Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 190-202.DOI: 10.11686/cyxb2022207
Xiao-han YANG(), Guo-qiang WU(), Ming WEI, Bei-chen WANG
Received:
2022-05-06
Revised:
2022-06-27
Online:
2023-05-20
Published:
2023-03-20
Contact:
Guo-qiang WU
Xiao-han YANG, Guo-qiang WU, Ming WEI, Bei-chen WANG. Function of high-affinity potassium transporters in maintaining ion homeostasis and other plant responses to abiotic stresses[J]. Acta Prataculturae Sinica, 2023, 32(5): 190-202.
物种 Species | 基因名称 Gene name | 登录号 Accession No. | 氨基酸数目 Amino acids (aa) | 分子量 MW (kDa) | 等电点 pI | 参考文献 References |
---|---|---|---|---|---|---|
拟南芥A. thaliana | AtHKT1;1 | AAF68393 | 506 | 57.49 | 8.86 | [ |
节节麦A. tauschii | AetHKT2;4 | XP_020183163.1 | 508 | 55.94 | 8.96 | [ |
水稻O. sativa | OsHKT1;1 | CAD37183 | 552 | 61.86 | 8.95 | [ |
OsHKT1;3 | CAD37185 | 531 | 59.30 | 9.41 | ||
OsHKT1;4 | CAD37197 | 500 | 54.24 | 8.96 | ||
OsHKT1;5 | BAB93392 | 554 | 60.22 | 8.79 | ||
OsHKT2;1 | BAB61789 | 530 | 59.30 | 9.43 | ||
OsHKT2;2 | BAB61791 | 530 | 59.15 | 9.49 | ||
OsHKT2;3 | XP_015632753.1 | 509 | 56.37 | 9.13 | ||
OsHKT2;4 | XP_015641899.1 | 509 | 56.12 | 8.74 | ||
毛果杨P. trichocarpa | PtHKT1;1 | XP_002325229 | 535 | 60.09 | 9.48 | [ |
番茄S. lycopersicum | SlHKT1;1 | NP_001289833.1 | 503 | 56.88 | 9.03 | [ |
SlHKT1;2 | NP_001295273.1 | 555 | 63.42 | 9.11 | ||
高粱S. bicolor | SbHKT1;1 | KXG27071 | 582 | 63.74 | 9.71 | [ |
SbHKT1;2 | XP_002457736 | 546 | 59.62 | 8.99 | ||
SbHKT1;3 | XP_002451638 | 532 | 59.82 | 8.91 | ||
SbHKT2;1 | XP_002438960 | 545 | 57.91 | 9.24 | ||
盐芥T. salsuginea | TsHKT1;1 | AFJ23835 | 505 | 57.27 | 8.78 | [ |
TsHKT1;2 | BAJ34563 | 500 | 56.59 | 8.98 | ||
小麦T. aestivum | TaHKT1;5B1 | ABG33947 | 518 | 57.46 | 9.11 | [ |
TaHKT1;5B2 | ABG33948 | 514 | 57.23 | 8.38 | ||
TaHKT1;5D | ABG33945 | 516 | 57.30 | 8.90 | ||
TaHKT2;1 | AAA52749 | 533 | 58.92 | 8.93 | ||
TaHKT2;2 | AMB15006.1 | 508 | 56.01 | 9.04 | ||
一粒小麦T. monococcum | TmHKT1;4-A2 | ABK41857 | 554 | 60.59 | 9.75 | [ |
TmHKT1;5-A | ABG33946 | 517 | 57.29 | 8.04 | ||
TmHKT2;1-A1 | AMB15009.1 | 533 | 58.89 | 9.15 | ||
玉米Z. mays | ZmHKT1;5 | DAA54361 | 493 | 53.85 | 9.13 | [ |
ZmHKT2;1 | XP_008645031 | 555 | 58.55 | 9.34 | ||
甜菜B. vulgaris | BvHKT1;1 | Bv8_198240_anxn | 280 | 31.95 | 9.39 | [ |
BvHKT1;2 | Bv9_212780_gxzu | 505 | 57.13 | 9.12 | ||
BvHKT1;3 | Bv9_212770_duhc | 511 | 57.85 | 9.42 |
Table 1 The HKT genes in different plants
物种 Species | 基因名称 Gene name | 登录号 Accession No. | 氨基酸数目 Amino acids (aa) | 分子量 MW (kDa) | 等电点 pI | 参考文献 References |
---|---|---|---|---|---|---|
拟南芥A. thaliana | AtHKT1;1 | AAF68393 | 506 | 57.49 | 8.86 | [ |
节节麦A. tauschii | AetHKT2;4 | XP_020183163.1 | 508 | 55.94 | 8.96 | [ |
水稻O. sativa | OsHKT1;1 | CAD37183 | 552 | 61.86 | 8.95 | [ |
OsHKT1;3 | CAD37185 | 531 | 59.30 | 9.41 | ||
OsHKT1;4 | CAD37197 | 500 | 54.24 | 8.96 | ||
OsHKT1;5 | BAB93392 | 554 | 60.22 | 8.79 | ||
OsHKT2;1 | BAB61789 | 530 | 59.30 | 9.43 | ||
OsHKT2;2 | BAB61791 | 530 | 59.15 | 9.49 | ||
OsHKT2;3 | XP_015632753.1 | 509 | 56.37 | 9.13 | ||
OsHKT2;4 | XP_015641899.1 | 509 | 56.12 | 8.74 | ||
毛果杨P. trichocarpa | PtHKT1;1 | XP_002325229 | 535 | 60.09 | 9.48 | [ |
番茄S. lycopersicum | SlHKT1;1 | NP_001289833.1 | 503 | 56.88 | 9.03 | [ |
SlHKT1;2 | NP_001295273.1 | 555 | 63.42 | 9.11 | ||
高粱S. bicolor | SbHKT1;1 | KXG27071 | 582 | 63.74 | 9.71 | [ |
SbHKT1;2 | XP_002457736 | 546 | 59.62 | 8.99 | ||
SbHKT1;3 | XP_002451638 | 532 | 59.82 | 8.91 | ||
SbHKT2;1 | XP_002438960 | 545 | 57.91 | 9.24 | ||
盐芥T. salsuginea | TsHKT1;1 | AFJ23835 | 505 | 57.27 | 8.78 | [ |
TsHKT1;2 | BAJ34563 | 500 | 56.59 | 8.98 | ||
小麦T. aestivum | TaHKT1;5B1 | ABG33947 | 518 | 57.46 | 9.11 | [ |
TaHKT1;5B2 | ABG33948 | 514 | 57.23 | 8.38 | ||
TaHKT1;5D | ABG33945 | 516 | 57.30 | 8.90 | ||
TaHKT2;1 | AAA52749 | 533 | 58.92 | 8.93 | ||
TaHKT2;2 | AMB15006.1 | 508 | 56.01 | 9.04 | ||
一粒小麦T. monococcum | TmHKT1;4-A2 | ABK41857 | 554 | 60.59 | 9.75 | [ |
TmHKT1;5-A | ABG33946 | 517 | 57.29 | 8.04 | ||
TmHKT2;1-A1 | AMB15009.1 | 533 | 58.89 | 9.15 | ||
玉米Z. mays | ZmHKT1;5 | DAA54361 | 493 | 53.85 | 9.13 | [ |
ZmHKT2;1 | XP_008645031 | 555 | 58.55 | 9.34 | ||
甜菜B. vulgaris | BvHKT1;1 | Bv8_198240_anxn | 280 | 31.95 | 9.39 | [ |
BvHKT1;2 | Bv9_212780_gxzu | 505 | 57.13 | 9.12 | ||
BvHKT1;3 | Bv9_212770_duhc | 511 | 57.85 | 9.42 |
1 | Van O M J, Silletti S, Guida G, et al. A benzimidazole proton pump inhibitor increases growth and tolerance to salt stress in tomato. Frontiers in Plant Science, 2017, 8: 1220. |
2 | Zhang J L, Flowers T J, Wang S M. Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima. Plant and Soil, 2012, 368(1/2): 629-640. |
3 | Wang Q, Guan C, Wang P, et al. The effect of AtHKT1;1 or AtSOS1 mutation on the expressions of Na+ or K+ transporter genes and ion homeostasis in Arabidopsis thaliana under salt stress. International Journal of Molecular Sciences, 2019, 20(5): 1085. |
4 | Mian A, Oomen R J, Isayenkov S, et al. Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. The Plant Journal, 2011, 68(3): 468-479. |
5 | Hazzouri K M, Khraiwesh B, Amiri K M A, et al. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Frontiers in Plant Science, 2018, 9: 156. |
6 | Nieves-Cordones M, Martinez V, Benito B, et al. Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Frontiers in Plant Science, 2016, 7: 992. |
7 | Turcios A E, Papenbrock J, Tränkner M. Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. Journal of Agronomy and Crop Science, 2021, 207(4): 618-630. |
8 | Abdelaziz M E, Kim D, Ali S, et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Science, 2017, 263: 107-115. |
9 | Song Z B, Wu X F, Gao Y L, et al. Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco (Nicotiana tabacum). Genome, 2019, 62(4): 267-278. |
10 | Cao Y, Liang X, Yin P, et al. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 2019, 222(1): 301-317. |
11 | Nieves-Cordones M, Lara A, Rodenas R, et al. Modulation of K+ translocation by AKT1 and AtHAK5 in Arabidopsis plants. Plant Cell and Environment, 2019, 42(8): 2357-2371. |
12 | Dave A, Agarwal P, Agarwal P K. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech, 2022, 12(2): 51. |
13 | Borkiewicz L, Polkowska-Kowalczyk L, Ciesla J, et al. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem Ⅰ. Plant Physiology, 2020, 168(1): 38-57. |
14 | Huang S, Chen M, Zhao Y, et al. CBL4-CIPK5 pathway confers salt but not drought and chilling tolerance by regulating ion homeostasis. Environmental and Experimental Botany, 2020, 179: 104230. |
15 | Reguera E, Veatch J, Gedan K, et al. The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 2020, 180: 104254. |
16 | Saleem M, Ji H, Amirullah A, et al. Pseudomonas syringae pv. tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. European Journal of Plant Pathology, 2017, 149(3): 779-786. |
17 | Saleem M, Law A D, Moe L A. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology, 2016, 71(2): 469-472. |
18 | Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015, 20(4): 219-229. |
19 | Liu Z, Xie Q, Tang F, et al. The ThSOS3 gene improves the salt tolerance of transgenic Tamarix hispida and Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11: 597480. |
20 | Platten J D, Cotsaftis O, Berthomieu P, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11(8): 372-374. |
21 | Pandey M, Penna S. Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L. The Crop Journal, 2017, 5(3): 219-230. |
22 | Dreyer I, Sussmilch F C, Fukushima K, et al. How to grow a tree: Plant voltage-dependent cation channels in the spotlight of evolution. Trends in Plant Science, 2021, 26(1): 41-52. |
23 | Garriga M, Raddatz N, Very A A, et al. Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress. Journal of Plant Physiology, 2017, 210: 9-17. |
24 | Mekawy A M M, Abdelaziz M N, Ueda A. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry, 2018, 130: 94-104. |
25 | Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270(5242): 1660-1663. |
26 | Tada Y. The HKT transporter gene from Arabidopsis, AtHKT1;1, is dominantly expressed in shoot vascular tissue and root tips and is mild salt stress-responsive. Plants, 2019, 8(7): 204. |
27 | Nishijima R, Yoshida K, Motoi Y, et al. Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions. Molecular Genetics and Genomics, 2016, 291(4): 1681-1694. |
28 | Campbell M T, Bandillo N, Al Shiblawi F R A, et al. Allelic variants of OsHKT1;1 underlie the divergence between Indica and Japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genetics, 2017, 13(6): e1006823. |
29 | Xu M, Chen C, Cai H, et al. Overexpression of PeHKT1;1 improves salt tolerance in Populus. Genes, 2018, 9(10): 475. |
30 | Jaime-Perez N, Pineda B, Garcia-Sogo B, et al. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell and Environment, 2017, 40(5): 658-671. |
31 | Guo Q, Meng S, Tao S, et al. Overexpression of a samphire high-affinity potassium transporter gene SbHKT1 enhances salt tolerance in transgenic cotton. Acta Physiologiae Plantarum, 2020, 42(3): 36. |
32 | Ali Z, Park H C, Ali A, et al. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiology, 2012, 158(3): 1463-1474. |
33 | Xu B, Waters S, Byrt C S, et al. Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cellular and Molecular Life Sciences, 2018, 75(6): 1133-1144. |
34 | Tounsi S, Saidi M N, Abdelhedi R, et al. Functional analysis of TmHKT1;4-A2 promoter through deletion analysis provides new insight into the regulatory mechanism underlying abiotic stress adaptation. Planta, 2021, 253(1): 18. |
35 | Jiang Z, Song G, Shan X, et al. Association analysis and identification of ZmHKT1;5 variation with salt-stress tolerance. Frontiers in Plant Science, 2018, 9: 1485. |
36 | Wu G Q, Liu Z X, Xie L L, et al. Genome-wide identification and expression analysis of the BvSnRK2 genes family in sugar beet (Beta vulgaris L.) under salt conditions. Journal of Plant Growth Regulation, 2021, 40(2): 519-532. |
37 | Gomez-Porras J L, Riano-Pachon D M, Benito B, et al. Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Frontiers in Plant Science, 2012, 3: 167. |
38 | Zhang S, Tong Y, Li Y, et al. Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes & Genomics, 2019, 41(3): 325-336. |
39 | Ariyarathna H A, Francki M G. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group Ⅰ HKT genes between crop and model grasses. Genome, 2016, 59(7): 509-517. |
40 | Imran S, Horie T, Katsuhara M. Expression and ion transport activity of rice OsHKT1;1 variants. Plants, 2019, 9(1): 16. |
41 | Riedelsberger J, Miller J K, Valdebenito-Maturana B, et al. Plant HKT channels: An updated view on structure, function and gene regulation. International Journal of Molecular Sciences, 2021, 22(4): 1892. |
42 | Ali A, Raddatz N, Pardo J M, et al. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. Plant Physiology, 2021, 171(4): 546-558. |
43 | Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 2010, 33(4): 552-565. |
44 | Diatloff E, Kumar R, Schachtman D P. Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Letters, 1998, 432(1/2): 31-36. |
45 | Maser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6428-6433. |
46 | Almeida P M, de Boer G J, de Boer A H. Assessment of natural variation in the first pore domain of the tomato HKT1;2 transporter and characterization of mutated versions of SlHKT1;2 expressed in Xenopus laevis oocytes and via complementation of the salt sensitive athkt1;1 mutant. Frontiers in Plant Science, 2014, 5: 600. |
47 | Romero-Aranda M R, Espinosa J, Gonzalez-Fernandez P, et al. Role of Na+ transporters HKT1;1 and HKT1;2 in tomato salt tolerance. I. Function loss of cheesmaniae alleles in roots and aerial parts. Plant Physiology and Biochemistry, 2021, 168: 282-293. |
48 | Pulipati S, Somasundaram S, Rana N, et al. Diversity of sodium transporter HKT1;5 in genus Oryza. Rice Science, 2022, 29(1): 31-46. |
49 | Munns R, James R A, Xu B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30(4): 360-364. |
50 | Byrt C S, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal, 2014, 80(3): 516-526. |
51 | Prusty M R, Kim S R, Vinarao R, et al. Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf. Frontiers in Plant Science, 2018, 9: 417. |
52 | Henderson S W, Dunlevy J D, Wu Y, et al. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytologist, 2018, 217(3): 1113-1127. |
53 | Wu Y, Henderson S W, Wege S, et al. The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation. Journal of Plant Physiology, 2020, https://doi.org/10.1016/j.jplph.2020.153113. |
54 | Zhang M, Cao Y, Wang Z, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 2018, 217(3): 1161-1176. |
55 | Kobayashi N I, Yamaji N, Yamamoto H, et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal, 2017, 91(4): 657-670. |
56 | Shohan M U S, Sinha S, Nabila F H, et al. HKT1;5 transporter gene expression and association of amino acid substitutions with salt tolerance across rice genotypes. Frontiers in Plant Science, 2019, 10: 1420. |
57 | Davenport R J, Munoz-Mayor A, Jha D, et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell and Environment, 2007, 30(4): 497-507. |
58 | Kumar P, Kumar T, Singh S, et al. Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 2020, 324: 198-210. |
59 | Kronzucker H J, Britto D T. Sodium transport in plants: a critical review. New Phytologist, 2011, 189(1): 54-81. |
60 | Liu W, Schachtman D P, Zhang W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. The Journal of Biological Chemistry, 2000, 275(36): 27924-27932. |
61 | Hmidi D, Messedi D, Corratgi-Faillie C, et al. Investigation of Na+ and K+ transport in halophytes: Functional analysis of the HmHKT2;1 transporter from Hordeum maritimum and expression under saline conditions. Plant and Cell Physiology, 2019, 60(11): 2423-2435. |
62 | Horie T, Brodsky D E, Costa A, et al. K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology, 2011, 156(3): 1493-1507. |
63 | Nowak M, Selmar D. Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH. Plant Biology, 2016, 18(6): 879-882. |
64 | Hooymans J J M. Role of cell compartments in the redistribution of K and Na ions absorbed by the roots of intact barley plants. Zeitschrift für Pflanzenphysiologie, 1974, 73(3): 234-242. |
65 | Shen Q, Fu L, Dai F, et al. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics, 2016, 17(1): 889. |
66 | Horie T, Hauser F, Schroeder J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, 2009, 14(12): 660-668. |
67 | Shabala S, Shabala S, Cuin T A, et al. Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 2010, 61(5): 839-853. |
68 | Vishwakarma K, Mishra M, Patil G, et al. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Critical Reviews in Biotechnology, 2019, 39(7): 861-883. |
69 | Carvalho M R, Losada J M, Niklas K J. Phloem networks in leaves. Current Opinion in Plant Biology, 2018, 43: 29-35. |
70 | Fu L, Shen Q, Kuang L, et al. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiology and Biochemistry, 2018, 130: 248-257. |
71 | Quan R, Wang J, Hui J, et al. Improvement of salt tolerance using wild rice genes. Frontiers in Plant Science, 2017, 8: 2269. |
72 | Yamaguchi N, Ishikawa S, Abe T, et al. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. Journal of Experimental Botany, 2012, 63(7): 2729-2737. |
73 | Babu N N, Krishnan S G, Vinod K K, et al. Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa ‘pusa basmati 1121’. Frontiers in Plant Science, 2017, 8: 41. |
74 | Dreyer I, Gomez-Porras J L, Riedelsberger J. The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytologist, 2017, 216(4): 1049-1053. |
75 | Sun J, Cao H, Cheng J, et al. Pumpkin CmHKT1;1 controls shoot Na+ accumulation via limiting Na+ transport from rootstock to scion in grafted cucumber. International Journal of Molecular Sciences, 2018, 19(9): 2648. |
76 | Houston K, Qiu J, Wege S, et al. Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5. Communications Biology, 2020, 3(1): 258. |
77 | Jabnoune M, Espeout S, Mieulet D, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology, 2009, 150(4): 1955-1971. |
78 | Tounsi S, Feki K, Saidi M N, et al. Promoter of the TmHKT1;4-A1 gene of Triticum monococcum directs stress inducible, developmental regulated and organ specific gene expression in transgenic Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 2018, 34(7): 99. |
79 | Pi H, Wendel B M, Helmann J D. Dysregulation of magnesium transport protects Bacillus subtilis against manganese and cobalt intoxication. Journal of Bacteriology, 2020, 202(7): e00711-19. |
80 | Lan W Z, Wang W, Wang S M, et al. A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proceedings of the National Academy of Sciences, 2010, 107(15): 7089-7094. |
81 | Tang R J, Zhao F G, Garcia V J, et al. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 2015, 112(10): 3134-3139. |
82 | Zhang C, Li H, Wang J, et al. The rice high-affinity K+ transporter OsHKT2;4 mediates Mg2+ homeostasis under high-Mg2+ conditions in transgenic Arabidopsis. Frontiers in Plant Science, 2017, 8: 1823. |
83 | Rosas-Santiago P, Lagunas-Gomez D, Barkla B J, et al. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany, 2015, 66(9): 2733-2748. |
84 | Huang L, Kuang L, Wu L, et al. The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiology, 2020, 182(1): 584-596. |
85 | Ben Hsouna A, Ghneim-Herrera T, Ben Romdhane W, et al. Early effects of salt stress on the physiological and oxidative status of the halophyte Lobularia maritima. Functional Plant Biology, 2020, 47(10): 912-924. |
86 | Mahi H E, Perez-Hormaeche J, Luca A D, et al. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology, 2019, 180(2): 1046-1065. |
87 | Munns R, Day D A, Fricke W, et al. Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225(3): 1072-1090. |
88 | Shabala S, Chen G, Chen Z H, et al. The energy cost of the tonoplast futile sodium leak. New Phytologist, 2020, 225(3): 1105-1110. |
89 | Shen Q, Fu L, Su T, et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4. Plant Physiology, 2020, 183(4): 1650-1662. |
90 | Choi W G, Hilleary R, Swanson S J, et al. Rapid, long-distance electrical and calcium signaling in plants. The Annual Review of Plant Biology, 2016, 67(1): 287-307. |
91 | Han Y, Yin S, Huang L, et al. A sodium transporter HvHKT1;1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant and Cell Physiology, 2018, 59(10): 1976-1989. |
92 | Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants. Molecular Plant, 2010, 3(4): 653-669. |
93 | Shkolnik D, Finkler A, Pasmanik-Chor M, et al. Calmodulin-binding transcription activator 6: A key regulator of Na+ homeostasis during germination. Plant Physiology, 2019, 180(2): 1101-1118. |
94 | Zhang X, Wang T, Liu M, et al. Calmodulin-like gene MtCML40 is involved in salt tolerance by regulating MtHKTs transporters in Medicago truncatula. Environmental and Experimental Botany, 2019, 157: 79-90. |
95 | Nardi S, Pizzeghello D, Muscolo A, et al. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 2002, 34(11): 1527-1536. |
96 | Türkmen Ö, Dursun A, Turan M, et al. Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2004, 54(3): 168-174. |
97 | Zhang W D, Wang P, Bao Z, et al. SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Frontiers in Plant Science, 2017, 8: 576. |
98 | Khaleda L, Park H J, Yun D J, et al. Humic acid confers high-affinity K+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Molecules and Cells, 2017, 40(12): 966-975. |
99 | Cao Q, Feng Y, Dai X, et al. Dynamic changes of DNA methylation during wild strawberry (Fragaria nilgerrensis) tissue culture. Frontiers in Plant Science, 2021, 12: 765383. |
100 | Williams B P, Bechen L L, Pohlmann D A, et al. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. The Plant Cell, 2022, 34(4): 1189-1206. |
101 | Tounsi S, Feki K, Hmidi D, et al. Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. Physiology and Molecular Biology of Plants, 2017, 23(3): 517-528. |
102 | Kumar S, Beena A S, Awana M, et al. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA and Cell Biology, 2017, 36(4): 283-294. |
103 | Cha J Y, Kim T W, Choi J H, et al. Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: A green route for synthesizing humic-like fertilizers. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1167-1177. |
104 | Wang M, Qin L, Xie C, et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant and Cell Physiology, 2014, 55(7): 1354-1365. |
105 | Li R, Zhu F, Duan D. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15. Plant Signaling & Behavior, 2020, 15(7): 1773664. |
106 | Nawaz I, Iqbal M, Bliek M, et al. Salt and heavy metal tolerance and expression levels of candidate tolerance genes among four extremophile Cochlearia species with contrasting habitat preferences. Science of the Total Environment, 2017, 584/585: 731-741. |
107 | Nawaz I, Iqbal M, Hakvoort H W J, et al. Analysis of Arabidopsis thaliana HKT1 and Eutrema salsugineum/botschantzevii HKT1;2 promoters in response to salt stress in AtHKT1:1 mutant. Molecular Biotechnology, 2019, 61(6): 442-450. |
108 | Wu G Q, Wang J L, Li S J. Genome-wide identification of Na+/H+ antiporter (NHX) genes in sugar beet (Beta vulgaris L.) and their regulated expression under salt stress. Genes, 2019, 10(5): 401. |
109 | Bezouw V, Janssen E M, Ashrafuzzaman M, et al. Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. Journal of Plant Physiology, 2019, 241: 153029. |
110 | Shkolnik-Inbar D, Adler G, Bar-Zvi D. ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. The Plant Journal, 2013, 73(6): 993-1005. |
111 | Wang R, Jing W, Xiao L, et al. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology, 2015, 168(3): 1076-1090. |
112 | Hartmann F P, Tinturier E, Julien J L, et al. Between stress and response: Function and localization of mechanosensitive Ca2+ channels in herbaceous and perennial plants. International Journal of Molecular Sciences, 2021, 22(20): 11043. |
113 | Zhang H, Feng H, Zhang J, et al. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum. Journal of Experimental Botany, 2020, 71(14): 4345-4358. |
114 | Wang Y, Wu W H. Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology, 2017, 39: 123-128. |
115 | Cherel I, Gaillard I. The complex fine-tuning of K+ fluxes in plants in relation to osmotic and ionic abiotic stresses. International Journal of Molecular Sciences, 2019, 20(3): 715. |
116 | Sarah M M D S, Prado R D M, Souza J J P D, et al. Silicon supplied via foliar application and root to attenuate potassium deficiency in common bean plants. Scientific Reports, 2021, 11(1): 19690. |
117 | Tada Y, Endo C, Katsuhara M, et al. High-affinity K+ transporters from a halophyte, Sporobolus virginicus, mediate both K+ and Na+ transport in transgenic Arabidopsis, X. laevis oocytes and yeast. Plant and Cell Physiology, 2019, 60(1): 176-187. |
118 | Qiu L, Wu D, Ali S, et al. Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theoretical and Applied Genetics, 2011, 122(4): 695-703. |
119 | Ferchichi S, Hessini K, Dell A E, et al. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Functional Plant Biology, 2018, 45(11): 1096-1109. |
120 | Liang W, Ma X, Wan P, et al. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291. |
121 | Hao S, Wang Y, Yan Y, et al. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 2021, 7(6): 132. |
122 | Tada Y, Ohnuma A. Comparative functional analysis of class Ⅱ potassium transporters, SvHKT2;1, SvHKT2;2, and HvHKT2;1, on ionic transport and salt tolerance in transgenic Arabidopsis. Plants, 2020, 9(6): 786. |
123 | Kawakami Y, Imran S, Katsuhara M, et al. Na+ transporter SvHKT1;1 from a halophytic turf grass is specifically upregulated by high Na+ concentration and regulates shoot Na+ concentration. International Journal of Molecular Sciences, 2020, 21(17): 6100. |
124 | Hou D, Zhao Z, Hu Q, et al. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiology, 2020, 40(12): 1792-1806. |
125 | Yang M, Lu K, Zhao F J, et al. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. The Plant Cell, 2018, 30(11): 2720-2740. |
126 | Chen C, Travis A J, Hossain M, et al. Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation. Theoretical and Applied Genetics, 2021, 134(7): 2315-2334. |
127 | Chen N, Tong S, Tang H, et al. The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1;2 in Populus alba var. pyramidalis. Tree Physiology, 2020, 40(6): 717-730. |
128 | Zhang T, Li Z Q, Wu G Q. Role of WRKY transcription factor in plant response to stresses. Biotechnology Bulletin, 2021, 37(10): 203-215. |
张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用. 生物技术通报, 2021, 37(10): 203-215. | |
129 | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. |
130 | Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 2004, 9(12): 591-596. |
131 | Yang C, Huang Y, Lv W, et al. GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science, 2020, 293: 110442. |
132 | Li Z, Liang F, Zhang T, et al. Enhanced tolerance to drought stress resulting from Caragana korshinskii CkWRKY33 in transgenic Arabidopsis thaliana. BMC Genomic Data, 2021, 22(1): 11. |
133 | Li J, Han Y, Liu L, et al. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Journal of Experimental Botany, 2015, 66(9): 2723-2732. |
134 | Li P, Pan T, Wang H, et al. Natural variation of ZmHKT1 affects root morphology in maize at the seedling stage. Planta, 2019, 249(3): 879-889. |
[1] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[2] | Han MIAO, Lai WEI, Yan-ping YANG, Yong-he CHE. Comprehensive screening of Agropyron cultivars for tolerance to salt stress at the seedling stage [J]. Acta Prataculturae Sinica, 2023, 32(3): 200-211. |
[3] | Hai-feng HE, Na WU, Ji-li LIU, Xing XU. Effects of phosphorus application on the growth and salt resistance of switchgrass under saline alkali conditions [J]. Acta Prataculturae Sinica, 2022, 31(10): 64-74. |
[4] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[5] | Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance [J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220. |
[6] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[7] | Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115. |
[8] | XIONG Xue, GUI Wei-yang, LIU Mo-han, CHEN Ji-hui, ZHANG Ying-jun. Evaluation of salt tolerance in different alfalfa varieties under uniform and non-uniform salt stress [J]. Acta Prataculturae Sinica, 2018, 27(9): 67-76. |
[9] | KE Dan-xia, PENG Kun-peng, XIA Yuan-jun, ZHU Yu-ying, ZHANG Dan-dan. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus [J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106. |
[10] | MI Yong-wei, WANG Guo-xiang, GONG Cheng-wen, CAI Zi-ping, WU Wei-guo. Effects of salt stress on growth and physiology of Isatis indigotica seedlings [J]. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
[11] | WU Guo-Qiang, FENG Rui-Jun, LI Shan-Jia, WANG Chun-Mei, JIAO Qi, LIU Hai-Long. Effects of salt treatments on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris) [J]. Acta Prataculturae Sinica, 2017, 26(4): 169-177. |
[12] | JIA Xin-Ping, DENG Yan-Ming, SUN Xiao-Bo, LIANG Li-Jian. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
[13] | ZHANG Jin-Lin, LI Hui-Ru, GUO Shu-Yuan, WANG Suo-Min, SHI Hua-Zhong, HAN Qing-Qing, BAO Ai-Ke, MA Qing. Research advances in higher plant adaptation to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
[14] | ZHAO Ying, LI Jing-Yuan, DUAN Yan-Xin, DONG Xiao-Ying. Responses of three Zoysia grass species to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(11): 109-117. |
[15] | LIU Fengqi, LIU Jielin, ZHU Ruifen, ZHANG Yue, GUO Yong, HAN Guiqing, TANG Fenglan. Physiological responses and tolerance of four oat varieties to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(1): 183-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||