草业学报 ›› 2023, Vol. 32 ›› Issue (9): 213-221.DOI: 10.11686/cyxb2022386
• 研究论文 • 上一篇
收稿日期:
2022-09-27
修回日期:
2023-01-13
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
朱新霞
作者简介:
E-mail: 302641316@qq.com基金资助:
Yu-ling LIU1,2(), Xin-xia ZHU1(
), Xin-hua LYU1, Hui SUN1
Received:
2022-09-27
Revised:
2023-01-13
Online:
2023-09-20
Published:
2023-07-12
Contact:
Xin-xia ZHU
摘要:
极端生境草本植物天山雪莲中的SikCDPK1基因可明显提高转基因烟草的低温、干旱耐受性。为探究SikCDPK1基因的表达特征和蛋白激酶活性,本研究利用实时荧光定量PCR技术检测了SikCDPK1基因在雪莲不同组织器官的表达水平以及对信号分子CaCl2、脱落酸(ABA)、赤霉素(GA3)、水杨酸(SA)、H2O2的诱导响应模式,采用Kinase-Glo?技术检测了SIKCDPK1蛋白激酶活性,利用绿色荧光蛋白(GFP)基因融合蛋白表达法进行了SIKCDPK1蛋白的亚细胞定位。结果显示:SikCDPK1基因在雪莲根、茎、叶、种子、幼茎、幼叶中均表达,SikCDPK1基因受CaCl2、ABA、GA3、SA、H2O2的诱导表达但响应模式有差异;激酶活性分析发现Ca2+存在时,SIKCDPK1具有激酶催化活性,加入Ca2+螯合剂EGTA后,SIKCDPK1几乎没有激酶活性。SIKCDPK1激酶活性随Ca2+浓度增加而增加,Ca2+浓度(K0.5)为48.7 nmol·L-1时,SIKCDPK1激酶活性可达到最大活性的1/2;以HisⅢ为底物时,SIKCDPK1的Km值可达到43.8 μg·mL-1,SIKCDPK1蛋白定位于细胞核。上述结果表明SikCDPK1基因表达无明显组织特异性,可响应信号分子Ca2+、ABA、GA3、SA、H2O2的诱导;SIKCDPK1发挥蛋白激酶活性需要Ca2+,SIKCDPK1主要在细胞核里发挥作用。
刘玉玲, 朱新霞, 吕新华, 孙辉. 雪莲SikCDPK1基因的表达特征和蛋白激酶活性分析[J]. 草业学报, 2023, 32(9): 213-221.
Yu-ling LIU, Xin-xia ZHU, Xin-hua LYU, Hui SUN. Expression characteristics and protein kinase activity analysis of the SikCDPK1 gene in Saussurea involucrata[J]. Acta Prataculturae Sinica, 2023, 32(9): 213-221.
引物Primer name | 引物序列Primer sequence (5′→3′) | 用途Purpose |
---|---|---|
GAPDH-F | TAGCAAGGATGCTCCCATGTTCGT | 内参基因Internal genes primers |
GAPDH-R | AAAGGAGCAAGGCAGTTGGTTGTC | 内参基因Internal genes primers |
SikCDPK1-qF | ATCCCAAACTGCCCTTGTCCTA | 基因表达Gene expression analysis |
SikCDPK1-qR | GAAGATACCCCACCTACCCCTAAC | 基因表达Gene expression analysis |
SikCDPK1-GFP-F | GGTACCATGGGGAATACTTGTGTTGGAC | 亚细胞定位Subcellular localization |
SikCDPK1-GFP-R | GTCGAC AAGTTTAAATGCTTCTCTGAACT | 亚细胞定位Subcellular localization |
表1 引物
Table 1 The primers
引物Primer name | 引物序列Primer sequence (5′→3′) | 用途Purpose |
---|---|---|
GAPDH-F | TAGCAAGGATGCTCCCATGTTCGT | 内参基因Internal genes primers |
GAPDH-R | AAAGGAGCAAGGCAGTTGGTTGTC | 内参基因Internal genes primers |
SikCDPK1-qF | ATCCCAAACTGCCCTTGTCCTA | 基因表达Gene expression analysis |
SikCDPK1-qR | GAAGATACCCCACCTACCCCTAAC | 基因表达Gene expression analysis |
SikCDPK1-GFP-F | GGTACCATGGGGAATACTTGTGTTGGAC | 亚细胞定位Subcellular localization |
SikCDPK1-GFP-R | GTCGAC AAGTTTAAATGCTTCTCTGAACT | 亚细胞定位Subcellular localization |
1 | Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology, 2004, 55: 263-288. |
2 | Asano T, Tanaka N, Yang G, et al. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiology, 2005, 46(2): 356-366. |
3 | Zuo R, Hu R, Chai G, et al. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Molecular Biology Reports, 2013, 40(3): 2645-2662. |
4 | Xu X, Liu M, Lu L, et al. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber. Molecular Genetics and Genomics, 2015, 290(4): 1403-1414. |
5 | Wang J P, Xu Y P, Munyampundu J P, et al. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance. Molecular Genetics and Genomics, 2016, 291(2): 661-676. |
6 | Zhang H, Wei C, Yang X, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its related kinase gene families in melon (Cucumis melo L.). PLoS One, 2017, 12(4): e0176352. |
7 | Lin H, Duan W K, Zhou Y, et al. Identification, evolution and expression analysis of the CDPK gene family in pepper. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 7-17. |
林欢, 段伟科, 周怡, 等. 辣椒CDPK基因家族的鉴定、进化与表达分析. 核农学报, 2021, 35(1): 7-17. | |
8 | Zhao J, Zhu K K, Fan P H, et al. Identification and expression analysis of CDPK gene family in pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis). Journal of Agricultural Biotechnology, 2022, 30(3): 442-456. |
赵娟, 朱凯凯, 范平桦, 等. 薄壳山核桃和山核桃CDPK基因家族的鉴定及表达分析. 农业生物技术学报, 2022, 30(3): 442-456. | |
9 | Zhao R, Sun H L, Mei C, et al. The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist, 2011, 192(1): 61-73. |
10 | Wen F, Ye F, Xiao Z, et al. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics, 2020, 21(1): 53. |
11 | Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19(10): 3019-3036. |
12 | Le C H B P T, Crepin N, Rolland F, et al. Two trehalase isoforms, produced from a single transcript, regulate drought stress tolerance in Arabidopsis thaliana. Plant Molecular Biology, 2022, 108(6): 531-547. |
13 | Zou J J, Li X D, Ratnasekera D, et al. Arabidopsis calcium-dependent protein kinase 8 and catalase 3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell, 2015, 27(5): 1445-1460. |
14 | Wei S Y. Study on the anti-stress function of rice calcium-dependent protein kinase OsCPK9. Wuhan: Huazhong University of Science and Technology, 2014. |
韦淑亚. 水稻钙依赖型蛋白激酶OsCPK9的抗逆功能研究. 武汉: 华中科技大学, 2014. | |
15 | Abbasi F, Onodera H, Toki S, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology, 2004, 55(4): 541-552. |
16 | Yuan X. Expression pattern and function analysis of AtCPK30 gene in Arabidopsis thaliana. Changsha: Hunan University, 2007. |
袁昕. 拟南芥AtCPK30基因的表达模式和功能分析. 长沙: 湖南大学, 2007. | |
17 | Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends in Plant Science, 2013, 18: 30-40. |
18 | Tian X H, Pang X B, Zhu J B, et al. Effect of over-expression of Saussurea involucrate SikCDPK1 gene on improving cold tolerance in transgenic tobacco. Acta Tabacaria Sinica, 2016, 22(6): 98-103. |
田晓涵, 庞学兵, 祝建波, 等. 过表达天山雪莲SikCDPK1基因提高转基因烟草耐低温能力的机制初探. 中国烟草学报, 2016, 22(6): 98-103. | |
19 | Li Y, Zhang H, Liang S, et al. Identification of CDPK gene family in Solanum habrochaites and its function analysis under stress. International Journal of Molecular Sciences, 2022, 23(8): 4227. |
20 | Yuan F R, Yan J W, Luo K, et al. Establishment of fluorescence quantitative RT-PCR assay on orlABC genes in transgentic Troyer citrange. Journal of Hunan Agricultural University (Natural Sciences), 2010, 36(6): 634-639. |
袁飞荣, 严佳文, 罗坤, 等. 转基因枳橙中rolABC基因荧光定量表达分析方法的建立. 湖南农业大学学报(自然科学版), 2010, 36(6): 634-639. | |
21 | Franz S, Ehlert B, Liese A, et al. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Molecular Plant, 2011, 4(1): 83-96. |
22 | Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology, 2010, 154(3): 1232-1243. |
23 | Kong X, Lv W, Jiang S, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genomics, 2013, 14: 433. |
24 | Asano T, Hakata M, Nakamura H, et al. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Molecular Biology, 2011, 75(1/2): 179-191. |
25 | Chang W, Fu G, Chen X, et al. Biochemical characterization of a calcium-sensitive protein kinase LeCPK2 from tomato. Indian Journal of Biochemistry & Biophysics, 2011, 48(3): 148-153. |
26 | Chehab E W, Patharkar O R, Hegeman A D, et al. Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiology, 2004, 135(3): 1430-1446. |
27 | Wang Y, Zhang M, Ke K, et al. Cellular localization and biochemical characterization of a novel calcium-dependent protein kinase from tobacco. Cell Research, 2005, 15(8): 604-612. |
28 | Zhang M, Liang S, Lu Y T. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochimica et Biophysica Acta, 2005, 1729(3): 174-185. |
29 | Zhao L N, Shen L K, Zhang W Z, et al. Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell, 2013, 25(2): 649-661. |
30 | Witte C P, Keinath N, Dubiella U, et al. Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. Journal of Biological Chemistry, 2010, 285(13): 9740-9748. |
31 | Zhao P, Liu Y, Kong W, et al. Genome-wide identification and characterization of calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in Medicago truncatula. International Journal of Molecular Sciences, 2021, 22(3): 1044. |
32 | Wang C T, Shao J M. Characterization of the ZmCK1 gene encoding a calcium-dependent protein kinase responsive to multiple abiotic stresses in maize. Plant Molecular Biology Reporter, 2013, 31(1): 222-230. |
33 | Martín M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant Journal, 2000, 24(4): 429-435. |
[1] | 史先飞, 高宇, 黄旭升, 周雅莉, 蔡桂萍, 李昕儒, 李润植, 薛金爱. 油莎豆CeWRKY转录因子响应非生物胁迫的功能表征[J]. 草业学报, 2023, 32(8): 186-201. |
[2] | 管瑾, 郭一荻, 刘凌云, 尹淑霞, 滕珂. 结缕草叶肉细胞原生质体瞬时基因表达系统的构建[J]. 草业学报, 2023, 32(7): 61-71. |
[3] | 柴继宽, 琚泽亮, 赵桂琴. 低温和低pH胁迫下青贮乳酸菌OL77的内参基因筛选及CspP基因的表达模式分析[J]. 草业学报, 2023, 32(5): 147-158. |
[4] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[5] | 尚盼盼, 曾兵, 屈明好, 李明阳, 杨兴云, 郑玉倩, 沈秉娜, 毕磊, 杨成, 曾兵. 红三叶响应淹水胁迫的相关通路及差异表达基因分析[J]. 草业学报, 2023, 32(4): 112-128. |
[6] | 李雯, 赵丽蓉, 张建平, 刘自刚, 齐燕妮, 李闻娟, 谢亚萍. 亚麻DMP基因家族的全基因组鉴定与分析[J]. 草业学报, 2023, 32(3): 91-106. |
[7] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[8] | 姚佳明, 何悦, 郝欢欢, 黄心如, 张敬, 徐彬. 多年生黑麦草LpPIL5基因特征分析及转录调控[J]. 草业学报, 2022, 31(9): 155-167. |
[9] | 田骄阳, 王秋霞, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析[J]. 草业学报, 2022, 31(7): 111-121. |
[10] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[11] | 杨兴云, 乔丹丹, 张雅洁, 王少青, 任俊才, 李明阳, 屈明好, 尚盼盼, 杨成, 黄琳凯, 曾兵. 鸭茅响应水淹胁迫的miRNA差异表达分析[J]. 草业学报, 2022, 31(6): 150-162. |
[12] | 刘亚男, 于人杰, 高燕丽, 康俊梅, 杨青川, 武志海, 王珍. 蒺藜苜蓿膜联蛋白MtANN2基因的表达模式及盐胁迫下的功能分析[J]. 草业学报, 2022, 31(5): 124-134. |
[13] | 高莉娟, 张正社, 文裕, 宗西方, 闫启, 卢丽燕, 易显凤, 张吉宇. 象草全基因组bHLH转录因子家族鉴定及表达分析[J]. 草业学报, 2022, 31(3): 47-59. |
[14] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[15] | 张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||