草业学报 ›› 2021, Vol. 30 ›› Issue (10): 73-82.DOI: 10.11686/cyxb2020577
旦增塔庆1(), Chapagain Purna Bhadra2, Pant Shankar Raj2, 杰布3(), 格桑顿珠4, 陈少锋1
收稿日期:
2020-12-23
修回日期:
2021-05-19
出版日期:
2021-09-16
发布日期:
2021-09-16
通讯作者:
杰布
作者简介:
Corresponding author. E-mail: jie.bu@taaas.org基金资助:
Tenzin Tarchen1(), Purna Bhadra Chapagain2, Shankar Raj Pant2, Jiebu3(), Dunzhu Gesang4, Shao-feng CHEN1
Received:
2020-12-23
Revised:
2021-05-19
Online:
2021-09-16
Published:
2021-09-16
Contact:
Jiebu
摘要:
畜牧业是尼泊尔北部山区的重要生计支柱,提升牧草产量是我国对尼泊尔开展农业技术援助的关键领域。为筛选出适宜尼泊尔北部山区栽培的燕麦品种,于2019年5-10月在尼泊尔热索瓦县郎唐山区对12个燕麦品种(爱沃、太阳神、贝勒1、美达、科纳、林纳、青引1号、青海444、青海甜燕麦、陇燕2号、陇燕3号、Kamadhenu)的物候期、株高、产草量、穗含量、叶茎比和关键营养成分等进行了品比试验。结果表明:美达、科纳、青引1号、青海444、青海甜燕麦和Kamadhenu 6个品种能完成生育期,生育天数在115~141 d,其余多数品种只能达到乳熟期。各燕麦品种的株高为134.8~177.7 cm,其中引进品种太阳神、青海444、青海甜燕麦、美达和林纳的株高较对照品种Kamadhenu高6.3%~20.4%,存在极显著差异(P<0.01)。青海甜燕麦、青海444和美达的干草产量分别达到了14723.0、13491.0和13369.6 kg·hm-2,分别比对照品种Kamadhenu增产36.0%、24.7%和23.6%,差异极显著(P<0.01)。贝勒1、科纳和太阳神的叶茎比分别为0.40、0.38和0.36,是对照品种Kamadhenu的1.50~1.67倍。各燕麦品种的干物质、粗蛋白、总灰分、中性洗涤纤维和酸性洗涤纤维含量变化范围分别为93.5%~95.6%、5.7%~9.9%、4.4%~6.9%、68.2%~78.4%和39.3%~48.7%,其中太阳神的粗蛋白含量是对照品种Kamadhenu的1.57倍,存在极显著差异(P<0.01)。对各燕麦品种的10个农艺性状进行主成分分析及综合评价,结果表明,引进品种青海甜燕麦、美达、青海444和太阳神综合适应性较好,适宜在该地区推广种植。
旦增塔庆, Chapagain Purna Bhadra, Pant Shankar Raj, 杰布, 格桑顿珠, 陈少锋. 不同燕麦品种在尼泊尔北部山区的生长特性及其营养品质的研究[J]. 草业学报, 2021, 30(10): 73-82.
Tenzin Tarchen, Purna Bhadra Chapagain, Shankar Raj Pant, Jiebu, Dunzhu Gesang, Shao-feng CHEN. Growth characteristics and nutritive value of multiple oat varieties in mountainous Northern Nepal[J]. Acta Prataculturae Sinica, 2021, 30(10): 73-82.
土壤深度 Soil depth (cm) | 有机质 Organic matter (%) | 全氮 Total N (%) | 速效磷 Available-P (mg·kg-1) | 速效钾 Available-K (mg·kg-1) | pH |
---|---|---|---|---|---|
0~20 | 4.02 | 0.16 | 63.11 | 143.64 | 5.52 |
表1 田间试验土壤的基本理化性质
Table 1 Primary physical and chemical properties of field experiment
土壤深度 Soil depth (cm) | 有机质 Organic matter (%) | 全氮 Total N (%) | 速效磷 Available-P (mg·kg-1) | 速效钾 Available-K (mg·kg-1) | pH |
---|---|---|---|---|---|
0~20 | 4.02 | 0.16 | 63.11 | 143.64 | 5.52 |
品种Varieties | 来源Sources | 原产地Country of origin |
---|---|---|
爱沃Everleaf | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
太阳神Titan | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
贝勒1 Baler 1 | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 加拿大 Canada |
美达Monida | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
科纳Kona | 北京猛犸种业有限公司 Beijing Mammoth Seed Company | 美国 America |
林纳Lena | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青引1号Qingyin No.1 | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青海444 Qinghai 444 | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青海甜燕麦Qinghai sweet oat | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
陇燕2号Longyan No.2 | 甘肃农业大学 Gansu Agricultural University | 甘肃 Gansu |
陇燕3号Longyan No.3 | 甘肃农业大学 Gansu Agricultural University | 甘肃 Gansu |
Kamadhenu | 尼泊尔农业研究理事会,牧草与饲料研究站 Pasture and Fodder Research Station, Nepal Agricultural Research Council | 新西兰 New Zealand |
表2 燕麦品种名称及来源
Table 2 Name and sources of oat varieties
品种Varieties | 来源Sources | 原产地Country of origin |
---|---|---|
爱沃Everleaf | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
太阳神Titan | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
贝勒1 Baler 1 | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 加拿大 Canada |
美达Monida | 北京正道生态科技有限公司 Beijing Rytway Ecotechnology Limited Company | 美国 America |
科纳Kona | 北京猛犸种业有限公司 Beijing Mammoth Seed Company | 美国 America |
林纳Lena | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青引1号Qingyin No.1 | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青海444 Qinghai 444 | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
青海甜燕麦Qinghai sweet oat | 青海省畜牧兽医科学院 Qinghai Academy of Animal and Veterinary Science | 青海 Qinghai |
陇燕2号Longyan No.2 | 甘肃农业大学 Gansu Agricultural University | 甘肃 Gansu |
陇燕3号Longyan No.3 | 甘肃农业大学 Gansu Agricultural University | 甘肃 Gansu |
Kamadhenu | 尼泊尔农业研究理事会,牧草与饲料研究站 Pasture and Fodder Research Station, Nepal Agricultural Research Council | 新西兰 New Zealand |
品种 Varieties | 播种期 Sowing date | 出苗期 Seeding date | 分蘖期 Tillering stage | 拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 乳熟期 Milking stage | 蜡熟期 Dough stage | 完熟期 Ripe stage | 生育天数 Growth duration (d) |
---|---|---|---|---|---|---|---|---|---|---|
爱沃Everleaf | 05-02 | 05-19 | 06-13 | 07-08 | 08-12 | / | / | / | / | / |
太阳神Titan | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-16 | 09-09 | / | / | / |
贝勒1 Baler 1 | 05-02 | 05-19 | 06-09 | 07-02 | 07-19 | 08-18 | 09-09 | / | / | / |
美达Monida | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-10 | 08-28 | 09-20 | 10-05 | 141 |
科纳Kona | 05-02 | 05-19 | 06-09 | 07-02 | 07-19 | 08-07 | 08-28 | 09-20 | 10-05 | 141 |
林纳Lena | 05-02 | 05-19 | 06-13 | 07-05 | 07-19 | 08-18 | 09-09 | / | / | / |
青引1号Qingyin No.1 | 05-02 | 05-16 | 06-06 | 06-25 | 07-06 | 07-20 | 08-07 | 08-23 | 09-09 | 115 |
青海444 Qinghai 444 | 05-02 | 05-16 | 06-06 | 06-25 | 07-15 | 08-04 | 08-22 | 09-09 | 09-28 | 134 |
青海甜燕麦Qinghai sweet oat | 05-02 | 05-16 | 06-06 | 06-27 | 07-15 | 08-07 | 08-22 | 09-15 | 10-05 | 141 |
陇燕2号Longyan No.2 | 05-02 | 05-19 | 06-13 | 07-05 | 07-19 | 08-16 | 09-09 | / | / | / |
陇燕3号Longyan No.3 | 05-02 | 05-19 | 06-13 | 07-02 | 07-19 | 08-18 | 09-09 | / | / | / |
Kamadhenu | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-07 | 08-28 | 09-20 | 10-05 | 141 |
表3 不同燕麦品种生育期观测
Table 3 Growth stages of different oat varieties (月-日Month-day)
品种 Varieties | 播种期 Sowing date | 出苗期 Seeding date | 分蘖期 Tillering stage | 拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 乳熟期 Milking stage | 蜡熟期 Dough stage | 完熟期 Ripe stage | 生育天数 Growth duration (d) |
---|---|---|---|---|---|---|---|---|---|---|
爱沃Everleaf | 05-02 | 05-19 | 06-13 | 07-08 | 08-12 | / | / | / | / | / |
太阳神Titan | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-16 | 09-09 | / | / | / |
贝勒1 Baler 1 | 05-02 | 05-19 | 06-09 | 07-02 | 07-19 | 08-18 | 09-09 | / | / | / |
美达Monida | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-10 | 08-28 | 09-20 | 10-05 | 141 |
科纳Kona | 05-02 | 05-19 | 06-09 | 07-02 | 07-19 | 08-07 | 08-28 | 09-20 | 10-05 | 141 |
林纳Lena | 05-02 | 05-19 | 06-13 | 07-05 | 07-19 | 08-18 | 09-09 | / | / | / |
青引1号Qingyin No.1 | 05-02 | 05-16 | 06-06 | 06-25 | 07-06 | 07-20 | 08-07 | 08-23 | 09-09 | 115 |
青海444 Qinghai 444 | 05-02 | 05-16 | 06-06 | 06-25 | 07-15 | 08-04 | 08-22 | 09-09 | 09-28 | 134 |
青海甜燕麦Qinghai sweet oat | 05-02 | 05-16 | 06-06 | 06-27 | 07-15 | 08-07 | 08-22 | 09-15 | 10-05 | 141 |
陇燕2号Longyan No.2 | 05-02 | 05-19 | 06-13 | 07-05 | 07-19 | 08-16 | 09-09 | / | / | / |
陇燕3号Longyan No.3 | 05-02 | 05-19 | 06-13 | 07-02 | 07-19 | 08-18 | 09-09 | / | / | / |
Kamadhenu | 05-02 | 05-19 | 06-09 | 06-30 | 07-15 | 08-07 | 08-28 | 09-20 | 10-05 | 141 |
品种Varieties | 株高Plant height (cm) | 鲜草产量Fresh yield (kg·hm-2) | 干草产量Hay yield (kg·hm-2) |
---|---|---|---|
太阳神Titan | 177.7±9.9Aa | 53333.3±2753.8ABabc | 11418.5±589.6BCb |
贝勒1 Baler 1 | 140.6±8.3CDEde | 45700.0±3843.2BCcd | 10362.2±871.4CDbc |
美达Monida | 160.0±10.3Bb | 55166.7±1893.0ABab | 13369.6±458.8ABa |
科纳Kona | 145.6±9.5Ccd | 47666.7±2516.6BCbcd | 11502.2±607.3BCb |
林纳Lena | 156.9±10.0Bb | 45666.7±8144.5BCcd | 9789.4±1745.9CDbc |
青引1号Qingyin No.1 | 134.8±8.6Ee | 29000.0±4000.0De | / |
青海444 Qinghai 444 | 177.3±6.4Aa | 49666.7±4509.3ABCbc | 13491.0±1224.9ABa |
青海甜燕麦Qinghai sweet oat | 176.7±7.1Aa | 59500.0±3500.0Aa | 14723.0±371.2Aa |
陇燕2号Longyan No.2 | 135.2±9.3DEe | 28666.7±4725.8De | 7263.8±1197.5Ed |
陇燕3号Longyan No.3 | 142.8±10.4CDcd | 41000.0±3605.6Cd | 8758.6±770.2DEcd |
Kamadhenu | 147.6±7.7Cc | 46000.0±4000.0BCcd | 10822.7±941.1CDb |
表4 不同燕麦品种株高、鲜草产量和干草产量
Table 4 Plant height and fresh and hay yield of different oat varieties
品种Varieties | 株高Plant height (cm) | 鲜草产量Fresh yield (kg·hm-2) | 干草产量Hay yield (kg·hm-2) |
---|---|---|---|
太阳神Titan | 177.7±9.9Aa | 53333.3±2753.8ABabc | 11418.5±589.6BCb |
贝勒1 Baler 1 | 140.6±8.3CDEde | 45700.0±3843.2BCcd | 10362.2±871.4CDbc |
美达Monida | 160.0±10.3Bb | 55166.7±1893.0ABab | 13369.6±458.8ABa |
科纳Kona | 145.6±9.5Ccd | 47666.7±2516.6BCbcd | 11502.2±607.3BCb |
林纳Lena | 156.9±10.0Bb | 45666.7±8144.5BCcd | 9789.4±1745.9CDbc |
青引1号Qingyin No.1 | 134.8±8.6Ee | 29000.0±4000.0De | / |
青海444 Qinghai 444 | 177.3±6.4Aa | 49666.7±4509.3ABCbc | 13491.0±1224.9ABa |
青海甜燕麦Qinghai sweet oat | 176.7±7.1Aa | 59500.0±3500.0Aa | 14723.0±371.2Aa |
陇燕2号Longyan No.2 | 135.2±9.3DEe | 28666.7±4725.8De | 7263.8±1197.5Ed |
陇燕3号Longyan No.3 | 142.8±10.4CDcd | 41000.0±3605.6Cd | 8758.6±770.2DEcd |
Kamadhenu | 147.6±7.7Cc | 46000.0±4000.0BCcd | 10822.7±941.1CDb |
图2 不同燕麦品种穗所占比重和叶茎比1:太阳神Titan; 2:贝勒1 Baler1; 3:美达Monida; 4:科纳Kona; 5:林纳Lena; 6:青海444 Qinghai 444; 7:青海甜燕麦Qinghai sweet oat; 8: 陇燕2号Longyan No.2; 9: 陇燕3号Longyan No.3; 10: Kamadhenu. 不同大写字母表示差异极显著(P<0.01),不同小写字母表示差异显著(P<0.05)。Different capital letters are extremely significant at P<0.01, lowercase letters are significant at P<0.05 level.
Fig.2 The proportion of spike and the leaf/stem of different oat varieties
品种 Varieties | 干物质 Dry matter (DM) | 粗蛋白 Crude protein (CP) | 总灰分 Total ash (T. Ash) | 中性洗涤纤维 Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) |
---|---|---|---|---|---|
太阳神Titan | 93.5±1.2a | 9.9±0.8Aa | 5.9±0.9ABabc | 75.3±0.9ABCab | 40.8±7.8ab |
贝勒1 Baler 1 | 94.7±1.0a | 7.8±1.8ABabc | 5.4±1.0ABabc | 69.0±2.4BCc | 40.5±5.5ab |
美达Monida | 95.6±0.8a | 7.2±1.0ABbc | 4.4±0.8Bc | 76.6±1.1ABab | 43.4±1.9ab |
科纳Kona | 94.0±1.4a | 6.6±1.2Bbc | 6.8±0.6Aa | 76.0±2.9ABab | 40.1±1.9ab |
林纳Lena | 94.0±1.5a | 6.7±0.5Bbc | 6.9±0.3Aa | 76.4±2.2ABab | 46.8±5.3ab |
青海444 Qinghai 444 | 95.1±1.5a | 8.2±1.5ABab | 5.8±0.3ABabc | 68.2±4.9Cc | 39.3±2.5b |
青海甜燕麦Qinghai sweet oat | 94.9±1.0a | 5.7±0.7Bc | 5.1±1.0ABbc | 72.2±3.7ABCbc | 45.5±5.9ab |
陇燕2号Longyan No.2 | 95.3±0.6a | 7.0±1.3ABbc | 4.7±0.6ABbc | 73.2±1.0ABCabc | 42.7±1.5ab |
陇燕3号Longyan No.3 | 93.8±0.8a | 8.5±1.2ABab | 6.2±0.8ABab | 78.4±4.2Aa | 48.7±1.9a |
Kamadhenu | 93.6±1.3a | 6.3±0.4Bbc | 5.7±0.6ABabc | 76.0±2.6ABab | 43.5±5.3ab |
表5 不同燕麦品种干物质、粗蛋白、总灰分、中性洗涤纤维、酸性洗涤纤维含量
Table 5 The content of DM, CP, T. Ash, NDF and ADF of different oat varieties (%)
品种 Varieties | 干物质 Dry matter (DM) | 粗蛋白 Crude protein (CP) | 总灰分 Total ash (T. Ash) | 中性洗涤纤维 Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) |
---|---|---|---|---|---|
太阳神Titan | 93.5±1.2a | 9.9±0.8Aa | 5.9±0.9ABabc | 75.3±0.9ABCab | 40.8±7.8ab |
贝勒1 Baler 1 | 94.7±1.0a | 7.8±1.8ABabc | 5.4±1.0ABabc | 69.0±2.4BCc | 40.5±5.5ab |
美达Monida | 95.6±0.8a | 7.2±1.0ABbc | 4.4±0.8Bc | 76.6±1.1ABab | 43.4±1.9ab |
科纳Kona | 94.0±1.4a | 6.6±1.2Bbc | 6.8±0.6Aa | 76.0±2.9ABab | 40.1±1.9ab |
林纳Lena | 94.0±1.5a | 6.7±0.5Bbc | 6.9±0.3Aa | 76.4±2.2ABab | 46.8±5.3ab |
青海444 Qinghai 444 | 95.1±1.5a | 8.2±1.5ABab | 5.8±0.3ABabc | 68.2±4.9Cc | 39.3±2.5b |
青海甜燕麦Qinghai sweet oat | 94.9±1.0a | 5.7±0.7Bc | 5.1±1.0ABbc | 72.2±3.7ABCbc | 45.5±5.9ab |
陇燕2号Longyan No.2 | 95.3±0.6a | 7.0±1.3ABbc | 4.7±0.6ABbc | 73.2±1.0ABCabc | 42.7±1.5ab |
陇燕3号Longyan No.3 | 93.8±0.8a | 8.5±1.2ABab | 6.2±0.8ABab | 78.4±4.2Aa | 48.7±1.9a |
Kamadhenu | 93.6±1.3a | 6.3±0.4Bbc | 5.7±0.6ABabc | 76.0±2.6ABab | 43.5±5.3ab |
性状Character | P1 | P2 | P3 | P4 |
---|---|---|---|---|
株高 Plant height | 0.765 | 0.475 | 0.146 | 0.159 |
鲜草产量 Fresh yield | 0.736 | 0.512 | 0.266 | 0.210 |
干草产量Hay yield | 0.918 | 0.255 | 0.193 | 0.043 |
穗所占比重 Spike proportion | 0.279 | -0.367 | 0.571 | -0.630 |
叶茎比 Leaf/stem | -0.445 | 0.564 | -0.437 | -0.113 |
干物质 Dry matter | 0.521 | -0.639 | -0.405 | 0.135 |
粗蛋白 Crude protein | -0.179 | 0.607 | -0.463 | 0.084 |
总灰分 Total ash | -0.387 | 0.503 | 0.522 | -0.492 |
中性洗涤纤维 Neutral detergent fiber | -0.521 | 0.095 | 0.595 | 0.379 |
酸性洗涤纤维Acid detergent fiber | -0.368 | -0.177 | 0.538 | 0.646 |
特征值Eigenvalue | 3.104 | 2.075 | 1.940 | 1.309 |
贡献率Rate of contribution (%) | 31.040 | 20.752 | 19.401 | 13.086 |
累计贡献率The rate of cumulative contribution (%) | 31.040 | 51.792 | 71.193 | 84.279 |
表6 燕麦主要农艺性状的主成分分析
Table 6 Principal component analysis of quality properties in oat
性状Character | P1 | P2 | P3 | P4 |
---|---|---|---|---|
株高 Plant height | 0.765 | 0.475 | 0.146 | 0.159 |
鲜草产量 Fresh yield | 0.736 | 0.512 | 0.266 | 0.210 |
干草产量Hay yield | 0.918 | 0.255 | 0.193 | 0.043 |
穗所占比重 Spike proportion | 0.279 | -0.367 | 0.571 | -0.630 |
叶茎比 Leaf/stem | -0.445 | 0.564 | -0.437 | -0.113 |
干物质 Dry matter | 0.521 | -0.639 | -0.405 | 0.135 |
粗蛋白 Crude protein | -0.179 | 0.607 | -0.463 | 0.084 |
总灰分 Total ash | -0.387 | 0.503 | 0.522 | -0.492 |
中性洗涤纤维 Neutral detergent fiber | -0.521 | 0.095 | 0.595 | 0.379 |
酸性洗涤纤维Acid detergent fiber | -0.368 | -0.177 | 0.538 | 0.646 |
特征值Eigenvalue | 3.104 | 2.075 | 1.940 | 1.309 |
贡献率Rate of contribution (%) | 31.040 | 20.752 | 19.401 | 13.086 |
累计贡献率The rate of cumulative contribution (%) | 31.040 | 51.792 | 71.193 | 84.279 |
品种 Varieties | Y1 | Y2 | Y3 | Y4 | Y | 排名Ranking |
---|---|---|---|---|---|---|
太阳神Titan | -0.126 | 3.072 | -1.018 | 0.672 | 0.580 | 4 |
贝勒1 Baler 1 | -0.470 | 0.333 | -2.435 | -0.492 | -0.728 | 9 |
美达Monida | 1.850 | -1.060 | 0.118 | 1.261 | 0.643 | 2 |
科纳Kona | -0.705 | 0.705 | 0.761 | -1.862 | -0.200 | 7 |
林纳Lena | -1.002 | -0.119 | 1.956 | -0.204 | 0.020 | 5 |
青海444 Qinghai 444 | 2.686 | -0.133 | -0.356 | -1.580 | 0.629 | 3 |
青海甜燕麦Qinghai sweet oat | 2.446 | 0.014 | 0.569 | 1.365 | 1.247 | 1 |
陇燕2号Longyan No.2 | -1.581 | -2.616 | -1.710 | 0.121 | -1.601 | 10 |
陇燕3号Longyan No.3 | -2.633 | 0.432 | 0.609 | 1.156 | -0.544 | 8 |
Kamadhenu | -0.463 | -0.629 | 1.506 | -0.438 | -0.047 | 6 |
表7 不同燕麦品种主成分得分及综合得分
Table 7 Principal components and comprehensive scores of different oat varieties
品种 Varieties | Y1 | Y2 | Y3 | Y4 | Y | 排名Ranking |
---|---|---|---|---|---|---|
太阳神Titan | -0.126 | 3.072 | -1.018 | 0.672 | 0.580 | 4 |
贝勒1 Baler 1 | -0.470 | 0.333 | -2.435 | -0.492 | -0.728 | 9 |
美达Monida | 1.850 | -1.060 | 0.118 | 1.261 | 0.643 | 2 |
科纳Kona | -0.705 | 0.705 | 0.761 | -1.862 | -0.200 | 7 |
林纳Lena | -1.002 | -0.119 | 1.956 | -0.204 | 0.020 | 5 |
青海444 Qinghai 444 | 2.686 | -0.133 | -0.356 | -1.580 | 0.629 | 3 |
青海甜燕麦Qinghai sweet oat | 2.446 | 0.014 | 0.569 | 1.365 | 1.247 | 1 |
陇燕2号Longyan No.2 | -1.581 | -2.616 | -1.710 | 0.121 | -1.601 | 10 |
陇燕3号Longyan No.3 | -2.633 | 0.432 | 0.609 | 1.156 | -0.544 | 8 |
Kamadhenu | -0.463 | -0.629 | 1.506 | -0.438 | -0.047 | 6 |
1 | Bao C L, Zhang S C. Comparison of productive characteristic of Avena sativa varieties in alpine region. Pratacultural Science, 2008, 25(10): 144-146. |
包成兰, 张世财. 高寒地区集中燕麦品种生产特性比较. 草业科学, 2008, 25(10): 144-146. | |
2 | Xu C L. A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region. Acta Prataculturae Sinica, 2012, 21(2): 280-285. |
徐长林. 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012, 21(2): 280-285. | |
3 | Peng X Q, Zhou Q P, Liu W H, et al. A comparative analysis of growth characteristics of six oat cultivars in the north-western Sichuan alpine region. Pratacultural Science, 2018, 35(5): 1208-1217. |
彭先琴, 周青平, 刘文辉, 等. 川西北高寒地区6个燕麦品种生长特性的比较分析. 草业科学, 2018, 35(5): 1208-1217. | |
4 | Wang T. Evaluation on nutritional and ecological characteristics and productive efficiency of 36 oat varieties in alpine meadow region. Lanzhou: Lanzhou University, 2010. |
王桃. 高寒牧区36种燕麦营养生态特征及其生产效能评价. 兰州: 兰州大学, 2010. | |
5 | Ichikawa K. Socio-ecological production landscapes in Asia. Yokohama: http://collections.unu.edu/eserv/UNU:5448/SEPL_in_Asia_report_2nd_Printing.web.pdf. United Nations University Institute of Advanced Studies (UNU-IAS), 2012: 51-54. |
6 | Cadwalladr C. Nepal earthquake: The village wiped off the map in a few terrifying seconds. https://www.theguardian.com/world/2015/may/17/nepal-earthquake-langtang-village-everyone-was-dead, 2015-07-17. |
7 | Khanal B, Baral B R, Shrestha K K. Performance of different varieties of oat fodders on high hill of Rasuwa district// Proceedings of the 9th National workshop on livestock and fisheries research. Nepal: Nepal Agriculture Research Council, National Animal Science Research Institute Press, 2013: 125-133. |
8 | Sharma B. Present status and future strategy of forage development in Nepal. The Journal of Agriculture and Environment, 2015, 16: 170-179. |
9 | Zhou Q L, Duoji Dunzhu, Yixi Yangzong. Evaluation of grey relational grade analysis to 16 oats varieties introduced in Lhasa region. Acta Agrestia Sinica, 2020, 28(2): 389-396. |
周启龙, 多吉顿珠, 益西央宗. 拉萨地区16个燕麦引进品种的灰色关联度评价. 草地学报, 2020, 28(2): 389-396. | |
10 | Geng X L, Han T H, Zhang S P, et al. Adaptability evaluation of 30 oat germplasm in Tianzhu. Acta Agrestia Sinica, 2019, 27(6): 1743-1750. |
耿小丽, 韩天虎, 张少平, 等. 30个燕麦品种(品系)在甘肃天祝地区的适应性评价. 草地学报, 2019, 27(6): 1743-1750. | |
11 | Joshi B K, Bhatta M R, Ghimire K H, et al. Released and promising crop varieties for mountain agriculture in Nepal (1959-2016). Nepal: Bioversity International Press, 2017: 167. |
12 | Acharya B R, Shah M K, Shrestha Y K, et al. Evaluation of appropriate forage species in the summer and winter season for supplying green forage to livestock// Proceedings of the 9th National workshop on livestock and fisheries research. Nepal: Nepal Agriculture Research Council, National Animal Science Research Institute Press, 2013: 134-138. |
13 | Devkota N R, Upreti C R, Paudel L N, et al. Production potentials of promising oat (Avena sativa) varieties in combination with legumes at farmers’ field condition. Nepalese Journal of Agricultural Sciences, 2015, 13: 142-150. |
14 | Yang S. Analysis and quality detection technology of feed. Beijing: Beijing Agriculture University Press, 1993: 77-84. |
杨胜. 饲料分析及饲料质量检测技术. 北京: 北京农业大学出版社, 1993: 77-84. | |
15 | Zheng X, Wei Z W, Wu Z N, et al. Adaptability evaluation of different Avena sativa varieties in Yangzhou area. Acta Agrestia Sinica, 2013, 21(2): 272-279. |
郑曦, 魏臻武, 武自念, 等. 不同燕麦品种(系)在扬州地区的适应性评价. 草地学报, 2013, 21(2): 272-279. | |
16 | Sun J P, Dong K H, Kuai X Y, et al. Comparison of productivity and feeding value of introduced oat varieties in the agro-pasture ecotone of Northern Shanxi. Acta Prataculturae Sinica, 2017, 26(11): 222-230. |
孙建平, 董宽虎, 蒯晓妍, 等. 晋北农牧交错区引进燕麦品种生产性能及饲用价值比较. 草业学报, 2017, 26(11): 222-230. | |
17 | Huang Z J, Chen F L, Zhou S Q. Preliminary study on prolonging the green period of grain amaranth. Grassland of China, 1990(5): 66-67. |
黄祖杰, 陈凤林, 周淑清. 延长籽粒苋青绿期的初步探讨. 中国草地, 1990(5): 66-67. | |
18 | Wang H H. Study on oat superior variety screening and nutritive value evaluation in alpine region of Qinghai-Tibet Plateau. Lanzhou: Gansu Agricultural University, 2008. |
王辉辉. 青藏高原高寒牧区燕麦优良品种筛选及营养价值评定. 兰州: 甘肃农业大学, 2008. | |
19 | Hou J J, Zhao G Q, Jiao T, et al. Evaluation on adaptability of six Avena varieties in Xiahe County, Gansu Province. Grassland and Turf, 2013, 33(2): 26-32. |
侯建杰, 赵桂琴, 焦婷, 等. 6个燕麦品种(系)在甘肃夏河地区的适应性评价. 草原与草坪, 2003, 33(2): 26-32. | |
20 | Li C X, Ye R R, Zhou Y B, et al. Research on forage yields and qualities of different oat (Avena sativa) varieties in alpine pastoral regions. Acta Agrestia Sinica, 2014, 22(4): 882-888. |
李春喜, 叶润荣, 周玉碧, 等. 高寒牧区不同燕麦品种饲草产量及品质的研究. 草地学报, 2014, 22(4): 882-888. | |
21 | Zhang G Y, Ma H P, Shao X M, et al. A comparative study of yield and nutritive value of nine imported oat varieties in the valley region of Tibet, China. Acta Prataculturae Sinica, 2019, 28(5): 121-131. |
张光雨, 马和平, 邵小明, 等. 西藏河谷地区9个引进燕麦品种的生产性能和营养品质比较研究. 草业学报, 2019, 28(5): 121-131. | |
22 | Khanal B, Baral B R, Tiwari M R, et al. Evaluation of different varieties of oat at high hill of Rasuwa district, Nepal. Nepalese Journal of Agricultural Sciences, 2017, 15: 48-54. |
23 | Wu J Y, Liu J H, Wang H D, et al. Yield performance of different oat varieties and correlation of its components. Crops, 2011, 25(5): 36-40. |
武俊英, 刘景辉, 王怀栋, 等. 不同燕麦品种产量及其与构成因素的相关性研究. 作物杂志, 2011, 25(5): 36-40. | |
24 | Luo Z N, Zhao G Q, Liu H. Tissue culture and plant regeneration from mature embryos of oat. Journal of Gansu Agricultural University, 2012, 47(5): 60-68. |
罗志娜, 赵桂琴, 刘欢. 燕麦成熟胚的组织培养及植株再生. 甘肃农业大学学报, 2012, 47(5): 60-68. | |
25 | Wang T, Xu C L, Jiang W Q, et al. Nutrients distribution patterns indifferent parts of 36 oat varieties. Pratacultural Science, 2010, 27(8): 107-113. |
王桃, 徐长林, 姜文清, 等. 36个燕麦品种不同部位养分分布格局. 草业科学, 2010, 27(8): 107-113. | |
26 | Zhou Q P. Cultivation and management of oats in alpine region. Nanjing: Phoenix Science Press, 2014: 240-242. |
周青平. 高原燕麦的栽培与管理. 南京: 江苏凤凰科学技术出版社, 2014: 240-242. | |
27 | Zhang G Y, Shen Z X, Shao X M, et al. A comparative study of yield and nutritive value of ten imported oat varieties in Damxung county of Xizang, China. Acta Agrestia Sinica, 2019, 37(4): 1083-1089. |
张光雨, 沈振西, 邵小明, 等. 西藏当雄10个引进燕麦品种的生产性能和营养品质比较. 草地学报, 2019, 37(4): 1083-1089. | |
28 | Lou C H, Wang B, Li D F, et al. Comparison of production performance and nutritional value of 16 oat varieties in Yellow River Beach area. Pratacultural Science, 2019, 36(7): 1843-1851. |
娄春华, 王博, 李德峰, 等. 黄河滩区16个春播燕麦品种的生产性能和营养品质. 草业科学, 2019, 36(7): 1843-1851. | |
29 | China Animal Agriculture Association. T/CAAA 002-2018 oats hay quality grade. Feed and Husbandry, 2019(1): 40-43. |
中国畜牧业协会. T/CAAA 002-2018燕麦干草质量分级. 饲料与畜牧, 2019(1): 40-43. | |
30 | Gao H X. Applied multivariate statistical analysis. Beijing: Peking University Press, 2005: 265-290. |
高惠璇. 应用多元统计分析. 北京: 北京大学出版社, 2005: 265-290. | |
31 | Chen Z Y, Wang L J, Li Z G. Correlation and principal component analysis of the quality of oat groats and oatmeal. Journal of the Chinese Cereals and Oils Association, 2017, 32(12): 19-24. |
陈子叶, 王丽娟, 李再贵. 燕麦籽粒与燕麦片品质的相关性与主成分分析. 中国粮油学报, 2017, 32(12): 19-24. | |
32 | Zhuang P P, Li W, Wei Y M, et al. Correlation and principle component analysis in agronomic traits of Triticum carthlicum Nevski. Journal of Triticeae Crops, 2006(4): 11-14. |
庄萍萍, 李伟, 魏育明, 等. 波斯小麦农艺性状相关性及主成分分析. 麦类作物学报, 2006(4): 11-14. |
[1] | 林慧龙, 蒲彦妃, 王丹妮, 马海丽. 草原指数保险:评述与中国方案设计[J]. 草业学报, 2021, 30(8): 171-185. |
[2] | 徐强, 田新会, 杜文华. 高寒牧区黑麦和箭筈豌豆混播对草产量和营养品质的影响研究[J]. 草业学报, 2021, 30(8): 49-59. |
[3] | 王玉霞, 柴锦隆, 周洋洋, 徐长林, 王琳, 鱼小军. 种植方式对陇中干旱区扁蓿豆种子产量及构成因素的影响[J]. 草业学报, 2021, 30(8): 60-72. |
[4] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[5] | 袁英良, 唐丹, 鲁英, 冉桂霞, 郭艳芹. 吉林地区麦后复种饲用油菜与燕麦混播效应研究[J]. 草业学报, 2021, 30(7): 167-178. |
[6] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[7] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[8] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[9] | 肖逸, 杨忠富, 聂刚, 韩佳婷, 帅杨, 张新全. 12个多花黑麦草品种(系)在成都平原的生产性能和营养价值综合评价[J]. 草业学报, 2021, 30(5): 174-185. |
[10] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[11] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[12] | 肖婉君, 郭凤霞, 陈垣, 刘兰兰, 陈永中, 焦旭升, 张碧全, 白刚, 金建琴. 施用有机肥对当归药材性状、产量及抗病性的影响[J]. 草业学报, 2021, 30(3): 189-199. |
[13] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
[14] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[15] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||