal plant density and potassium application rate for spring maize under drip-fertigation in Northeast China. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1755-1769. |
| 孔丽丽, 侯云鹏, 尹彩侠, 等. 东北春玉米滴灌施肥的适宜种植密度和施钾量研究. 植物营养与肥料学报, 2022, 28(10): 1755-1769. | |
| [11] | Hong Z Q, Zhang Z Z, Zhou T, et al. Optimal potassium dosage for high fluorescence parameters and target yield of spring maize under drip fertigation. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1461-1476. |
| 洪自强, 张正珍, 周甜, 等. 水肥一体化下钾肥用量对春玉米光合荧光参数的影响. 植物营养与肥料学报, 2024, 30(8): 1461-1476. | |
| [12] | Gómez R C, Iñiguez P C, Báez W L, et al. Effect of the application of potassium on the yield of corn (Zea mays L.) in La Frailesca, Chiapas Mexico. Brazilian Journal of Development, 2022, 8(4): 29335-29343. |
| [13] | Song J, Wang S X, Li L, et al. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.). Acta Agronomica Sinica, 2023, 49(2): 539-551. |
| 宋杰, 王少祥, 李亮, 等. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响. 作物学报, 2023, 49(2): 539-551. | |
| [14] | Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 2008, 133(4): 670-681. |
| [15] | Szulc P, Bocianowski J, Nowosad K, et al. Assessment of the influence of fertilisation and environmental conditions on maize health. Plant Protection Science, 2018, 54(3): 174-182. |
| [16] | Qiu S J, Xi J G, Zhao S C, et al. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 2014, 163: 1-9. |
| [17] | Wang F E, Guo Y, Li P, et al. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas. Acta Agronomica Sinica, 2024, 50(6): 1616-1627. |
| 王菲儿, 郭瑶, 李盼, 等. 绿洲灌区增密对水氮减量玉米产量的补偿机制. 作物学报, 2024, 50(6): 1616-1627. | |
| [18] | Yang L D, Ren J B, Peng X Y, et al. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping. Acta Agronomica Sinica, 2024, 50(1): 251-264. |
| 杨立达, 任俊波, 彭新月, 等. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响. 作物学报, 2024, 50(1): 251-264. | |
| [19] | Su M, Liu Q J, Hong Z Q, et al. Effects of different nitrogen application rates on photosynthetic characteristics and yield formation of potato in semi-arid region of northwest China. Journal of Plant Nutrition and Fertilizers, 2024, 30(10): 1919-1933. |
| 苏明, 柳强娟, 洪自强, 等. 西北半干旱区不同施氮量对马铃薯光合特性及产量形成的影响. 植物营养与肥料学报, 2024, 30(10): 1919-1933. | |
| [20] | Wei T B, Chai Q, Wang W M, et al. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Scientia Agricultura Sinica, 2019, 52(3): 428-444. |
| 魏廷邦, 柴强, 王伟民, 等. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52(3): 428-444. | |
| [21] | Xie J G, Hou Y P, Yin C X, et al. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1110-1118. |
| 谢佳贵, 侯云鹏, 尹彩侠, 等. 施钾和秸秆还田对春玉米产量、养分吸收及土壤钾素平衡的影响. 植物营养与肥料学报, 2014, 20(5): 1110-1118. | |
| [22] | Yin C X, Li Q, Kong L L, et al. The effects of potassium management on maize yield, potassium absorption and utilization under mulched drip irrigation. Journal of Northeast Agricultural Sciences, 2020, 45(3): 35-40. |
| 尹彩侠, 李前, 孔丽丽, 等. 覆膜滴灌施肥条件下钾肥运筹对玉米产量及钾素吸收利用的影响. 东北农业科学, 2020, 45(3): 35-40. | |
| [23] | Pottosin I, Dobrovinskaya O. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. Journal of Plant Physiology, 2014, 171(9): 732-742. |
| [24] | Guo B, Chen B, Wu D Z, et al. Effects of potassium ion on adventitious bud induction of Amygdalus pedunculata. Plant Physiology Journal, 2013, 49(12): 1355-1358. |
| 郭斌, 陈邦, 吴道长, 等. 钾离子对长柄扁桃不定芽诱导的影响. 植物生理学报, 2013, 49(12): 1355-1358. | |
| [25] | Chen Y H, Zhang S Y, Du S F, et al. Effects of exogenous potassium (K+) application on the antioxidant enzymes activities in leaves of Tamarix ramosissima under NaCl stress. Genes, 2022, 13(9): 1507. |
| [26] | Du Q, Zhao X H, Xia L, et al. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of Integrative Agriculture, 2019, 18(2): 395-406. |
| [27] | Latifmanesh H, Deng A X, Nawaz M M, et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil & Tillage Research, 2018, 184: 100-108. |
| [28] | Wang P F, Yu A Z, Wang Y L, et al. Effects of returning green manure to field combined with reducing nitrogen application on the dry matter accumulation, distribution and yield of maize. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294. |
| 王鹏飞, 于爱忠, 王玉珑, 等. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响. 中国农业科学, 2023, 56(7): 1283-1294. | |
| [29] | Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54-65. |
| 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应. 植物营养与肥料学报, 2021, 27(1): 54-65. | |
| [30] | Li C S, Tang Y L, Wu C, et al. Effect of N rate on growth and grain filling of wheat in Sichuan Basin. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 873-883. |
| 李朝苏, 汤永禄, 吴春, 等. 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015, 21(4): 873-883. | |
| [31] | Li S. Effects of nitrogen-density interaction on dry matter accumulation, nutrient use and yield of maize. Zhengzhou: Henan Agricultural University, 2017. |
| 李帅. 施氮量和密度互作对玉米干物质累积、养分吸收利用及产量的影响. 郑州: 河南农业大学, 2017. | |
| [32] | Li Y F. Effects of potassium nutrition on photosynthesis and carbon and nitrogen metabolism of foxtail millet. Taiyuan: Shanxi Agricultural University, 2022. |
| 李艳芬. 钾素营养对谷子光合作用和碳氮代谢的影响. 太原: 山西农业大学, 2022. | |
| [33] | Yang P, Zhai X Y, Huang H Q, et al. Association and driving factors of meteorological drought and agricultural drought in Ningxia, Northwest China. Atmospheric Research, 2023, 289: 106753. |
| [34] | Zorb C, Senbayram M, Peiter E. Potassium in agriculture-Status and perspectives. Journal of Plant Physiology, 2014, 171(9): 656-669. |
| [35] | Zhang M L, Hu Y Y, Han W, et al. Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance. The Crop Journal, 2023, 11(4): 1048-1058. |
| [36] | Frei J, Wiesenberg G L B, Hirte J. The impact of climate and potassium nutrition on crop yields: Insights from a 30-year Swiss long-term fertilization experiment. Agriculture, Ecosystems and Environment, 2024, 372: 109100. |
| [37] | Zhao X H, Yu H Q, Wen J, et al. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. Journal of Integrative Agriculture, 2016, 15(4): 785-794. |
| [38] | Tan J, Kong F L, Zeng H, et al. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 838-846. |
| 谭杰, 孔凡磊, 曾晖, 等. 川中丘陵春玉米适宜钾肥用量研究. 植物营养与肥料学报, 2016, 22(3): 838-846. | |
| [39] | Mu R R. Effects of different potassium rates on yield and starch formation of spring maize integrated with drip irrigation. Yinchuan: Ningxia University, 2019. |
| 慕瑞瑞. 不同施钾量对滴灌水肥一体化春玉米产量和淀粉形成的影响. 银川: 宁夏大学, 2019. | |
| [40] | Khan A A, Khan M N, Inamuallah, et al. Effect of potash application on growth, yield and yield components of spring maize hybrids. Pure and Applied Biology, 2015, 4(2): 195-203. |
| [41] | Liao Y L. Studies on evolution of potassium in reddish paddy soil under long-term fertilizer and rice straws application. Changsha: Hunan Agricultural University, 2010. |
| 廖育林. 长期施用化肥和稻草下红壤性水稻土钾素肥力演变规律的研究. 长沙: 湖南农业大学, 2010. |
| [1] | Chang-qing LI, Ya-ru SONG, Fan XIAO, Chun-yu MIAO, Meng-yu SUN, Meng JI, Zhi-mei SUN. Analysis of main agronomic traits of low-fertility-tolerant and high-yielding maize varieties [J]. Acta Prataculturae Sinica, 2025, 34(9): 97-110. |
| [2] | Bang-yan ZHANG, Xiao-wei XIE, Zhao-hui ZHANG, Jin-min WU, Bin WANG, Xing XU. Effect of organic-inorganic amendments on the quality of saline-alkaline soil and yield of Echinochloa frumentacea [J]. Acta Prataculturae Sinica, 2025, 34(8): 15-29. |
| [3] | Hai-long MAO, Ji-cheng TAI, Heng-shan YANG, Yu-qin ZHANG, Rui-fu ZHANG, Zhen-zhen WANG. Effect of strip configuration on canopy characteristics, yield, and the quality of silage produced from co-cultivated corn and soybean [J]. Acta Prataculturae Sinica, 2025, 34(8): 30-42. |
| [4] | Yi-yin ZHANG, Bin WANG, Teng-fei WANG, Jian LAN, Hai-ying HU. Effects of intercropping triticale with alfalfa on system yield, resource utilization, and alfalfa seed yield [J]. Acta Prataculturae Sinica, 2025, 34(8): 43-53. |
| [5] | Wen-juan FAN, Jian-chao SONG, Xiao-juan ZHANG, Yu-hang SHENG, Jin-tao SHI, Long-ji ZHANG, Xiao-jun YU. The effects of combined nitrogen and phosphorus fertilization on seed yield and quality of Medicago ruthenica in the Wuwei irrigation district, Gansu Province [J]. Acta Prataculturae Sinica, 2025, 34(8): 54-65. |
| [6] | Ling-fei XIANG, Feng-ju ZHANG, Dong-mei MA, Jin-long LIU, Jian LAN, Jian-qiang DENG, Hai-ying HU, Bin WANG, Chun-jiang CAI, Qiao-li MA. Effects of nitrogen, phosphorus and potassium rationing on production performance and nutritional quality of Echinochloa frumentacea in saline soil [J]. Acta Prataculturae Sinica, 2025, 34(7): 185-195. |
| [7] | Xue-qian JIANG, Qing-chuan YANG, Jun-mei KANG. Research progress on yield loss under drought stress and drought resistance genetics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2025, 34(7): 219-234. |
| [8] | Pei-pei JIANG, Jin-hua GUO, Hui-shu XIAO, Yan-min PENG, Jun ZHANG, Wen-zhong TIAN, Jun-jie Lyu, Jin-zhi WU, He-zheng WANG, Guo-zhan FU, Ming HUANG, You-jun LI. Effect of rotational tillage patterns on the crop yield and quality in a maize-wheat (Zea mays-Triticum aestivum) double cropping system in dryland agriculture [J]. Acta Prataculturae Sinica, 2025, 34(6): 181-192. |
| [9] | Qi-lin LIU, Xiao-jun WANG, Jin-lan WANG, Wen-hui LIU, Qiao-ling MA, Jian-hui LI, Sheng-yuan ZHANG, Wen-xia CAO, Wen LI. Effect of nitrogen and phosphorus combined application on forage yield of Elymus sibiricus in an alpine region [J]. Acta Prataculturae Sinica, 2025, 34(6): 193-202. |
| [10] | Zong-yang KUANG, Lin MU, Lan WEI, Yang GUO, Gui XU, Yao CHEN, Xue-yun SHI, Zhong-shan WEI, Zhi-fei ZHANG. Effects of different mixture ratios and lactic acid bacteria on the quality and aerobic stability of mixed silage made from whole maize (Zea mays) and soybean (Glycine max) plants [J]. Acta Prataculturae Sinica, 2025, 34(6): 227-238. |
| [11] | Wen-li QIN, Jing ZHANG, Guang-min XIAO, Su-qian CUI, Jian-xun YE, Jian-fei ZHI, Li-feng ZHANG, Nan XIE, Wei FENG, Zhen-yu LIU, Xuan PAN, Yun-xia DAI, Zhong-kuan LIU. Effects of partial replacement of chemical nitrogen fertilizers with green manure on soil physical properties and maize (Zea mays) yield [J]. Acta Prataculturae Sinica, 2025, 34(6): 27-45. |
| [12] | Yao-bo LIU, Lu PEI, Chen-zhuo LIU, Xiao-xia LI, Bo-kun ZOU. A meta-analysis of fertilizer response of seed yield and seed yield components in Elymus sibiricus [J]. Acta Prataculturae Sinica, 2025, 34(6): 85-98. |
| [13] | Xiao-hui DONG, Shang-li SHI, Guo-li YIN, San-dong CHEN, Hai-qiang GONG, Lin-bo LIU. Diversity of endophytic bacterial and fungal communities in different maize organs [J]. Acta Prataculturae Sinica, 2025, 34(5): 130-145. |
| [14] | Ya-qi FENG, Jia-hui CHEN, Jing-ni ZHANG, Chao SUI, Ji-wei CHEN, Zhi-peng LIU, Qiang ZHOU, Wen-xian LIU. Development of high-protein and high-yield associated InDel molecular markers based on re-sequencing in alfalfa [J]. Acta Prataculturae Sinica, 2025, 34(4): 137-149. |
| [15] | Teng-fei WANG, Xia MA, Jin-long LIU, Bin WANG, Yi-yin ZHANG, Jia-wang LI, Jiang-ping MA, Xiao-bing WANG, Jian LAN. Analysis of the yield, quality and economic benefits from multiple cropping of fodder oats in the Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2025, 34(4): 27-37. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||