Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (1): 119-129.DOI: 10.11686/cyxb2025064
Hao-le QI1(
), Si-ning WANG2, Xiao-xia LI2, Feng-ling SHI1(
)
Received:2025-03-04
Revised:2025-04-07
Online:2026-01-20
Published:2025-11-13
Contact:
Feng-ling SHI
Hao-le QI, Si-ning WANG, Xiao-xia LI, Feng-ling SHI. Multivariate evaluation of the salt tolerance of Buchloe dactyloides germplasm lines and construction of a preliminary evaluation model[J]. Acta Prataculturae Sinica, 2026, 35(1): 119-129.
编号 Number | 品种 Variety | 来源地 Place of origin |
|---|---|---|
| 1 | Bd770 | 中国北京市Beijing, China |
| 2 | Bd769 | 中国北京市Beijing, China |
| 3 | Bd380 | 美国希伯伦市Hebron, USA |
| 4 | Bd415 | 美国麦克弗森市McPherson, USA |
| 5 | Bd324 | 美国皮埃尔堡市Fort Pierre, USA |
| 6 | Bd581 | 美国斯特拉特福市Stratford, USA |
| 7 | Bd631 | 美国达尔哈特市Dalhart, USA |
| 8 | Bd500 | 美国普拉特市Pratt, USA |
| 9 | Bd628 | 美国达尔哈特市Dalhart, USA |
| 10 | Bd358 | 美国布鲁宁市Bruning, USA |
| 11 | Bd540 | 美国沙特克市Shattuck, USA |
| 12 | Bd096 | 美国贝尔菲尔德市Belfield, USA |
| 13 | Bd678 | 美国达尔哈特市Dalhart, USA |
| 14 | Bd261 | 美国基斯通市Keystone, USA |
| 15 | Bd436 | 美国哈钦森市Hutchinson, USA |
Table 1 Germplasm resource numbers and geographical origins of B. dactyloides
编号 Number | 品种 Variety | 来源地 Place of origin |
|---|---|---|
| 1 | Bd770 | 中国北京市Beijing, China |
| 2 | Bd769 | 中国北京市Beijing, China |
| 3 | Bd380 | 美国希伯伦市Hebron, USA |
| 4 | Bd415 | 美国麦克弗森市McPherson, USA |
| 5 | Bd324 | 美国皮埃尔堡市Fort Pierre, USA |
| 6 | Bd581 | 美国斯特拉特福市Stratford, USA |
| 7 | Bd631 | 美国达尔哈特市Dalhart, USA |
| 8 | Bd500 | 美国普拉特市Pratt, USA |
| 9 | Bd628 | 美国达尔哈特市Dalhart, USA |
| 10 | Bd358 | 美国布鲁宁市Bruning, USA |
| 11 | Bd540 | 美国沙特克市Shattuck, USA |
| 12 | Bd096 | 美国贝尔菲尔德市Belfield, USA |
| 13 | Bd678 | 美国达尔哈特市Dalhart, USA |
| 14 | Bd261 | 美国基斯通市Keystone, USA |
| 15 | Bd436 | 美国哈钦森市Hutchinson, USA |
Fig.2 Changes in leaf relative water content, peroxidase activity, superoxide dismutase activity and malondialdehyde content of B. dactyloides seedlings under salt stress
成分 Component | 特征值 Eigenvalues | 方差贡献率 Variance contribution rate (%) | 累积贡献率 Cumulative contribution rate (%) |
|---|---|---|---|
| 初始特征值Initial eigenvalues | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
| 5 | 0.981 | 7.546 | 82.353 |
| 6 | 0.750 | 5.768 | 88.121 |
| 7 | 0.555 | 4.270 | 92.391 |
| 8 | 0.543 | 4.175 | 96.566 |
| 9 | 0.325 | 2.498 | 99.064 |
| 10 | 0.068 | 0.520 | 99.584 |
| 11 | 0.031 | 0.239 | 99.823 |
| 12 | 0.015 | 0.119 | 99.942 |
| 13 | 0.007 | 0.058 | 100.000 |
| 提取平方和载入Extraction sums of squared loadings | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
Table 2 Initial eigenvalues and extracted principal component contribution rate
成分 Component | 特征值 Eigenvalues | 方差贡献率 Variance contribution rate (%) | 累积贡献率 Cumulative contribution rate (%) |
|---|---|---|---|
| 初始特征值Initial eigenvalues | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
| 5 | 0.981 | 7.546 | 82.353 |
| 6 | 0.750 | 5.768 | 88.121 |
| 7 | 0.555 | 4.270 | 92.391 |
| 8 | 0.543 | 4.175 | 96.566 |
| 9 | 0.325 | 2.498 | 99.064 |
| 10 | 0.068 | 0.520 | 99.584 |
| 11 | 0.031 | 0.239 | 99.823 |
| 12 | 0.015 | 0.119 | 99.942 |
| 13 | 0.007 | 0.058 | 100.000 |
| 提取平方和载入Extraction sums of squared loadings | |||
| 1 | 3.835 | 29.500 | 29.500 |
| 2 | 2.623 | 20.180 | 49.681 |
| 3 | 1.814 | 13.955 | 63.636 |
| 4 | 1.452 | 11.172 | 74.807 |
性状 Trait | 主成分Principal component | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 株高Plant height | 0.528 | 0.089 | 0.417 | -0.178 |
| 茎粗Stem diameter | 0.761 | -0.135 | -0.234 | 0.400 |
| 叶片相对含水量Leaf relative water content | 0.076 | 0.366 | 0.763 | -0.035 |
| 丙二醛含量Malondialdehyde (MDA) content | 0.587 | 0.598 | 0.142 | 0.045 |
| 超氧化物歧化酶活性Superoxide dismutase (SOD) activity | 0.460 | 0.437 | 0.145 | -0.641 |
| 过氧化物酶活性Peroxidase (POD) activity | -0.110 | -0.099 | -0.735 | -0.274 |
| 脯氨酸含量Proline (Pro) content | -0.810 | 0.204 | -0.328 | -0.011 |
| 蔗糖含量Sucrose content | 0.057 | -0.072 | 0.861 | -0.257 |
| 葡萄糖含量Glucose content | 0.338 | 0.137 | 0.001 | 0.873 |
| 淀粉含量Starch content | -0.847 | -0.104 | -0.018 | -0.063 |
| α-淀粉酶活性α-amylase activity | -0.019 | -0.643 | 0.204 | 0.368 |
| 总淀粉酶活性Total amylase activity | -0.141 | 0.795 | 0.268 | 0.133 |
| β-淀粉酶活性β-amylase activity | 0.013 | 0.947 | 0.157 | 0.018 |
Table 3 Factor loading matrix
性状 Trait | 主成分Principal component | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 株高Plant height | 0.528 | 0.089 | 0.417 | -0.178 |
| 茎粗Stem diameter | 0.761 | -0.135 | -0.234 | 0.400 |
| 叶片相对含水量Leaf relative water content | 0.076 | 0.366 | 0.763 | -0.035 |
| 丙二醛含量Malondialdehyde (MDA) content | 0.587 | 0.598 | 0.142 | 0.045 |
| 超氧化物歧化酶活性Superoxide dismutase (SOD) activity | 0.460 | 0.437 | 0.145 | -0.641 |
| 过氧化物酶活性Peroxidase (POD) activity | -0.110 | -0.099 | -0.735 | -0.274 |
| 脯氨酸含量Proline (Pro) content | -0.810 | 0.204 | -0.328 | -0.011 |
| 蔗糖含量Sucrose content | 0.057 | -0.072 | 0.861 | -0.257 |
| 葡萄糖含量Glucose content | 0.338 | 0.137 | 0.001 | 0.873 |
| 淀粉含量Starch content | -0.847 | -0.104 | -0.018 | -0.063 |
| α-淀粉酶活性α-amylase activity | -0.019 | -0.643 | 0.204 | 0.368 |
| 总淀粉酶活性Total amylase activity | -0.141 | 0.795 | 0.268 | 0.133 |
| β-淀粉酶活性β-amylase activity | 0.013 | 0.947 | 0.157 | 0.018 |
编号 Number | 主成分Principal component | 隶属函数Membership function | D值 D value | 评价排序 Rank | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F2 | F3 | F4 | U1 | U2 | U3 | U4 | |||
| 1 | 0.72 | 0.53 | 0.68 | 0.04 | 0.64 | 0.28 | 0.45 | 0.21 | 0.44 | 9 |
| 2 | 1.88 | 1.51 | 0.80 | 0.81 | 0.98 | 0.60 | 0.48 | 0.75 | 0.75 | 2 |
| 3 | 0.83 | 1.31 | 0.72 | 0.84 | 0.67 | 0.53 | 0.46 | 0.76 | 0.61 | 5 |
| 4 | 1.04 | 1.78 | 0.69 | 0.50 | 0.73 | 0.68 | 0.45 | 0.55 | 0.64 | 4 |
| 5 | 1.94 | 2.75 | 2.46 | 0.34 | 1.00 | 1.00 | 1.00 | 0.02 | 0.85 | 1 |
| 6 | 0.49 | 1.17 | 0.32 | 0.37 | 0.57 | 0.49 | 0.14 | 0.00 | 0.38 | 12 |
| 7 | 0.28 | 0.17 | 0.25 | 0.49 | 0.51 | 0.16 | 0.31 | 0.54 | 0.38 | 11 |
| 8 | 0.08 | 0.74 | 0.75 | 0.37 | 0.45 | 0.35 | 0.00 | 0.47 | 0.34 | 14 |
| 9 | 1.36 | 1.42 | 1.40 | 0.75 | 0.83 | 0.57 | 0.67 | 0.71 | 0.71 | 3 |
| 10 | 0.92 | 0.33 | 0.43 | 1.16 | 0.70 | 0.00 | 0.37 | 0.97 | 0.49 | 7 |
| 11 | 0.67 | 1.89 | 0.45 | 0.70 | 0.22 | 0.72 | 0.38 | 0.68 | 0.45 | 8 |
| 12 | 1.42 | 0.87 | 0.54 | 0.04 | 0.00 | 0.39 | 0.40 | 0.26 | 0.22 | 15 |
| 13 | 0.13 | 0.17 | 0.63 | 0.33 | 0.46 | 0.05 | 0.43 | 0.44 | 0.34 | 13 |
| 14 | 0.20 | 0.56 | 0.10 | 0.80 | 0.48 | 0.29 | 0.27 | 0.74 | 0.43 | 10 |
| 15 | 0.89 | 1.14 | 0.00 | 1.21 | 0.69 | 0.48 | 0.24 | 1.00 | 0.59 | 6 |
Table 4 The principal component value, membership function value and comprehensive evaluation value (D value) of different varieties of B. dactyloides
编号 Number | 主成分Principal component | 隶属函数Membership function | D值 D value | 评价排序 Rank | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| F1 | F2 | F3 | F4 | U1 | U2 | U3 | U4 | |||
| 1 | 0.72 | 0.53 | 0.68 | 0.04 | 0.64 | 0.28 | 0.45 | 0.21 | 0.44 | 9 |
| 2 | 1.88 | 1.51 | 0.80 | 0.81 | 0.98 | 0.60 | 0.48 | 0.75 | 0.75 | 2 |
| 3 | 0.83 | 1.31 | 0.72 | 0.84 | 0.67 | 0.53 | 0.46 | 0.76 | 0.61 | 5 |
| 4 | 1.04 | 1.78 | 0.69 | 0.50 | 0.73 | 0.68 | 0.45 | 0.55 | 0.64 | 4 |
| 5 | 1.94 | 2.75 | 2.46 | 0.34 | 1.00 | 1.00 | 1.00 | 0.02 | 0.85 | 1 |
| 6 | 0.49 | 1.17 | 0.32 | 0.37 | 0.57 | 0.49 | 0.14 | 0.00 | 0.38 | 12 |
| 7 | 0.28 | 0.17 | 0.25 | 0.49 | 0.51 | 0.16 | 0.31 | 0.54 | 0.38 | 11 |
| 8 | 0.08 | 0.74 | 0.75 | 0.37 | 0.45 | 0.35 | 0.00 | 0.47 | 0.34 | 14 |
| 9 | 1.36 | 1.42 | 1.40 | 0.75 | 0.83 | 0.57 | 0.67 | 0.71 | 0.71 | 3 |
| 10 | 0.92 | 0.33 | 0.43 | 1.16 | 0.70 | 0.00 | 0.37 | 0.97 | 0.49 | 7 |
| 11 | 0.67 | 1.89 | 0.45 | 0.70 | 0.22 | 0.72 | 0.38 | 0.68 | 0.45 | 8 |
| 12 | 1.42 | 0.87 | 0.54 | 0.04 | 0.00 | 0.39 | 0.40 | 0.26 | 0.22 | 15 |
| 13 | 0.13 | 0.17 | 0.63 | 0.33 | 0.46 | 0.05 | 0.43 | 0.44 | 0.34 | 13 |
| 14 | 0.20 | 0.56 | 0.10 | 0.80 | 0.48 | 0.29 | 0.27 | 0.74 | 0.43 | 10 |
| 15 | 0.89 | 1.14 | 0.00 | 1.21 | 0.69 | 0.48 | 0.24 | 1.00 | 0.59 | 6 |
编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) | 编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.441 | 0.466 | 0.025 | 94.65 | 9 | 0.710 | 0.708 | 0.002 | 99.74 |
| 2 | 0.750 | 0.738 | 0.012 | 98.40 | 10 | 0.488 | 0.463 | 0.025 | 94.81 |
| 3 | 0.607 | 0.613 | 0.006 | 99.04 | 11 | 0.454 | 0.458 | 0.004 | 99.07 |
| 4 | 0.639 | 0.642 | 0.003 | 99.53 | 12 | 0.219 | 0.210 | 0.008 | 96.18 |
| 5 | 0.854 | 0.846 | 0.007 | 99.13 | 13 | 0.342 | 0.347 | 0.005 | 98.66 |
| 6 | 0.380 | 0.383 | 0.003 | 99.29 | 14 | 0.428 | 0.432 | 0.004 | 99.08 |
| 7 | 0.384 | 0.370 | 0.013 | 96.49 | 15 | 0.593 | 0.610 | 0.017 | 97.21 |
| 8 | 0.340 | 0.341 | 0.001 | 99.78 |
Table 5 Analysis of estimation precision of regression equation
编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) | 编号 Number | D值 D value | 预测值Prediction value | 差值Difference value | 估计精度Evaluation accuracy (%) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.441 | 0.466 | 0.025 | 94.65 | 9 | 0.710 | 0.708 | 0.002 | 99.74 |
| 2 | 0.750 | 0.738 | 0.012 | 98.40 | 10 | 0.488 | 0.463 | 0.025 | 94.81 |
| 3 | 0.607 | 0.613 | 0.006 | 99.04 | 11 | 0.454 | 0.458 | 0.004 | 99.07 |
| 4 | 0.639 | 0.642 | 0.003 | 99.53 | 12 | 0.219 | 0.210 | 0.008 | 96.18 |
| 5 | 0.854 | 0.846 | 0.007 | 99.13 | 13 | 0.342 | 0.347 | 0.005 | 98.66 |
| 6 | 0.380 | 0.383 | 0.003 | 99.29 | 14 | 0.428 | 0.432 | 0.004 | 99.08 |
| 7 | 0.384 | 0.370 | 0.013 | 96.49 | 15 | 0.593 | 0.610 | 0.017 | 97.21 |
| 8 | 0.340 | 0.341 | 0.001 | 99.78 |
| [1] | Trejo-Téllez L I. Salinity stress tolerance in plants. Plants, 2023, 12(20): 3520. |
| [2] | Food and Agriculture Organization of the United Nations. The key report of the first global assessment of saline and sodic soils in the past 50 years. (2024-12-11)[2025-01-13]. https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/zh?continueFlag=4abf1b7994dcaaee427c557d85985fad. |
| 联合国粮食及农业组织. 50年来首份盐渍土壤全球评估关键报告. (2024-12-11)[2025-01-13]. https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/zh?continueFlag=4abf1b79 94dcaaee427c557d85985fad. | |
| [3] | Li Y, Li Y L, Zhai C Y, et al. Research advances in salt resistance of turfgrasses. Plant Physiology Journal, 2023, 59(5): 839-851. |
| 李岩, 李永龙, 翟晨元, 等. 草坪草耐盐性研究进展. 植物生理学报, 2023, 59(5): 839-851. | |
| [4] | Guo H, Cui Y N, Li Z, et al. Photosynthesis, water status and K/Na homeostasis of Buchoe dactyloides responding to salinity. Plants, 2023, 12(13): 2459. |
| [5] | Guo L Z, Meng H Z, Teng K, et al. Effects of nitrogen forms on the growth and nitrogen accumulation in Buchloe dactyloides seedlings. Plants, 2022, 11(16): 2086. |
| [6] | Sun J, Xiong J B, Liu Y Z, et al. Analysis on factors causing the seed dormancy of Buchloe dactyloides (Nutt.) Engelm. Acta Agrestia Sinica, 2009, 17(5): 665-669. |
| 孙杰, 熊军波, 刘永志, 等. 野牛草种子休眠原因分析. 草地学报, 2009, 17(5): 665-669. | |
| [7] | Wu F, Chen J, Wang J, et al. Intra-population genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using morphological traits and sequence-related amplified polymorphism markers. 3 Biotech, 2019, 9(3): 97. |
| [8] | Zhao C F. The correlation analysis of different ploidy and phenotype characteristics of buffalo grass. Beijing: Chinese Academy of Forestry, 2014. |
| 赵成芳. 野牛草(Buchloe dactyloides)不同倍性与表型特征相关性分析. 北京: 中国林业科学研究院, 2014. | |
| [9] | Liu M Y, Guo L Z, Teng K, et al. Differences in the physiological responses of female and male Buchloe dactyloides plants to drought stress. Pratacultural Science, 2024, 41(6): 1397-1406. |
| 刘牧野, 郭丽珠, 滕珂, 等. 野牛草雌、雄株对干旱胁迫的生理响应差异. 草业科学, 2024, 41(6): 1397-1406. | |
| [10] | Li Z L, Huang K X, Sun Y. Salt-tolerance evaluation and analysis on buffalo grass germplasm resources. Grassland and Prataculture, 2022, 34(2): 27-34. |
| 李智林, 黄可心, 孙彦. 野牛草种质资源耐盐性评价与筛选. 草原与草业, 2022, 34(2): 27-34. | |
| [11] | Ren Y C, Liu J, Li M, et al. Effects of shading stress on antioxidant system of two buffalograss varieties. Acta Agrestia Sinica, 2017, 25(6): 1345-1351. |
| 任艺慈, 刘洁, 李茂, 等. 遮阴胁迫对两种野牛草抗氧化系统的影响. 草地学报, 2017, 25(6): 1345-1351. | |
| [12] | Li W, Qian Y Q, Han L, et al. The response of enzymatic active oxygen scavenging system in leaves of Buchloe dactyloides to differences photoperiod. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1428-1436. |
| 李伟, 钱永强, 韩蕾, 等. 野牛草克隆分株酶促活性氧清除系统对差异光周期的响应. 西北植物学报, 2015, 35(7): 1428-1436. | |
| [13] | Ding C S, Xu C S, Lu B, et al. Comprehensive evaluation of rice qualities under different nitrogen levels in South China. Foods, 2023, 12(4): 697. |
| [14] | Fu J P, Liu F C, Yan B Q, et al. Comprehensive evaluation and screening of adaptability of different sorghum varieties. Journal of Northwest A & F University (Natural Science Edition), 2025(5): 1-13. |
| 付江鹏, 柳发财, 闫宝琴, 等. 不同高粱品种适应性综合评价与筛选. 西北农林科技大学学报(自然科学版), 2025(5): 1-13. | |
| [15] | Feng Y X, Chen Z, Chen L Y, et al. Comprehensive evaluation of physio-morphological traits of alfalfa (Medicago sativa L.) varieties under salt stress. Plant Physiology, 2025, 177(1): e70044. |
| [16] | Shi Y H, Wan L Q, Liu J N, et al. Analysis of the principal components and the subordinate function of Lolium perenne drought resistance. Acta Agrestia Sinica, 2010, 18(5): 669-672. |
| 石永红, 万里强, 刘建宁, 等. 多年生黑麦草抗旱性主成分及隶属函数分析. 草地学报, 2010, 18(5): 669-672. | |
| [17] | Xia H M, Cao Z J, Yu M Y, et al. Tolerance of 30 Kentucky bluegrass varieties to NaCl stress during the seedling stage. Pratacultural Science, 2023, 40(12): 3124-3137. |
| 夏华美, 曹志坚, 于铭玥, 等. 30份草地早熟禾苗期耐盐性综合评价. 草业科学, 2023, 40(12): 3124-3137. | |
| [18] | Gao J F. Experimental guide of plant physiology. Beijing: Higher Education Press, 2006. |
| 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
| [19] | Xu Z C, Lu X L, Wei Y C, et al. Salt tolerance identification and evaluation of a population of wild soybean SP1 mutants at the seedling stage. Acta Prataculturae Sinica, 2023, 32(11): 168-178. |
| 徐宗昌, 鲁雪莉, 魏云冲, 等. 航天诱变野大豆SP1群体苗期耐盐性鉴定与评价. 草业学报, 2023, 32(11): 168-178. | |
| [20] | Webb, John J. The life history of buffalo grass. Transactions of the Kansas Academy of Science, 1941, 44: 58-75. |
| [21] | Wang N, Wan C, Gao S, et al. Screening and evaluation of salt tolerance of 80 alfalfa varieties at the seedling stage. Pratacultural Science, 2024, 41(3): 684-699. |
| 王宁, 万畅, 高山, 等. 80份紫花苜蓿品种苗期耐盐性筛选与评价. 草业科学, 2024, 41(3): 684-699. | |
| [22] | Xu M, Wang Q, Wang Y X, et al. Effects of different salt stress on seed germination and seedling growth of Elytrigia elongate. Chinese Journal of Grassland, 2020, 42(1): 15-20. |
| 徐曼, 王茜, 王奕骁, 等. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响. 中国草地学报, 2020, 42(1): 15-20. | |
| [23] | Wang M, Lu X L, Wang J Y, et al. Evaluation and screening of the salt tolerance of triticale germplasm at the germination and seedling stages. Acta Prataculturae Sinica, 2024, 33(5): 58-68. |
| 王萌, 鲁雪莉, 王菊英, 等. 小黑麦种质萌发期苗期耐盐资源评价与筛选. 草业学报, 2024, 33(5): 58-68. | |
| [24] | Yuan Y T, Zhang X Y, Wu G F, et al. Comprehensive evaluation of salt tolerance of soybean germplasm resources based on principal component and membership function analysis. Soybean Science, 2025, 44(1): 22-32. |
| 袁宇婷, 张晓燕, 吴谷丰, 等. 基于主成分和隶属函数分析的大豆种质资源耐盐性综合评价. 大豆科学, 2025, 44(1): 22-32. | |
| [25] | Tian H, Liu H, Zhang D, et al. Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis. PeerJ, 2024, 29(12): e16838. |
| [26] | Panda S K, Khan M H. Salt stress influences lipid peroxidation and antioxidants in the leaf of an indica rice (Oryza saliva L.). Physiology and Molecular Biology of Plants, 2003, 9(2): 273-278. |
| [27] | Miao H, Wei L, Yang Y P, et al. Comprehensive screening of Agropyron cultivars for tolerance to salt stress at the seedling stage. Acta Prataculturae Sinica, 2023, 32(3): 200-211. |
| 苗涵, 魏莱, 杨燕萍, 等. 海水胁迫下冰草幼苗期耐盐性指标筛选. 草业学报, 2023, 32(3): 200-211. | |
| [28] | Liu Y, Yang W, Ma H L, et al. Effects of salt stress on seedling physiological characteristics of six Kentucky bluegrass. Journal of Gansu Agricultural University, 2019, 54(5): 140-150, 162. |
| 刘燕, 杨伟, 马晖玲, 等. 盐胁迫对6种草地早熟禾幼苗生理特性的影响. 甘肃农业大学学报, 2019, 54(5): 140-150, 162. | |
| [29] | Guo X, Ahmad N, Zhao S, et al. Effect of salt stress on growth and physiological properties of Asparagus seedlings. Plants, 2022, 11(21): 2836. |
| [30] | Yan F, Zhang J, Li W, et al. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiology and Biochemistry, 2021, 163(3): 367-375. |
| [31] | Yao Y H, Kang Y C, Yang X Y, et al. Effects of NaCl stress on physiological and biochemical characteristics, yield and quality of potato. Gansu Agricultural Science and Technology, 2020(4): 36-42. |
| 姚彦红, 康益晨, 杨昕宇, 等. NaCl胁迫对马铃薯生理生化特性产量及品质的影响. 甘肃农业科技, 2020(4): 36-42. | |
| [32] | Li Y, Chu Y, Yao K, et al. Response of sugar metabolism in the cotyledons and roots of Ricinus communis subjected to salt stress. BMC Plant Biology, 2023, 25(1): 62-71. |
| [1] | Nan GUO, Wu-chen DU, Shou-kun JI, Jian LIU, Su-qian CUI, Hui YUAN, Xu HAN, Ji-shuang LIU, Li-jie GAO. Effects of different fertilization and reseeding rates on the nutrient content of forage in a mountain meadow and its rumen fermentation parameters [J]. Acta Prataculturae Sinica, 2025, 34(4): 150-163. |
| [2] | Shou-yu GAO, Wen-jing LIU, Yu-ying LI, Qing-yuan XIANG, Jia-jun XU, Lei-qi SHU, Zhao-zhong LI. Physiological and biochemical responses of Bothriochloa ischaemum seedlings to salt stress at seedling stage and definition of salt tolerance threshold [J]. Acta Prataculturae Sinica, 2025, 34(3): 164-174. |
| [3] | Yong-long LI, Sheng-hui ZHOU, Meng-yao XUE, Yuan GAO, Le JU, Yi-bing CHEN, Song-lin FU, Jian-hao HAO, Heng LI, Kun ZHANG, Zhi-fang ZUO. Cloning of the gene ZjWRKY63 from Zoysia japonica and its salt resistance analysis in transgenic Arabidopsis [J]. Acta Prataculturae Sinica, 2025, 34(12): 157-169. |
| [4] | Chang-ying GUO, Wen-hua DU. Differences in inflorescence and spike characteristics between triticale and its allied species [J]. Acta Prataculturae Sinica, 2025, 34(11): 205-216. |
| [5] | Sheng-wei JIN, Yin-cang HAN, Yong-gang SUN, Wei-qin DING, Ya-qian LIU, Zeng-yuan QI, Jian-qiang ZHOU. Effects of different feeding methods on growth performance and blood physiological and biochemical indexes of yaks [J]. Acta Prataculturae Sinica, 2025, 34(1): 215-225. |
| [6] | Hao GUAN, Duo XU, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Xin-yang LI, Yan-ling HUANG, Qing-ping ZHOU, Shi-yong CHEN. A study of nutritional quality and rumen degradation characteristics of 17 oat varieties in high cold regions [J]. Acta Prataculturae Sinica, 2024, 33(9): 185-198. |
| [7] | Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Xin-jiang WU, Yang LIU, He-shan ZHANG. A multi-trait evaluation of cold resistance of 14 native Pennisetum alopecuroides germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2024, 33(8): 98-111. |
| [8] | Chen MENG, Xue-li LU, Yi-ru SONG, Cheng-sheng ZHANG, Yi-qiang LI, Hai-qin XIANG, Zong-chang XU. Evaluation and identification of salt tolerance of 11 Leonurus germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2024, 33(5): 196-203. |
| [9] | Meng WANG, Xue-li LU, Ju-ying WANG, Meng-chao ZHANG, Yi-ru SONG, Chen MENG, Li ZHANG, Zong-chang XU. Evaluation and screening of the salt tolerance of triticale germplasm at the germination and seedling stages [J]. Acta Prataculturae Sinica, 2024, 33(5): 58-68. |
| [10] | Yi-yin ZHANG, Xue-ying LI, Bin WANG, Ke-chen SONG, Jian LAN, Hai-ying HU. Effects of salt stress on water use efficiency and osmotic adjustment of seedlings of different triticale strains [J]. Acta Prataculturae Sinica, 2024, 33(4): 87-98. |
| [11] | Xin-yue ZHOU, Qing-xue JIANG, Hui-li JIA, Lin MA, Lu FAN, Xue-min WANG. Cloning and salt-tolerance functional analysis of alfalfa MsBBX20 gene [J]. Acta Prataculturae Sinica, 2024, 33(10): 55-73. |
| [12] | Jia-min ZHANG, Hao GUAN, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Shi-yong CHEN, Yong-mei JIANG, Li GAN, Qing-ping ZHOU, Li-xue YANG. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration [J]. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
| [13] | Shang-qin HU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Xiao-le MA, Ke YANG, Hong ZHANG, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Cloning and preliminary functional analysis of the root gene HgAKR6C of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2024, 33(1): 61-74. |
| [14] | Xiao-han YANG, Guo-qiang WU, Ming WEI, Bei-chen WANG. Function of high-affinity potassium transporters in maintaining ion homeostasis and other plant responses to abiotic stresses [J]. Acta Prataculturae Sinica, 2023, 32(5): 190-202. |
| [15] | Yu-ying CAO, Xue-meng SU, Zheng-chao ZHOU, Qun-wei ZHENG, Jia-hui YUE. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||