草业学报 ›› 2021, Vol. 30 ›› Issue (11): 132-143.DOI: 10.11686/cyxb2021064
• 研究论文 • 上一篇
袁洁2,3(), 马冉冉1,3, 张文洁1,3, 许能祥1,3, 赵冉冉1,3, 顾洪如1,3, 丁成龙1,3()
收稿日期:
2021-02-08
修回日期:
2021-06-09
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
丁成龙
作者简介:
Corresponding author. E-mail: dingcl@ jaas.ac.cn基金资助:
Jie YUAN2,3(), Ran-ran MA1,3, Wen-jie ZHANG1,3, Neng-xiang XU1,3, Ran-ran ZHAO1,3, Hong-ru GU1,3, Cheng-long DING1,3()
Received:
2021-02-08
Revised:
2021-06-09
Online:
2021-10-19
Published:
2021-10-19
Contact:
Cheng-long DING
摘要:
为了筛选出适用于多花黑麦草青贮发酵的优良乳酸菌菌株,从自然青贮多花黑麦草中分离乳酸菌,筛选并鉴定生长快速且产酸效率高的菌株,分析其生理生化特征以及对多花黑麦草青贮品质的影响。利用传统的平板培养法,从自然青贮多花黑麦草中分离获得180株乳酸菌。其中,5株乳酸菌生长快速且产酸能力强,均能够在NaCl浓度为3.0%,温度为15~35 ℃,pH为3.5~7.0的MRS液体培养基中良好生长。经16S rRNA基因序列比对鉴定,菌株PR_LAB_9、PR_LAB_34、PR_LAB_67和PR_LAB_86为植物乳杆菌,PR_LAB_76为戊糖片球菌。对菌株进行生长曲线和产酸性能测定,该5株乳酸菌均能够在12 h内快速繁殖和产酸,菌株PR_LAB_76在24 h内生长速率和产酸效率均优于其他4株乳酸菌。进一步分析添加该5株乳酸菌对多花黑麦草青贮发酵品质、营养成分、微生物数量的影响,发现该5株乳酸菌均能提高多花黑麦草的青贮品质,包括显著降低青贮料pH和氨态氮含量,减少干物质损失,提高可溶性碳水化合物含量。其中,菌株PR_LAB_76处理组多花黑麦草青贮品质最优,干物质含量、粗蛋白含量、乳酸含量、乳酸菌数量显著高于其他4株乳酸菌处理组,且pH值、酵母菌数量显著低于其他4株乳酸菌处理组。综上,戊糖片球菌PR_LAB_76可作为多花黑麦草青贮的备选菌株。
袁洁, 马冉冉, 张文洁, 许能祥, 赵冉冉, 顾洪如, 丁成龙. 自然青贮多花黑麦草优良乳酸菌的筛选及对多花黑麦草青贮品质的影响[J]. 草业学报, 2021, 30(11): 132-143.
Jie YUAN, Ran-ran MA, Wen-jie ZHANG, Neng-xiang XU, Ran-ran ZHAO, Hong-ru GU, Cheng-long DING. Screening of superior lactic acid bacteria from natural Lolium multiflorum silage and their effects on silage quality[J]. Acta Prataculturae Sinica, 2021, 30(11): 132-143.
项目 Item | 值 Value |
---|---|
干物质 Dry matter (g·kg-1 FM) | 302.30±2.30 |
粗蛋白 Crude protein (g·kg-1 DM) | 81.75±0.06 |
可溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 140.72±5.60 |
淀粉 Starch (g·kg-1 DM) | 91.23±5.60 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 566.27±0.55 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 313.04±8.17 |
酸性洗涤木质素 Acid detergent lignin (g·kg-1 DM) | 24.77±2.50 |
纤维素 Cellulose (g·kg-1 DM) | 287.02±5.67 |
半纤维素 Hemicellulose (g·kg-1 DM) | 253.24±8.72 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FM) | 4.38±0.10 |
好氧细菌 Aerobic bacteria (Log10 cfu·g-1 FM) | 6.18±0.03 |
酵母 Yeast (Log10 cfu·g-1 FM) | 3.37±0.10 |
霉菌 Mold (Log10 cfu·g-1 FM) | 3.65±0.05 |
表1 多花黑麦草原料营养成分和微生物数量
Table 1 Chemical and microbial population in the material of Italian ryegrass
项目 Item | 值 Value |
---|---|
干物质 Dry matter (g·kg-1 FM) | 302.30±2.30 |
粗蛋白 Crude protein (g·kg-1 DM) | 81.75±0.06 |
可溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 140.72±5.60 |
淀粉 Starch (g·kg-1 DM) | 91.23±5.60 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 566.27±0.55 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 313.04±8.17 |
酸性洗涤木质素 Acid detergent lignin (g·kg-1 DM) | 24.77±2.50 |
纤维素 Cellulose (g·kg-1 DM) | 287.02±5.67 |
半纤维素 Hemicellulose (g·kg-1 DM) | 253.24±8.72 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FM) | 4.38±0.10 |
好氧细菌 Aerobic bacteria (Log10 cfu·g-1 FM) | 6.18±0.03 |
酵母 Yeast (Log10 cfu·g-1 FM) | 3.37±0.10 |
霉菌 Mold (Log10 cfu·g-1 FM) | 3.65±0.05 |
图1 180株乳酸菌在MRS培养液中培养24 h的菌液OD600nm及pH黑色虚线椭圆形中标出的为菌株PR_LAB_9、PR_LAB_34、PR_LAB_67、PR_LAB_76、PR_LAB_86。The black dashed ellipse marked out the strain PR_LAB_9, PR_LAB_34, PR_LAB_67, PR_LAB_76 and PR_LAB_86.
Fig.1 The OD600nm and pH value of 180 strains of lactic acid bacteria cultured in MRS medium for 24 h
特性 Characteristics | 菌株 Strain | ||||
---|---|---|---|---|---|
PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
菌株形态Shape | 杆菌Bacillus | 杆菌Bacillus | 杆菌Bacillus | 球菌Coccus | 杆菌Bacillus |
革兰氏染色Gram strain | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive |
过氧化氢酶反应Catalase reaction | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
葡萄糖产气Gas from glucose | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
发酵类型Fermentation type | 同型Homo | 同型Homo | 同型Homo | 同型Homo | 同型Homo |
耐酸性 Aciduric ability | |||||
pH 2.5 | - | - | - | - | - |
pH 3.0 | ++ | ++ | ++ | ++ | ++ |
pH 3.5 | +++ | +++ | +++ | +++ | +++ |
pH 4.0 | +++ | +++ | +++ | +++ | +++ |
pH 4.5 | +++ | +++ | +++ | +++ | +++ |
pH 5.0 | +++ | +++ | +++ | +++ | +++ |
pH 5.5 | +++ | +++ | +++ | +++ | +++ |
pH 6.0 | +++ | +++ | +++ | +++ | +++ |
pH 6.5 | +++ | +++ | +++ | +++ | +++ |
PH 7.0 | +++ | +++ | +++ | +++ | +++ |
耐盐性Salt tolerance ability | |||||
0.0% NaCl | +++ | +++ | +++ | +++ | +++ |
3.0% NaCl | +++ | +++ | +++ | +++ | +++ |
6.5% NaCl | ++ | ++ | ++ | ++ | ++ |
10.0% NaCl | + | + | + | + | + |
20.0% NaCl | - | - | - | - | - |
耐温性Thermotolerant ability | |||||
5 ℃ | + | + | + | + | + |
15 ℃ | +++ | +++ | +++ | +++ | +++ |
25 ℃ | +++ | +++ | +++ | +++ | +++ |
35 ℃ | +++ | +++ | +++ | +++ | +++ |
45 ℃ | + | + | + | + | + |
表2 乳酸菌的生理生化特征
Table 2 Physiological and biochemical characteristics of lactic acid bacteria
特性 Characteristics | 菌株 Strain | ||||
---|---|---|---|---|---|
PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
菌株形态Shape | 杆菌Bacillus | 杆菌Bacillus | 杆菌Bacillus | 球菌Coccus | 杆菌Bacillus |
革兰氏染色Gram strain | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive | 阳性Positive |
过氧化氢酶反应Catalase reaction | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
葡萄糖产气Gas from glucose | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative | 阴性Negative |
发酵类型Fermentation type | 同型Homo | 同型Homo | 同型Homo | 同型Homo | 同型Homo |
耐酸性 Aciduric ability | |||||
pH 2.5 | - | - | - | - | - |
pH 3.0 | ++ | ++ | ++ | ++ | ++ |
pH 3.5 | +++ | +++ | +++ | +++ | +++ |
pH 4.0 | +++ | +++ | +++ | +++ | +++ |
pH 4.5 | +++ | +++ | +++ | +++ | +++ |
pH 5.0 | +++ | +++ | +++ | +++ | +++ |
pH 5.5 | +++ | +++ | +++ | +++ | +++ |
pH 6.0 | +++ | +++ | +++ | +++ | +++ |
pH 6.5 | +++ | +++ | +++ | +++ | +++ |
PH 7.0 | +++ | +++ | +++ | +++ | +++ |
耐盐性Salt tolerance ability | |||||
0.0% NaCl | +++ | +++ | +++ | +++ | +++ |
3.0% NaCl | +++ | +++ | +++ | +++ | +++ |
6.5% NaCl | ++ | ++ | ++ | ++ | ++ |
10.0% NaCl | + | + | + | + | + |
20.0% NaCl | - | - | - | - | - |
耐温性Thermotolerant ability | |||||
5 ℃ | + | + | + | + | + |
15 ℃ | +++ | +++ | +++ | +++ | +++ |
25 ℃ | +++ | +++ | +++ | +++ | +++ |
35 ℃ | +++ | +++ | +++ | +++ | +++ |
45 ℃ | + | + | + | + | + |
菌株 Strain | 相似菌株 Similar strain | 同源性 Homology |
---|---|---|
PR_LAB_9 | Lactobacillus plantarum MT613628.1 | 99.93% |
PR_LAB_34 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_67 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_76 | Pediococcus pentosaceus LC119127.1 | 99.86% |
PR_LAB_86 | Lactobacillus plantarum AB830324.1 | 100.00% |
表3 基于16S rRNA序列的NCBI比对结果
Table 3 NCBI alignment results based on 16S rRNA sequence
菌株 Strain | 相似菌株 Similar strain | 同源性 Homology |
---|---|---|
PR_LAB_9 | Lactobacillus plantarum MT613628.1 | 99.93% |
PR_LAB_34 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_67 | Lactobacillus plantarum MT645503.1 | 100.00% |
PR_LAB_76 | Pediococcus pentosaceus LC119127.1 | 99.86% |
PR_LAB_86 | Lactobacillus plantarum AB830324.1 | 100.00% |
图2 多花黑麦草青贮乳酸菌 16S rRNA 系统发育树
Fig. 2 Phylogenetic dendrogram of lactic acid bacteria from natural silage L. multiflorum based on the 16S rRNA fragments
图3 乳酸菌生长曲线(A)和产酸性能(B)、24 h产乳酸量(C)和24 h产乙酸量(D)数值为3个生物学重复的平均值±标准误。不同小写字母表示在P<0.05水平上差异显著。Values are the means of three independent experiments±standard errors (SE). Bars with different lowercase letters are significantly different (P<0.05).
Fig.3 Growth curve (A), acid production capacity (B), lactic acid production at 24 h (C), and acetic acid production at 24 h (D) of lactic acid bacteria
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
pH | 4.39±0.04a | 3.97±0.02bc | 3.99±0.02b | 3.91±0.04bcd | 3.88±0.03d | 3.90±0.04cd |
乳酸Lactic acid (g·kg-1 DM) | 81.57±1.62d | 115.56±1.18bc | 108.76±3.40c | 119.00±1.07ab | 123.54±3.30a | 119.01±3.57ab |
乙酸Acetic acid (g·kg-1 DM) | 0.92±0.03c | 1.14±0.03a | 1.01±0.06bc | 1.12±0.02ab | 1.15±0.06a | 1.10±0.05ab |
丙酸Propionic acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
异丁酸Isobutyric acid (g·kg-1 DM) | 4.43±0.29a | 1.83±0.08b | 1.55±0.08b | 1.71±0.04b | 1.79±0.20b | 1.72±0.10b |
丁酸Butyric acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
乳酸/乙酸Lactic acid/acetic acid | 89.14±4.78b | 101.35±3.55a | 108.25±3.34a | 105.99±1.21a | 107.10±2.66a | 107.82±1.91a |
氨态氮Ammonia nitrogen (g·kg-1 TN) | 23.14±1.61a | 4.96±0.45b | 4.86±0.55b | 4.90±0.27b | 4.66±0.30b | 4.72±0.39b |
表4 乳酸菌对多花黑麦草青贮发酵品质的影响
Table 4 Effects of lactic acid bacteria on fermentation quality in Italian ryegrass silage
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
pH | 4.39±0.04a | 3.97±0.02bc | 3.99±0.02b | 3.91±0.04bcd | 3.88±0.03d | 3.90±0.04cd |
乳酸Lactic acid (g·kg-1 DM) | 81.57±1.62d | 115.56±1.18bc | 108.76±3.40c | 119.00±1.07ab | 123.54±3.30a | 119.01±3.57ab |
乙酸Acetic acid (g·kg-1 DM) | 0.92±0.03c | 1.14±0.03a | 1.01±0.06bc | 1.12±0.02ab | 1.15±0.06a | 1.10±0.05ab |
丙酸Propionic acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
异丁酸Isobutyric acid (g·kg-1 DM) | 4.43±0.29a | 1.83±0.08b | 1.55±0.08b | 1.71±0.04b | 1.79±0.20b | 1.72±0.10b |
丁酸Butyric acid (g·kg-1 DM) | ND | ND | ND | ND | ND | ND |
乳酸/乙酸Lactic acid/acetic acid | 89.14±4.78b | 101.35±3.55a | 108.25±3.34a | 105.99±1.21a | 107.10±2.66a | 107.82±1.91a |
氨态氮Ammonia nitrogen (g·kg-1 TN) | 23.14±1.61a | 4.96±0.45b | 4.86±0.55b | 4.90±0.27b | 4.66±0.30b | 4.72±0.39b |
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
乳酸菌Lactic acid bacteria | 5.72±0.05d | 6.06±0.02bc | 6.00±0.04c | 6.10±0.02ab | 6.15±0.02a | 6.11±0.01ab |
好氧细菌Aerobic bacteria | 5.28±0.03a | 4.67±0.02b | 4.74±0.17b | 4.69±0.05b | 4.66±0.09b | 4.71±0.12b |
酵母Yeast | 4.25±0.04a | 3.99±0.01c | 4.06±0.03b | 3.93±0.03cd | 3.89±0.01d | 3.93±0.01cd |
霉菌Mold | <1 | <1 | <1 | <1 | <1 | <1 |
表5 乳酸菌对多花黑麦草青贮微生物数量的影响
Table 5 Effects of lactic acid bacteria on microbial counts in Italian ryegrass silage (Log10 cfu·g-1 FM)
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
乳酸菌Lactic acid bacteria | 5.72±0.05d | 6.06±0.02bc | 6.00±0.04c | 6.10±0.02ab | 6.15±0.02a | 6.11±0.01ab |
好氧细菌Aerobic bacteria | 5.28±0.03a | 4.67±0.02b | 4.74±0.17b | 4.69±0.05b | 4.66±0.09b | 4.71±0.12b |
酵母Yeast | 4.25±0.04a | 3.99±0.01c | 4.06±0.03b | 3.93±0.03cd | 3.89±0.01d | 3.93±0.01cd |
霉菌Mold | <1 | <1 | <1 | <1 | <1 | <1 |
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
干物质Dry matter (g·kg-1 FM) | 271.15±1.02b | 274.27±2.73ab | 271.52±0.67b | 275.82±3.46ab | 278.64±2.63a | 276.32±1.41ab |
干物质损失Dry matter loss (g·kg-1 FM) | 32.92±1.02a | 29.80±2.73ab | 32.55±0.67a | 28.25±3.46ab | 25.43±2.63b | 27.75±1.41ab |
粗蛋白Crude protein (g·kg-1 DM) | 83.80±2.49b | 84.77±3.26b | 84.51±1.14b | 86.63±1.01b | 91.97±0.45a | 87.17±0.04ab |
可溶性碳水化合物Water soluble carbohydrate (g·kg-1 DM) | 37.04±0.87d | 50.96±0.99c | 47.96±2.32c | 66.64±2.38b | 73.79±1.65a | 68.64±1.85b |
淀粉Starch (g·kg-1 DM) | 34.54±4.73a | 33.24±2.64a | 33.21±4.82a | 35.77±3.96a | 37.84±5.95a | 35.95±4.69a |
中性洗涤纤维Neutral detergent fiber (g·kg-1 DM) | 554.99±6.67a | 548.23±0.11ab | 553.19±4.75a | 540.38±4.26bc | 531.39±4.69c | 532.74±3.32c |
酸性洗涤纤维Acid detergent fiber (g·kg-1 DM) | 333.93±5.20a | 332.91±4.06a | 323.41±2.77ab | 321.67±5.88ab | 313.10±6.73b | 312.10±5.82b |
酸性洗涤木质素Acid detergent lignin (g·kg-1 DM) | 24.00±2.59a | 23.46±0.09a | 26.68±2.94a | 20.95±11.40a | 20.71±3.18a | 24.59±1.91a |
纤维素Cellulose (g·kg-1 DM) | 311.42±5.73a | 309.41±3.98ab | 297.72±5.70abc | 294.62±6.63bc | 290.62±6.63c | 287.51±3.91c |
半纤维素Hemicellulose (g·kg-1 DM) | 221.07±1.46ab | 215.32±4.17b | 229.78±6.96a | 218.71±2.02b | 218.29±2.04b | 220.64±2.50ab |
表6 乳酸菌对多花黑麦草青贮营养品质的影响
Table 6 Effects of lactic acid bacteria on nutritional quality in Italian ryegrass silage
指标 Index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | PR_LAB_9 | PR_LAB_34 | PR_LAB_67 | PR_LAB_76 | PR_LAB_86 | |
干物质Dry matter (g·kg-1 FM) | 271.15±1.02b | 274.27±2.73ab | 271.52±0.67b | 275.82±3.46ab | 278.64±2.63a | 276.32±1.41ab |
干物质损失Dry matter loss (g·kg-1 FM) | 32.92±1.02a | 29.80±2.73ab | 32.55±0.67a | 28.25±3.46ab | 25.43±2.63b | 27.75±1.41ab |
粗蛋白Crude protein (g·kg-1 DM) | 83.80±2.49b | 84.77±3.26b | 84.51±1.14b | 86.63±1.01b | 91.97±0.45a | 87.17±0.04ab |
可溶性碳水化合物Water soluble carbohydrate (g·kg-1 DM) | 37.04±0.87d | 50.96±0.99c | 47.96±2.32c | 66.64±2.38b | 73.79±1.65a | 68.64±1.85b |
淀粉Starch (g·kg-1 DM) | 34.54±4.73a | 33.24±2.64a | 33.21±4.82a | 35.77±3.96a | 37.84±5.95a | 35.95±4.69a |
中性洗涤纤维Neutral detergent fiber (g·kg-1 DM) | 554.99±6.67a | 548.23±0.11ab | 553.19±4.75a | 540.38±4.26bc | 531.39±4.69c | 532.74±3.32c |
酸性洗涤纤维Acid detergent fiber (g·kg-1 DM) | 333.93±5.20a | 332.91±4.06a | 323.41±2.77ab | 321.67±5.88ab | 313.10±6.73b | 312.10±5.82b |
酸性洗涤木质素Acid detergent lignin (g·kg-1 DM) | 24.00±2.59a | 23.46±0.09a | 26.68±2.94a | 20.95±11.40a | 20.71±3.18a | 24.59±1.91a |
纤维素Cellulose (g·kg-1 DM) | 311.42±5.73a | 309.41±3.98ab | 297.72±5.70abc | 294.62±6.63bc | 290.62±6.63c | 287.51±3.91c |
半纤维素Hemicellulose (g·kg-1 DM) | 221.07±1.46ab | 215.32±4.17b | 229.78±6.96a | 218.71±2.02b | 218.29±2.04b | 220.64±2.50ab |
1 | Ding C L. Function and cultivation techniqe of Italian ryegrass in the agriculture system of rural area of South China. Chinese Journal of Rabbit Farming, 2008(11): 15-17. |
丁成龙. 多花黑麦草在南方农区农业结构中的作用及其栽培利用技术. 中国养兔, 2008(11): 15-17. | |
2 | Ding C L, Gu H R, Xu N X, et al. Effect of cutting time on the biomass production and forage quality of Lolium multiflorum. Acta Prataculturae Sinica, 2011, 20(6): 186-194. |
丁成龙, 顾洪如, 许能祥, 等. 不同刈割期对多花黑麦草饲草产量及品质的影响. 草业学报, 2011, 20(6): 186-194. | |
3 | Mu L L, Huan H L, Xu N X, et al. Effects of wilting time on fermentation quality and microbial dynamics of Italian ryegrass silage. Journal of Southern Agriculture, 2019, 50(12): 2771-2777. |
牟林林, 宦海琳, 许能祥, 等. 凋萎时间对多花黑麦草青贮品质及微生物动态变化的影响. 南方农业学报, 2019, 50(12): 2771-2777. | |
4 | Ding C L, Xu N X, Dong C F, et al. Growth adaptabilities and forage qualities of different early maturing Italian ryegrass varieties. Acta Agrestia Sinica, 2014, 22(6): 1337-1341. |
丁成龙, 许能祥, 董臣飞, 等. 早熟型多花黑麦草生产性能及饲用品质研究. 草地学报, 2014, 22(6): 1337-1341. | |
5 | Li J L, Zhang X Q, Yu Z, et al. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
李君临, 张新全, 玉柱, 等. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响. 草业学报, 2014, 23(6): 342-348. | |
6 | Zhang W J, Dong C F, Ding C L, et al. Effects of harvest stage on nutrients and silage quality of different cultivars of Italian ryegrass (Lolium multiflorum). Chinese Journal of Grassland, 2016, 38(5): 32-37. |
张文洁, 董臣飞, 丁成龙, 等. 收获期对多花黑麦草营养成分和青贮品质的影响. 中国草地学报, 2016, 38(5): 32-37. | |
7 | Jia X Y, Cheng J K, Xin G R, et al. Effect of drying and silage time on fresh Italian ryegrass silage. Journal of Grassland and Forage Science, 2019(6): 13-19. |
贾戌禹, 程俊康, 辛国荣, 等. 晾干及青贮时间对高水分多花黑麦草青贮效果的影响研究. 草学, 2019(6): 13-19. | |
8 | Guan H, Guo X S, Gan Y M, et al. Effect of different additives on fermentation quality and aerobic stability of Italian ryegrass silage ensiled at different moisture. Acta Agrestia Sinica, 2016, 24(3): 669-675. |
关皓, 郭旭生, 干友民, 等. 添加剂对不同含水量多花黑麦草青贮发酵品质及有氧稳定性的影响. 草地学报, 2016, 24(3): 669-675. | |
9 | Zhang Z X, Shao T. Research progress in silage additive. Pratacultural Science, 2006, 23(9): 56-63. |
张增欣, 邵涛. 青贮添加剂研究进展. 草业科学, 2006, 23(9): 56-63. | |
10 | Li X L, Guan H, Yan Y H, et al. Screening and physiological-biochemical characteristics of good lactic acid bacteria from Pennisetum rich. silage. Journal of Grassland and Forage Science, 2018(4): 27-35. |
李小铃, 关皓, 闫艳红, 等. 狼尾草属牧草青贮优良乳酸菌的筛选及生理生化特性研究. 草学, 2018(4): 27-35. | |
11 | Jia Y S, Yu H R, Du S, et al. Research progress on natural forage silage additives. Acta Agrestia Sinica, 2018, 26(3): 533-538. |
贾玉山, 于浩然, 都帅, 等. 天然牧草青贮添加剂研究进展. 草地学报, 2018, 26(3): 533-538. | |
12 | Zhang J, Yu Z, Shao T. Effect of adding propionic acid and lactic acid bacteria on fermentation quality of Italian ryegrass silages. Acta Agrestia Sinica, 2009, 17(2): 162-165. |
张静, 玉柱, 邵涛. 丙酸、乳酸菌添加剂对多花黑麦草青贮发酵品质的影响. 草地学报, 2009, 17(2): 162-165. | |
13 | Cai Y M, Kumai S, Liao Z, et al. Effect of lactic acid bacteria inoculants on fermentative quality of silage. Scientia Agricultura Sinica, 1995, 28(2): 73-82. |
蔡义民, 熊井清雄, 廖芷, 等. 乳酸菌剂对青贮饲料发酵品质的改善效果. 中国农业科学, 1995, 28(2): 73-82. | |
14 | Parvin S, Wang C, Li Y, et al. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Animal Feed Science and Technology, 2010, 160(3/4): 160-166. |
15 | Li Y, Nishino N. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Letters in Applied Microbiology, 2011, 52(4): 314-321. |
16 | Zhang H M, Duan Z, Li X, et al. Actual research and application of the silage lactic acid bacteria additives. Pratacultural Science, 2017, 34(12): 2575-2583. |
张红梅, 段珍, 李霞, 等. 青贮饲料乳酸菌添加剂的应用现状. 草业科学, 2017, 34(12): 2575-2583. | |
17 | Muck R E, Nadeau E M G, Mc Allister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
18 | Chen W. Science and technology of lactic acid bacteria. Beijing: Science Press, 2018. |
陈卫. 乳酸菌科学与技术. 北京: 科学出版社, 2018. | |
19 | Association of Official Analytical Chemists. Official methods of analysis (15th Edition). Arlington, Virginia: Association of Official Analytical Chemists, 1990. |
20 | Murphy R P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture, 1958, 9(11): 714-717. |
21 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
22 | Liu B Y, Huan H L, Gu H R, et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresource Technology, 2019, 273: 212-219. |
23 | Salawu M B, Acamovic T, Stewart C S, et al. The use of tannins as silage additives: Effects on silage composition and mobile bag disappearance of dry matter and protein. Animal Feed Science and Technology, 1999, 82(3/4): 243-259. |
24 | He L W, Wang C, Xing Y Q, et al. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresource Technology, 2020, 296: 122336. |
25 | Holzer M, Mayrhuber E, Danner H, et al. The role of Lactobacillus buchneri in forage preservation. Trends in Biotechnology, 2003, 21(6): 282-287. |
26 | Zhang H M. The fermentation properties of ensiled Elymus nutans from different altitude regions on the Tibetan Plateau and screening of lactic acid bacteria for low temperature fermentation. Lanzhou: Lanzhou University, 2016. |
张红梅. 青藏高原不同海拔区垂穗披碱草发酵特性及耐低温乳酸菌筛选研究. 兰州: 兰州大学, 2016. | |
27 | Wang Y, He L W, Xing Y Q, et al. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresource Technology, 2019, 284: 349-358. |
28 | Wang C, He L W, Xing Y Q, et al. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresource Technology, 2019, 284: 240-247. |
29 | Guimarães A, Santiago A, Teixeira J A, et al. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International Journal of Food Microbiology, 2018, 264(2): 31-38. |
30 | Li F H, Ding Z T, Ke W C, et al. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology, 2019, 282: 211-221. |
31 | Zhao X L, Liu J H, Liu J J, et al. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresource Technology, 2017, 241: 349-359. |
32 | Yuan X J, Guo G, Wen A Y, et al. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Animal Feed Science and Technology, 2015, 207: 41-50. |
33 | Hristov A N, McAllister T A. Effect of inoculants on whole-crop barley silage fermentation and dry matter disappearance in situ. Journal of Animal Science, 2002, 80(2): 510-516. |
34 | Kleinschmit D H, Schmidt R J, Kung L. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 2005, 88(6): 2130-2139. |
35 | Filya I, Muck R E, Contreras-Govea F E. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. Journal of Dairy Science, 2007, 90(11): 5108-5114. |
36 | Arriola K G, Kim S C, Adesogan A T. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. Journal of Dairy Science, 2011, 94(3): 1511-1516. |
37 | Weinberg Z G, Ashbell G, Azrieli A, et al. Ensiling peas, ryegrass and wheat with additives of lactic acid bacteria (LAB) and cell wall degrading enzymes. Grass and Forage Science, 1993, 48(1): 70-78. |
38 | Li D X, Zhang Y C, Lin Y L, et al. Effects on a strain of Pediococcus pentosaceus a144 to alfalfa silage quality. Journal of Grassland and Forage Science, 2017(S1): 71-72, 75. |
李东霞, 张颖超, 林炎丽, 等. 一株戊糖片球菌a144对苜蓿青贮品质的影响. 草学, 2017(S1): 71-72, 75. | |
39 | Zhang H M, Jing P X, Ke W C, et al. Effect of lactic acid bacteria isolated from Tibetan Plateau on silage fermentation quality of Elymus nutans. Acta Microbiologica Sinica, 2015, 55(10): 1291-1297. |
张红梅, 荆佩欣, 柯文灿, 等. 青藏高原乳酸菌对垂穗披碱草青贮饲料发酵品质的影响. 微生物学报, 2015, 55(10): 1291-1297. |
[1] | 温媛媛, 张美琦, 刘桃桃, 沈宜钊, 高艳霞, 李秋凤, 曹玉凤, 李建国. 体外产气法评价生薯条加工副产品-稻草混贮与全株玉米青贮组合效应的研究[J]. 草业学报, 2021, 30(8): 154-163. |
[2] | 杨冬梅, 李俊年, 陶双伦. 添加单宁酸对青贮葛藤有氧稳定性和霉菌毒素含量的影响[J]. 草业学报, 2021, 30(8): 164-170. |
[3] | 郭香, 陈德奎, 陈娜, 李云, 陈晓阳, 张庆. 含水量和添加剂对黄梁木叶青贮发酵品质的影响[J]. 草业学报, 2021, 30(8): 199-205. |
[4] | 邹诗雨, 陈思葵, 唐启源, 陈东, 陈元伟, 邓攀, 黄胥莱, 李付强. 青贮剂对再生稻头季全株青贮品质和体外瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(7): 122-132. |
[5] | 尹祥, 王咏琪, 李鑫琴, 田静, 王晓亚, 张建国. 不同水分吸附材料对象草青贮发酵品质及好氧稳定性的影响[J]. 草业学报, 2021, 30(7): 133-138. |
[6] | 张丹丹, 张元庆, 程景, 靳光, 李博, 王栋才, 徐芳, 孙锐锋. 不同粗饲料组合对晋南牛瘤胃体外发酵特性的研究[J]. 草业学报, 2021, 30(7): 93-100. |
[7] | 黄丽琴, 李松桥, 袁振中, 唐晶, 闫景彩, 唐启源. 全株水稻与平菇菌糠共发酵料对浏阳黑山羊屠宰性能、肉品质和器官指数的影响[J]. 草业学报, 2021, 30(6): 133-140. |
[8] | 祁鹤兴, 芦光新, 李宗仁, 徐成体, 德科加, 周孝娟, 王英成, 马桂花. 青海省青贮玉米链格孢叶枯病病原菌鉴定及其致病力分析[J]. 草业学报, 2021, 30(6): 94-105. |
[9] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[10] | 肖逸, 杨忠富, 聂刚, 韩佳婷, 帅杨, 张新全. 12个多花黑麦草品种(系)在成都平原的生产性能和营养价值综合评价[J]. 草业学报, 2021, 30(5): 174-185. |
[11] | 吕竑建, 郭香, 陈德奎, 陈晓阳, 张庆. 植物乳酸菌和贮藏温度对辣木叶青贮品质的影响[J]. 草业学报, 2021, 30(3): 121-128. |
[12] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[13] | 吴长荣, 代胜, 梁龙飞, 孙文涛, 彭超, 陈超, 郝俊. 不同添加剂对构树青贮饲料发酵品质和蛋白质降解的影响[J]. 草业学报, 2021, 30(10): 169-179. |
[14] | 娄芬, 李小冬, 尚以顺, 吴佳海, 张蓉, 甘小波, 熊俊, 陈光吉, 李世歌, 裴成江. 毕节地区适宜青贮玉米品种(系)筛选及营养价值评价[J]. 草业学报, 2020, 29(6): 214-224. |
[15] | 董文成, 林语梵, 朱鸿福, 张欢, 张桂杰. 不同品种葡萄渣对苜蓿青贮品质和有氧稳定性的影响[J]. 草业学报, 2020, 29(4): 129-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||