草业学报 ›› 2023, Vol. 32 ›› Issue (10): 200-225.DOI: 10.11686/cyxb2023007
• 综合评述 • 上一篇
陶奇波1(), 郄西虎1(), 张倩1, 高宇轩1, 张亚锜1, 张瑞真2, 陈晓菲1, 牛天秀1, 孙小同2, 聂宇婷1, 刘雅如1, 胡珈齐1, 钟尚志1, 孙娟1()
收稿日期:
2023-01-05
修回日期:
2023-03-09
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
孙娟
作者简介:
E-mail: sunjuan@qau.edu.cn基金资助:
Qi-bo TAO1(), Xi-hu QIE1(), Qian ZHANG1, Yu-xuan GAO1, Ya-qi ZHANG1, Rui-zhen ZHANG2, Xiao-fei CHEN1, Tian-xiu NIU1, Xiao-tong SUN2, Yu-ting NIE1, Ya-ru LIU1, Jia-qi HU1, Shang-zhi ZHONG1, Juan SUN1()
Received:
2023-01-05
Revised:
2023-03-09
Online:
2023-10-20
Published:
2023-07-26
Contact:
Juan SUN
摘要:
高质量的牧草种子是我国草牧业发展和生态改良的物质基础。种子活力是评价种子质量的重要方面。高效的牧草种子活力评价方法可筛选出高质量种批用于人工草地建植与天然草地改良,对保障国家食物与生态安全具有重要意义。国内外学者已就牧草种子活力评价的不同方法及其与田间出苗生产表现之间的联系开展了众多研究。本研究就牧草种子活力的概念及评价方法进行综述,重点从牧草种子物理性状、萌发特征与幼苗生长、逆境试验、生理生化指标、计算机与光学成像新技术等几个方面,论述其测定原理和在牧草种子活力评价上的应用现状,并提出未来的研究展望。以期为下一阶段牧草种子活力基础研究与测定提供重要理论依据与参考。
陶奇波, 郄西虎, 张倩, 高宇轩, 张亚锜, 张瑞真, 陈晓菲, 牛天秀, 孙小同, 聂宇婷, 刘雅如, 胡珈齐, 钟尚志, 孙娟. 牧草种子活力评价方法研究进展[J]. 草业学报, 2023, 32(10): 200-225.
Qi-bo TAO, Xi-hu QIE, Qian ZHANG, Yu-xuan GAO, Ya-qi ZHANG, Rui-zhen ZHANG, Xiao-fei CHEN, Tian-xiu NIU, Xiao-tong SUN, Yu-ting NIE, Ya-ru LIU, Jia-qi HU, Shang-zhi ZHONG, Juan SUN. Research progress on vigor estimation for forage seeds[J]. Acta Prataculturae Sinica, 2023, 32(10): 200-225.
科 Family | 物种 Species | 参考文献 References | 科 Family | 物种 Species | 参考文献 References |
---|---|---|---|---|---|
豆科 Leguminosae | 紫花苜蓿M. sativa | [ | 禾本科 Poaceae | 多年生黑麦草L. perenne | [ |
鹰嘴紫云英Astragalus cicer | [ | 羊草L. chinensis | [ | ||
镰荚紫云英Astragalus falcatus | [ | 柳枝稷Panicum virgatum | [ | ||
箭筈豌豆V. sativa | [ | 鸭茅Dactylis glomerata | [ | ||
百脉根L. corniculatus | [ | 新麦草Psathyrostachys juncea | [ | ||
红豆草Onobrychis viciifolia | [ | 中间偃麦草Thinopyrum intermedium | [ | ||
黄花草木樨M. officinalis | [ | 沙生冰草Agropyron desertorum | [ | ||
白三叶Trifolium repens | [ | 紫羊茅Festuca rubra | [ | ||
红三叶T. pratense | [ | 草地早熟禾Poa pratensis | [ | ||
埃及三叶Trifolium alexandrium | [ | 燕麦Avena sativa | [ | ||
绛车轴草T. incarnatum | [ | 狗牙根Cyndon dactylon | [ | ||
地三叶Trifolium subterraneum | [ | 无芒雀麦Bromus inermis | [ | ||
鹰嘴豆Cicer arietinum | [ | 高羊茅Festuca arundinacea | [ | ||
兵豆Lens culinaris | [ | 多花黑麦草Lolium multiflorum | [ | ||
野牛草Buchloe dactyloides | [ | ||||
蓝刚草Sorghastrum nutans | [ | ||||
无芒冰草Agropyron inerme | [ | ||||
美洲蒺藜草Cenchrus ciliaris | [ |
表1 种子大小和重量应用于牧草种子活力评价的物种相关信息
Table 1 Research carried out to apply seed size and mass to estimate seed vigor of forage species
科 Family | 物种 Species | 参考文献 References | 科 Family | 物种 Species | 参考文献 References |
---|---|---|---|---|---|
豆科 Leguminosae | 紫花苜蓿M. sativa | [ | 禾本科 Poaceae | 多年生黑麦草L. perenne | [ |
鹰嘴紫云英Astragalus cicer | [ | 羊草L. chinensis | [ | ||
镰荚紫云英Astragalus falcatus | [ | 柳枝稷Panicum virgatum | [ | ||
箭筈豌豆V. sativa | [ | 鸭茅Dactylis glomerata | [ | ||
百脉根L. corniculatus | [ | 新麦草Psathyrostachys juncea | [ | ||
红豆草Onobrychis viciifolia | [ | 中间偃麦草Thinopyrum intermedium | [ | ||
黄花草木樨M. officinalis | [ | 沙生冰草Agropyron desertorum | [ | ||
白三叶Trifolium repens | [ | 紫羊茅Festuca rubra | [ | ||
红三叶T. pratense | [ | 草地早熟禾Poa pratensis | [ | ||
埃及三叶Trifolium alexandrium | [ | 燕麦Avena sativa | [ | ||
绛车轴草T. incarnatum | [ | 狗牙根Cyndon dactylon | [ | ||
地三叶Trifolium subterraneum | [ | 无芒雀麦Bromus inermis | [ | ||
鹰嘴豆Cicer arietinum | [ | 高羊茅Festuca arundinacea | [ | ||
兵豆Lens culinaris | [ | 多花黑麦草Lolium multiflorum | [ | ||
野牛草Buchloe dactyloides | [ | ||||
蓝刚草Sorghastrum nutans | [ | ||||
无芒冰草Agropyron inerme | [ | ||||
美洲蒺藜草Cenchrus ciliaris | [ |
萌发指标 Germination characteristics | 物种 Species | 种批数量Seed lots (No.) | 温度 Temperature (℃) | 萌发标准 Criteria of germination | 决定系数 Coefficient of determination (R2) | 显著性 Significance (P) | 参考 文献 References |
---|---|---|---|---|---|---|---|
MGT | 紫花苜蓿M. sativa | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.780 | <0.01 | [ |
紫云英A. sinicus | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.832 | <0.001 | [ | |
鹰嘴豆C. arietinum | 11 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.516 | <0.05 | [ | |
黑吉豆Vigna mungo | 10 | — | 胚根≥2 mm Radicle≥2 mm | 0.828 | <0.05 | [ | |
瓜尔豆Cyamopsis tetragonoloba | 10 | 25 | 胚根≥2 mm Radicle≥2 mm | 0.889 | <0.01 | [ | |
箭筈豌豆V. sativa | 8 | 20 | 正常苗Normal seedling | — | — | [ | |
多花黑麦草L. multiflorum | 4 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.998 | <0.01 | [ | |
白三叶T. repens | 10 | 20 | 正常苗 Normal seedling | 0.555 | <0.05 | [ | |
红三叶T. pratense | 4 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.756 | — | [ | |
家独行菜Lepidium sativum | 10 | 20 | 正常苗Normal seedling | 0.681 | <0.01 | [ | |
大麦Hordeum vulgare | 10 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.530 | <0.01 | [ | |
燕麦A. sativa | 3 3 | 20 20 | 胚根≥2 mm Radicle≥2 mm 胚根≥2 mm Radicle≥2 mm | 0.989 0.998 | — <0.05 | [ [ | |
MJGT | 紫花苜蓿M. sativa | 14 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.800 | <0.001 | [ |
燕麦A. sativa | 3 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.991 | — | [ | |
15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.917 | — | [ | ||
15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.522 | <0.01 | [ | ||
3 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.999 | <0.05 | [ | ||
垂穗披碱草E. nutans | 15 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.660 | <0.01 | [ | |
大麦H. vulgare | 10 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.790 | <0.01 | [ | |
瓜尔豆C. tetragonoloba | 10 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.904 | <0.01 | [ | |
黑吉豆V. mungo | 10 | — | 胚根≥1 mm Radicle≥1 mm | 0.908 | <0.01 | [ | |
多花黑麦草L. multiflorum | 4 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.913 | <0.05 | [ | |
GI | 草地早熟禾P. pratensis | 2 | — | 正常苗Normal seedling | — | — | [ |
俄罗斯新麦草Elymus junceus | 12 | — | 正常苗Normal seedling | 0.219 | — | [ | |
红三叶T. pratense | 6 | 20 | 胚根≥2 mm Radicle≥2 mm | — | — | [ | |
绛车轴草T. incarnatum | 5 | 21 | 正常苗Normal seedling | — | — | [ | |
光叶紫花苕Vicia benghalensis | 27 | 20 | 正常苗Normal seedling | 0.461 | <0.01 | [ | |
猫尾草Phleum pratense | 6 | 20<=>25 | 苗长≥2 mm Shoot≥2 mm | — | — | [ | |
老芒麦Elymus sibiricus | 7 | 25 | 正常苗Normal seedling | 0.520 | — | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.826 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.925 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.958 | <0.01 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.903 | <0.01 | [ | |
羊草L. chinensis | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.755 | <0.05 | [ | |
苏丹草Sorghum sudanense | 34 | 20<=>30 | 正常苗Normal seedling | 0.560 | <0.01 | [ | |
GE | 紫花苜蓿M. sativa | 30 | 20 | 正常苗Normal seedling | 0.511 | <0.01 | [ |
光叶紫花苕V. benghalensis | 15 | 20 | 正常苗Normal seedling | 0.893 | <0.01 | [ | |
苏丹草S. sudanense | 34 | 20<=>30 | 正常苗Normal seedling | 0.628 | <0.01 | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.865 | <0.01 | [ | |
羊草L. chinensis | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.702 | <0.05 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.870 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.956 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.978 | <0.01 | [ | |
青稞Hordeum vulgare | 4 | 20 | 正常苗Normal seedling | 0.578 | <0.01 | [ | |
VI | 紫花苜蓿M. sativa | 9 | 20 | 正常苗Normal seedling | 0.492 | <0.05 | [ |
青稞H. vulgare | 4 | 20 | 正常苗Normal seedling | 0.810 | <0.01 | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.757 | <0.01 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.684 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.852 | <0.01 | [ | |
苏丹草S. sudanense | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.978 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.925 | <0.01 | [ |
表2 种子萌发相关指标用于牧草种子活力评价的物种、萌发温度以及萌发标准等信息
Table 2 Information on application of seed germination characteristics on forage seed vigor estimation: Species, germination temperature and criteria of germination
萌发指标 Germination characteristics | 物种 Species | 种批数量Seed lots (No.) | 温度 Temperature (℃) | 萌发标准 Criteria of germination | 决定系数 Coefficient of determination (R2) | 显著性 Significance (P) | 参考 文献 References |
---|---|---|---|---|---|---|---|
MGT | 紫花苜蓿M. sativa | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.780 | <0.01 | [ |
紫云英A. sinicus | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.832 | <0.001 | [ | |
鹰嘴豆C. arietinum | 11 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.516 | <0.05 | [ | |
黑吉豆Vigna mungo | 10 | — | 胚根≥2 mm Radicle≥2 mm | 0.828 | <0.05 | [ | |
瓜尔豆Cyamopsis tetragonoloba | 10 | 25 | 胚根≥2 mm Radicle≥2 mm | 0.889 | <0.01 | [ | |
箭筈豌豆V. sativa | 8 | 20 | 正常苗Normal seedling | — | — | [ | |
多花黑麦草L. multiflorum | 4 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.998 | <0.01 | [ | |
白三叶T. repens | 10 | 20 | 正常苗 Normal seedling | 0.555 | <0.05 | [ | |
红三叶T. pratense | 4 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.756 | — | [ | |
家独行菜Lepidium sativum | 10 | 20 | 正常苗Normal seedling | 0.681 | <0.01 | [ | |
大麦Hordeum vulgare | 10 | 20 | 胚根≥2 mm Radicle≥2 mm | 0.530 | <0.01 | [ | |
燕麦A. sativa | 3 3 | 20 20 | 胚根≥2 mm Radicle≥2 mm 胚根≥2 mm Radicle≥2 mm | 0.989 0.998 | — <0.05 | [ [ | |
MJGT | 紫花苜蓿M. sativa | 14 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.800 | <0.001 | [ |
燕麦A. sativa | 3 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.991 | — | [ | |
15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.917 | — | [ | ||
15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.522 | <0.01 | [ | ||
3 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.999 | <0.05 | [ | ||
垂穗披碱草E. nutans | 15 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.660 | <0.01 | [ | |
大麦H. vulgare | 10 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.790 | <0.01 | [ | |
瓜尔豆C. tetragonoloba | 10 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.904 | <0.01 | [ | |
黑吉豆V. mungo | 10 | — | 胚根≥1 mm Radicle≥1 mm | 0.908 | <0.01 | [ | |
多花黑麦草L. multiflorum | 4 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 0.913 | <0.05 | [ | |
GI | 草地早熟禾P. pratensis | 2 | — | 正常苗Normal seedling | — | — | [ |
俄罗斯新麦草Elymus junceus | 12 | — | 正常苗Normal seedling | 0.219 | — | [ | |
红三叶T. pratense | 6 | 20 | 胚根≥2 mm Radicle≥2 mm | — | — | [ | |
绛车轴草T. incarnatum | 5 | 21 | 正常苗Normal seedling | — | — | [ | |
光叶紫花苕Vicia benghalensis | 27 | 20 | 正常苗Normal seedling | 0.461 | <0.01 | [ | |
猫尾草Phleum pratense | 6 | 20<=>25 | 苗长≥2 mm Shoot≥2 mm | — | — | [ | |
老芒麦Elymus sibiricus | 7 | 25 | 正常苗Normal seedling | 0.520 | — | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.826 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.925 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.958 | <0.01 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.903 | <0.01 | [ | |
羊草L. chinensis | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.755 | <0.05 | [ | |
苏丹草Sorghum sudanense | 34 | 20<=>30 | 正常苗Normal seedling | 0.560 | <0.01 | [ | |
GE | 紫花苜蓿M. sativa | 30 | 20 | 正常苗Normal seedling | 0.511 | <0.01 | [ |
光叶紫花苕V. benghalensis | 15 | 20 | 正常苗Normal seedling | 0.893 | <0.01 | [ | |
苏丹草S. sudanense | 34 | 20<=>30 | 正常苗Normal seedling | 0.628 | <0.01 | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.865 | <0.01 | [ | |
羊草L. chinensis | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.702 | <0.05 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.870 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.956 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.978 | <0.01 | [ | |
青稞Hordeum vulgare | 4 | 20 | 正常苗Normal seedling | 0.578 | <0.01 | [ | |
VI | 紫花苜蓿M. sativa | 9 | 20 | 正常苗Normal seedling | 0.492 | <0.05 | [ |
青稞H. vulgare | 4 | 20 | 正常苗Normal seedling | 0.810 | <0.01 | [ | |
燕麦A. sativa | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.757 | <0.01 | [ | |
高羊茅F. arundinacea | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.684 | <0.01 | [ | |
多年生黑麦草L. perenne | 7 | 20 | 胚根突出种皮Radicle broke through the seed coat | 0.852 | <0.01 | [ | |
苏丹草S. sudanense | 7 | 20<=>30 | 胚根突出种皮Radicle broke through the seed coat | 0.978 | <0.01 | [ | |
垂穗披碱草E. nutans | 7 | 25 | 胚根突出种皮Radicle broke through the seed coat | 0.925 | <0.01 | [ |
物种 Species | 种批 数量 Seed lots (No.) | 温度 Temperature (℃) | 胚根突出标准 Criteria of radicle emergence | 统计时间点Timing for radicle emergence count | 决定系数 Coefficient of determination (R2) | 显著性 Signifiance (P) | 参考 文献 References |
---|---|---|---|---|---|---|---|
紫花苜蓿M. sativa | 10 6 | 20 20 | 胚根>2 mm Radicle>2 mm 胚根≥2 mm Radicle≥2 mm | 24 h/28 h 24 h | — 0.860 | — <0.01 | [ [ |
紫云英A. sinicus | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 20 h | 0.866 | <0.001 | [ |
鹰嘴豆C. arietinum | 11 | 20 | 胚根≥2 mm Radicle≥2 mm | 48 h | 0.764 | <0.001 | [ |
黑吉豆V. mungo | 10 | — | 胚根≥2 mm Radicle≥2 mm | 28 h | 0.924 | <0.01 | [ |
百脉根L. corniculatus | 10 | 5 | 胚根≥1 mm Radicle≥1 mm | 7 d | 0.922 | <0.01 | [ |
瓜尔豆C. tetragonoloba | 10 | 25 | 胚根≥2 mm Radicle≥2 mm | 32 h | 0.880 | <0.01 | [ |
燕麦A. sativa | 15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 52 h | 0.628 | <0.01 | [ |
冷地早熟禾Poa crymophila | 7 | 15<=>25 | 胚根≥2 mm Radicle≥2 mm | 6 d | 0.605 | <0.05 | [ |
披碱草Elymus dahuricus | 9 | 20<=>30 | 胚根≥2 mm Radicle≥2 mm | 108 h | 0.672 | <0.05 | [ |
垂穗披碱草E. nutans | 15 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 76 h | 0.656 | <0.01 | [ |
6 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 76 h | — | — | [ | |
大麦H. vulgare | 10 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 36 h | 0.693 | <0.05 | [ |
美洲狼尾草Pennisetum glaucum | 2 | 25 | 胚根≥2 mm Radicle≥2 mm | 32 h | — | — | [ |
中华羊茅F. sinensis | 12 | 15<=>25 | 胚根≥2 mm Radicle≥2 mm | 88 h | 0.607 | <0.05 | [ |
家独行菜L. sativum | 10 | 20 | 胚根≥2 mm Radicle≥2 mm | 24 h | 0.863 | <0.001 | [ |
芝麻菜Eruca sativa | 12 | 20 | 胚根≥2 mm Radicle≥2 mm | 24 h | 0.752 | <0.001 | [ |
表3 应用胚根突出法评价牧草种子活力的试验温度、胚根突出标准以及统计时间点等试验条件相关信息
Table 3 Research establishing conditions to apply the radicle emergence test to estimate seed vigor of forage species: Temperature, criteria of radicle emergence, and timing for radicle emergence count
物种 Species | 种批 数量 Seed lots (No.) | 温度 Temperature (℃) | 胚根突出标准 Criteria of radicle emergence | 统计时间点Timing for radicle emergence count | 决定系数 Coefficient of determination (R2) | 显著性 Signifiance (P) | 参考 文献 References |
---|---|---|---|---|---|---|---|
紫花苜蓿M. sativa | 10 6 | 20 20 | 胚根>2 mm Radicle>2 mm 胚根≥2 mm Radicle≥2 mm | 24 h/28 h 24 h | — 0.860 | — <0.01 | [ [ |
紫云英A. sinicus | 14 | 20 | 胚根≥2 mm Radicle≥2 mm | 20 h | 0.866 | <0.001 | [ |
鹰嘴豆C. arietinum | 11 | 20 | 胚根≥2 mm Radicle≥2 mm | 48 h | 0.764 | <0.001 | [ |
黑吉豆V. mungo | 10 | — | 胚根≥2 mm Radicle≥2 mm | 28 h | 0.924 | <0.01 | [ |
百脉根L. corniculatus | 10 | 5 | 胚根≥1 mm Radicle≥1 mm | 7 d | 0.922 | <0.01 | [ |
瓜尔豆C. tetragonoloba | 10 | 25 | 胚根≥2 mm Radicle≥2 mm | 32 h | 0.880 | <0.01 | [ |
燕麦A. sativa | 15 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 52 h | 0.628 | <0.01 | [ |
冷地早熟禾Poa crymophila | 7 | 15<=>25 | 胚根≥2 mm Radicle≥2 mm | 6 d | 0.605 | <0.05 | [ |
披碱草Elymus dahuricus | 9 | 20<=>30 | 胚根≥2 mm Radicle≥2 mm | 108 h | 0.672 | <0.05 | [ |
垂穗披碱草E. nutans | 15 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 76 h | 0.656 | <0.01 | [ |
6 | 25 | 胚根刚突破种皮Radicle just broke through the seed coat | 76 h | — | — | [ | |
大麦H. vulgare | 10 | 20 | 胚根刚突破种皮Radicle just broke through the seed coat | 36 h | 0.693 | <0.05 | [ |
美洲狼尾草Pennisetum glaucum | 2 | 25 | 胚根≥2 mm Radicle≥2 mm | 32 h | — | — | [ |
中华羊茅F. sinensis | 12 | 15<=>25 | 胚根≥2 mm Radicle≥2 mm | 88 h | 0.607 | <0.05 | [ |
家独行菜L. sativum | 10 | 20 | 胚根≥2 mm Radicle≥2 mm | 24 h | 0.863 | <0.001 | [ |
芝麻菜Eruca sativa | 12 | 20 | 胚根≥2 mm Radicle≥2 mm | 24 h | 0.752 | <0.001 | [ |
物种Species | 老化温度Ageing temperature (℃) | 老化时间Ageing time | 参考文献References |
---|---|---|---|
老芒麦E. sibiricus | 45 | 2 d | [ |
42 | 5 d | [ | |
柳枝稷P. virgatum | 45 | 4 d | [ |
燕麦A. sativa | 42 42 | 36 h 2 d | [ [ |
裸燕麦Avena nuda | 42 | 3 d | [ |
糙伏毛燕麦Avena strigosa | 41 | 1 d | [ |
草地早熟禾P. pratensis | 44 | 60 h | [ |
冷地早熟禾P. crymophila | 42 | 1 d | [ |
鸭茅D. glomerata | 45 | 84 h | [ |
狗牙根C. dactylon | 41 | 2 d | [ |
匍匐翦股颖Agrostis stolonifera | 43 | 3 d | [ |
无芒雀麦B. inermis | 45 | 3 d | [ |
海滨雀稗Paspalum vaginatum | 41 | 60 h | [ |
高羊茅F. arundinacea | 40 45 | 3 d 36 h | [ [ |
藜麦Chenopodium quinoa | 41 | 2 d | [ |
纳罗克非洲狗尾草Setaria sphacelata | 40 | 4 d | [ |
洋狗尾草Cynosurus cristatus | 42 | 4 d | [ |
加拿大披碱草Elymus canadensis | 42 | 5 d | [ |
蓝茎冰草Agropyrom smithii | 45 | 5 d | [ |
新麦草P. juncea | 45 45 | 5 d 5 d | [ [ |
多年生黑麦草L. perenne | 43 | 3 d | [ |
多花黑麦草L. multiflorum | 41 | 1 d/2 d | [ |
草地雀麦Bromus biebersteinii | 41 | 8 d | [ |
羊草L. chinensis | 42 | 4 d | [ |
披碱草E. dahuricus | 42 | 4 d | [ |
垂穗披碱草E. nutans | 45 45 | 6 d 4 d | [ [ |
中华羊茅F. sinensis | 42 | 2 d | [ |
草甸羊茅Festuca pratensis | 41 | 3 d | [ |
猫尾草P. pratense | 42 45 | 3 d 56 h | [ [ |
野大麦Hordeum brevisubulatum | 58 | 35 min | [ |
青稞H. vulgare | 42 | 2 d/60 h | [ |
俯仰臂形草Brachiaria decumbens | 43 | 36 h/60 h | [ |
信号草Brachiaria brizantha | 45 | 4 d | [ |
箭筈豌豆V. sativa | 41 39 | 60 h 4 d | [ [ |
绛车轴草T. incarnatum | 40 35 | 3 d 14 d | [ [ |
红三叶T. pratense | 40 40 43~45 | 3 d 3 d 1 d | [ [ [ |
紫花苜蓿M. sativa | 45 42 | 84 h 84 h | [ [ |
红豆草O. viciifolia | 45 | 1 d | [ |
马棘Indigofera pseudotinctoria | 43 | 3 d | [ |
蒙古莸Caryopteris mongholica | 45 | 12 h | [ |
家独行菜L. sativum | 45 | 1 d | [ |
华北驼绒藜Ceratoides arborescens | 40 | 1 d | [ |
柠条锦鸡儿C. korshinskii | 40 | 1 d | [ |
百脉根L. corniculatus | 41 | 18 h | [ |
黑吉豆V. mungo | 40 | 3 d | [ |
甜高粱Sorghum bicolor | 43 | 6 d | [ |
高丹草Sorghum bicolor×Sorghum sudanense | 43 | 60 h | [ |
美洲狼尾草P. glaucum | 41 45 | 1 d/2 d 8 h | [ [ |
狼尾草Pennisetum alopecuroides | 45 | 2 d | [ |
虉草Phalaris arundinacea | 40 | 12 d | [ |
鹰嘴豆C. arietinum | 45 | 3 d | [ |
兵豆L. culinaris | 41 | 2 d | [ |
木豆Cajanus cajan | 40 | 4 d | [ |
克拉豆Cratylia argentea | 41 | 2 d | [ |
表4 人工加速老化法用于牧草种子活力评价的物种、适宜老化温度和时间信息
Table 4 Information on application of accelerated ageing test on forage seed vigor estimation: Species, optimum ageing temperature and time
物种Species | 老化温度Ageing temperature (℃) | 老化时间Ageing time | 参考文献References |
---|---|---|---|
老芒麦E. sibiricus | 45 | 2 d | [ |
42 | 5 d | [ | |
柳枝稷P. virgatum | 45 | 4 d | [ |
燕麦A. sativa | 42 42 | 36 h 2 d | [ [ |
裸燕麦Avena nuda | 42 | 3 d | [ |
糙伏毛燕麦Avena strigosa | 41 | 1 d | [ |
草地早熟禾P. pratensis | 44 | 60 h | [ |
冷地早熟禾P. crymophila | 42 | 1 d | [ |
鸭茅D. glomerata | 45 | 84 h | [ |
狗牙根C. dactylon | 41 | 2 d | [ |
匍匐翦股颖Agrostis stolonifera | 43 | 3 d | [ |
无芒雀麦B. inermis | 45 | 3 d | [ |
海滨雀稗Paspalum vaginatum | 41 | 60 h | [ |
高羊茅F. arundinacea | 40 45 | 3 d 36 h | [ [ |
藜麦Chenopodium quinoa | 41 | 2 d | [ |
纳罗克非洲狗尾草Setaria sphacelata | 40 | 4 d | [ |
洋狗尾草Cynosurus cristatus | 42 | 4 d | [ |
加拿大披碱草Elymus canadensis | 42 | 5 d | [ |
蓝茎冰草Agropyrom smithii | 45 | 5 d | [ |
新麦草P. juncea | 45 45 | 5 d 5 d | [ [ |
多年生黑麦草L. perenne | 43 | 3 d | [ |
多花黑麦草L. multiflorum | 41 | 1 d/2 d | [ |
草地雀麦Bromus biebersteinii | 41 | 8 d | [ |
羊草L. chinensis | 42 | 4 d | [ |
披碱草E. dahuricus | 42 | 4 d | [ |
垂穗披碱草E. nutans | 45 45 | 6 d 4 d | [ [ |
中华羊茅F. sinensis | 42 | 2 d | [ |
草甸羊茅Festuca pratensis | 41 | 3 d | [ |
猫尾草P. pratense | 42 45 | 3 d 56 h | [ [ |
野大麦Hordeum brevisubulatum | 58 | 35 min | [ |
青稞H. vulgare | 42 | 2 d/60 h | [ |
俯仰臂形草Brachiaria decumbens | 43 | 36 h/60 h | [ |
信号草Brachiaria brizantha | 45 | 4 d | [ |
箭筈豌豆V. sativa | 41 39 | 60 h 4 d | [ [ |
绛车轴草T. incarnatum | 40 35 | 3 d 14 d | [ [ |
红三叶T. pratense | 40 40 43~45 | 3 d 3 d 1 d | [ [ [ |
紫花苜蓿M. sativa | 45 42 | 84 h 84 h | [ [ |
红豆草O. viciifolia | 45 | 1 d | [ |
马棘Indigofera pseudotinctoria | 43 | 3 d | [ |
蒙古莸Caryopteris mongholica | 45 | 12 h | [ |
家独行菜L. sativum | 45 | 1 d | [ |
华北驼绒藜Ceratoides arborescens | 40 | 1 d | [ |
柠条锦鸡儿C. korshinskii | 40 | 1 d | [ |
百脉根L. corniculatus | 41 | 18 h | [ |
黑吉豆V. mungo | 40 | 3 d | [ |
甜高粱Sorghum bicolor | 43 | 6 d | [ |
高丹草Sorghum bicolor×Sorghum sudanense | 43 | 60 h | [ |
美洲狼尾草P. glaucum | 41 45 | 1 d/2 d 8 h | [ [ |
狼尾草Pennisetum alopecuroides | 45 | 2 d | [ |
虉草Phalaris arundinacea | 40 | 12 d | [ |
鹰嘴豆C. arietinum | 45 | 3 d | [ |
兵豆L. culinaris | 41 | 2 d | [ |
木豆Cajanus cajan | 40 | 4 d | [ |
克拉豆Cratylia argentea | 41 | 2 d | [ |
物种 Species | 老化温度 Ageing temperature (℃) | 老化时间 Ageing time (d) | 参考文献 References | 物种 Species | 老化温度 Ageing temperature (℃) | 老化时间 Ageing time (d) | 参考文献 References |
---|---|---|---|---|---|---|---|
柳枝稷P. virgatum | 45 | 4 | [ | 狗牙根C. dactylon | 45 | 2 | [ |
藜麦C. quinoa | 45 | 3 | [ | 百脉根L. corniculatus | 41 | 2 | [ |
信号草B. brizantha | 45 | 1 | [ | 木豆C. cajan | 45 | 1 | [ |
马齿苋Portulaca oleracea | 41 | 2 | [ | 兵豆L. culinaris | 41 | 2 | [ |
大花马齿苋Portulaca grandiflora | 41 | 2 | [ | 鹰嘴豆C. arietinum | 41 | 2 | [ |
菽麻Crotalaria juncea | 41 | 4 | [ | 甜高粱S. bicolor | 41 | 1 | [ |
多花黑麦草L. multiflorum 埃利奥特画眉草Eragrostis elliottii | 41 45 | 2 4 | [ [ | 籽粒苋A. cruentus | 41 41 | 3 1 | [ [ |
小葵子Guizotia abyssinica | 41 | 1 | [ |
表5 饱和盐溶液加速老化法用于牧草种子活力评价的物种、适宜老化温度和时间信息
Table 5 Information on application of saturated salt accelerated ageing test on forage seed vigor estimation: Species, optimum ageing temperature and time
物种 Species | 老化温度 Ageing temperature (℃) | 老化时间 Ageing time (d) | 参考文献 References | 物种 Species | 老化温度 Ageing temperature (℃) | 老化时间 Ageing time (d) | 参考文献 References |
---|---|---|---|---|---|---|---|
柳枝稷P. virgatum | 45 | 4 | [ | 狗牙根C. dactylon | 45 | 2 | [ |
藜麦C. quinoa | 45 | 3 | [ | 百脉根L. corniculatus | 41 | 2 | [ |
信号草B. brizantha | 45 | 1 | [ | 木豆C. cajan | 45 | 1 | [ |
马齿苋Portulaca oleracea | 41 | 2 | [ | 兵豆L. culinaris | 41 | 2 | [ |
大花马齿苋Portulaca grandiflora | 41 | 2 | [ | 鹰嘴豆C. arietinum | 41 | 2 | [ |
菽麻Crotalaria juncea | 41 | 4 | [ | 甜高粱S. bicolor | 41 | 1 | [ |
多花黑麦草L. multiflorum 埃利奥特画眉草Eragrostis elliottii | 41 45 | 2 4 | [ [ | 籽粒苋A. cruentus | 41 41 | 3 1 | [ [ |
小葵子Guizotia abyssinica | 41 | 1 | [ |
物种 Species | 种子含水量 Seed moisture content (%) | 劣变温度 Temperature of deterioration (℃) | 劣变时间 Time of deterioration (d) | 参考文献 References |
---|---|---|---|---|
紫花苜蓿M. sativa | 10 | 40 | 1 | [ |
光叶紫花苕V. benghalensis | 10 | 40 | 1 | [ |
苏丹草S. bicolor | 10 | 40 | 1 | [ |
老芒麦E. sibiricus | 10 | 40 | 1 | [ |
高丹草S. bicolor×S. sudanense | 10/12/16 | 45 | 8 | [ |
燕麦A. sativa | 10 | 45 | 24 | [ |
多花黑麦草L. multiflorum | 18~22, 30 | 45 | 1 | [ |
兵豆L. culinaris | 20 24 | 45 45 | 3 2 | [ [ |
红三叶T. pratense | 16 | 45 | 1 | [ |
柳枝稷P. virgatum | 9 | 45 | 3 | [ |
菽麻C. juncea | 24 | 45 | 1 | [ |
表6 控制劣变法用于牧草种子活力评价的物种、种子含水量、适宜劣变温度和时间信息
Table 6 Information on application of controlled deterioration test on forage seed vigor estimation: Species, seed moisture content, optimum deterioration temperature and time
物种 Species | 种子含水量 Seed moisture content (%) | 劣变温度 Temperature of deterioration (℃) | 劣变时间 Time of deterioration (d) | 参考文献 References |
---|---|---|---|---|
紫花苜蓿M. sativa | 10 | 40 | 1 | [ |
光叶紫花苕V. benghalensis | 10 | 40 | 1 | [ |
苏丹草S. bicolor | 10 | 40 | 1 | [ |
老芒麦E. sibiricus | 10 | 40 | 1 | [ |
高丹草S. bicolor×S. sudanense | 10/12/16 | 45 | 8 | [ |
燕麦A. sativa | 10 | 45 | 24 | [ |
多花黑麦草L. multiflorum | 18~22, 30 | 45 | 1 | [ |
兵豆L. culinaris | 20 24 | 45 45 | 3 2 | [ [ |
红三叶T. pratense | 16 | 45 | 1 | [ |
柳枝稷P. virgatum | 9 | 45 | 3 | [ |
菽麻C. juncea | 24 | 45 | 1 | [ |
物种 Species | 浸种温度 Seed soaking temperature (℃) | 浸种时间 Seed soaking time (h) | 每重复用种数量Number of seed per replication | 每重复水体积 Volume of water per replication (mL) | 参考 文献 References | 备注 Notes |
---|---|---|---|---|---|---|
紫花苜蓿M. sativa | 20 20 20 | 24 24 4 | 100 0.5 g 0.5 g | 100 100 100 | [ [ [ | — — — |
百脉根L. corniculatus | 20 | 24 | 100 | 250 | [ | — |
鹰嘴豆C. arietinum | 20 25 | 24 24 | 50 50 | 250 150 | [ [ | — — |
沙打旺Astragalus adsurgens | 20 | 24 | 0.5 g | 100 | [ | — |
紫云英A. sinicus | 20 | 24 | 500 | 100 | [ | — |
光叶紫花苕V. benghalensis | 20 | 24 | 50 | 100 | [ | — |
瓜尔豆C. tetragonoloba | 室温Room temperature | 8 | 25 | 25 | [ | — |
菽麻C. juncea | 25 | 4/8 | 50 | 75 | [ | — |
家独行菜L. sativum | 20 | 16 | 50 | 40 | [ | — |
芝麻菜E. sativa | 20 | 24 | 50 | 40 | [ | — |
箭筈豌豆V. sativa | 20 20 | 24 24 | 50 50 | 100 250 | [ [ | — — |
广布野豌豆Vicia cracca | 20 | 24 | 100 | 100 | [ | — |
白三叶T. repens | 25 | 6 | 50 | 75 | [ | — |
红三叶T. pratense | 室温Room temperature | 6 | 0.3 g | 10 | [ | — |
绛车轴草T. incarnatum | 30 | 0.5 | 5 g | 30 | [ | — |
信号草B. brizantha | 25 | 2/4 | 1.5 mL | 75 | [ | — |
燕麦A. sativa | 20 | 24 | 50 | 100 | [ | — |
柳枝稷P. virgatum | 20 | 24 | 50 | 100 | [ | — |
冷地早熟禾P. crymophila | 20 | 24 | 100 | 100 | [ | — |
高羊茅F. arundinacea | 20 | 24 | 50 | 150 | [ | — |
新麦草P. juncea | 20 | 24 | 50 | 150 | [ | — |
扁穗冰草Agropyron cristatum | 20 | 24 | 50 | 30 | [ | — |
高丹草S. bicolor × S. sudanense | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
多年生黑麦草L. perenne | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
垂穗披碱草E. nutans | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
羊草L. chinensis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
中华羊茅F. sinensis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
无芒雀麦B. inermis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
苏丹草S. sudanense | 20 | 24 | 100 | 100 | [ | 刺破种皮Seed coat pierced |
老芒麦E. sibiricus | 20 | 24 | 100 | 100 | [ | 刺破种皮Seed coat pierced |
青稞H. vulgare | 20 | 24 | 50 | 200 | [ | 种子横切Seed crosscut |
稷Panicum miliaceum | 20 | 24 | 50 | 100 | [ | — |
兵豆L. culinaris | 20 | 24 | 50 | 250 | [ | — |
苦马豆Swainsonia salsula | 20 | 6 | 30 | 25 | [ | — |
披针叶野决明Thermopsis lanceolate | 20 | 6 | 30 | 25 | [ | — |
羊柴Hedysarum leave | 20 | 24 | 50 | 200 | [ | — |
白花草木樨Melilotus albus | 20 | 24 | 100 | 100 | [ | — |
草木樨Melilotus suaveolens | 20 | 24 | 50 | 30 | [ | — |
蓝花棘豆Oxytropis coerulea | 25 | 2 | 40 | 6 | [ | — |
罗布麻Apocynum venetum | 20 | 24 | 0.1 g | 30 | [ | — |
扁蓿豆Medicago ruthenica | 20 | 24 | 50 | 80 | [ | — |
蒙古黄芪Astragalus membranaceus | 室温Room temperature | 2 | 0.2 g | 50 | [ | — |
西北黄芪Astragalus fenzelianus | — | 24 | 30 | 30 | [ | — |
山野豌豆Vicia amoena | — | 24 | 30 | 30 | [ | — |
多花木蓝 Indigofera amblyantha | 20 | 6 | 50 | 30 | [ | — |
二色胡枝子 Lespedeza bicolor | 20 | 6 | 50 | 30 | [ | — |
伏地肤Kochia prostrata | 22~24 | 3~4 | 50 | 5 | [ | — |
红豆草O. viciifolia | 22~24 | 15~16 | 10 | 5 | [ | — |
多叶鹅观草Roegneria foliosa | 22~24 | 23~24 | 20 | 5 | [ | — |
菊苣Cichorium intybus | 20 | 24 | 50 | 200 | [ | — |
表7 电导率法用于牧草种子活力评价的物种、浸种温度、浸种时间、每重复用种数量以及每重复用水体积等信息
Table 7 Information on application of electrical conductivity test on forage seed vigor estimation: Species, seed soaking temperature, seed soaking time, number of seed per replication, and volume of water per replication
物种 Species | 浸种温度 Seed soaking temperature (℃) | 浸种时间 Seed soaking time (h) | 每重复用种数量Number of seed per replication | 每重复水体积 Volume of water per replication (mL) | 参考 文献 References | 备注 Notes |
---|---|---|---|---|---|---|
紫花苜蓿M. sativa | 20 20 20 | 24 24 4 | 100 0.5 g 0.5 g | 100 100 100 | [ [ [ | — — — |
百脉根L. corniculatus | 20 | 24 | 100 | 250 | [ | — |
鹰嘴豆C. arietinum | 20 25 | 24 24 | 50 50 | 250 150 | [ [ | — — |
沙打旺Astragalus adsurgens | 20 | 24 | 0.5 g | 100 | [ | — |
紫云英A. sinicus | 20 | 24 | 500 | 100 | [ | — |
光叶紫花苕V. benghalensis | 20 | 24 | 50 | 100 | [ | — |
瓜尔豆C. tetragonoloba | 室温Room temperature | 8 | 25 | 25 | [ | — |
菽麻C. juncea | 25 | 4/8 | 50 | 75 | [ | — |
家独行菜L. sativum | 20 | 16 | 50 | 40 | [ | — |
芝麻菜E. sativa | 20 | 24 | 50 | 40 | [ | — |
箭筈豌豆V. sativa | 20 20 | 24 24 | 50 50 | 100 250 | [ [ | — — |
广布野豌豆Vicia cracca | 20 | 24 | 100 | 100 | [ | — |
白三叶T. repens | 25 | 6 | 50 | 75 | [ | — |
红三叶T. pratense | 室温Room temperature | 6 | 0.3 g | 10 | [ | — |
绛车轴草T. incarnatum | 30 | 0.5 | 5 g | 30 | [ | — |
信号草B. brizantha | 25 | 2/4 | 1.5 mL | 75 | [ | — |
燕麦A. sativa | 20 | 24 | 50 | 100 | [ | — |
柳枝稷P. virgatum | 20 | 24 | 50 | 100 | [ | — |
冷地早熟禾P. crymophila | 20 | 24 | 100 | 100 | [ | — |
高羊茅F. arundinacea | 20 | 24 | 50 | 150 | [ | — |
新麦草P. juncea | 20 | 24 | 50 | 150 | [ | — |
扁穗冰草Agropyron cristatum | 20 | 24 | 50 | 30 | [ | — |
高丹草S. bicolor × S. sudanense | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
多年生黑麦草L. perenne | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
垂穗披碱草E. nutans | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
羊草L. chinensis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
中华羊茅F. sinensis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
无芒雀麦B. inermis | 20 | 24 | 50 | 100 | [ | 刺破种皮Seed coat pierced |
苏丹草S. sudanense | 20 | 24 | 100 | 100 | [ | 刺破种皮Seed coat pierced |
老芒麦E. sibiricus | 20 | 24 | 100 | 100 | [ | 刺破种皮Seed coat pierced |
青稞H. vulgare | 20 | 24 | 50 | 200 | [ | 种子横切Seed crosscut |
稷Panicum miliaceum | 20 | 24 | 50 | 100 | [ | — |
兵豆L. culinaris | 20 | 24 | 50 | 250 | [ | — |
苦马豆Swainsonia salsula | 20 | 6 | 30 | 25 | [ | — |
披针叶野决明Thermopsis lanceolate | 20 | 6 | 30 | 25 | [ | — |
羊柴Hedysarum leave | 20 | 24 | 50 | 200 | [ | — |
白花草木樨Melilotus albus | 20 | 24 | 100 | 100 | [ | — |
草木樨Melilotus suaveolens | 20 | 24 | 50 | 30 | [ | — |
蓝花棘豆Oxytropis coerulea | 25 | 2 | 40 | 6 | [ | — |
罗布麻Apocynum venetum | 20 | 24 | 0.1 g | 30 | [ | — |
扁蓿豆Medicago ruthenica | 20 | 24 | 50 | 80 | [ | — |
蒙古黄芪Astragalus membranaceus | 室温Room temperature | 2 | 0.2 g | 50 | [ | — |
西北黄芪Astragalus fenzelianus | — | 24 | 30 | 30 | [ | — |
山野豌豆Vicia amoena | — | 24 | 30 | 30 | [ | — |
多花木蓝 Indigofera amblyantha | 20 | 6 | 50 | 30 | [ | — |
二色胡枝子 Lespedeza bicolor | 20 | 6 | 50 | 30 | [ | — |
伏地肤Kochia prostrata | 22~24 | 3~4 | 50 | 5 | [ | — |
红豆草O. viciifolia | 22~24 | 15~16 | 10 | 5 | [ | — |
多叶鹅观草Roegneria foliosa | 22~24 | 23~24 | 20 | 5 | [ | — |
菊苣Cichorium intybus | 20 | 24 | 50 | 200 | [ | — |
1 | Wu Y, Shen Y B, Shi F H. Research progress on transcription factors regulating plant seed development. Biotechnology Bulletin, 2019, 35(11): 150-159. |
吴玉, 沈永宝, 史锋厚. 调控植物种子发育的转录因子研究进展. 生物技术通报, 2019, 35(11): 150-159. | |
2 | Liu J W. Rapid development of the grass seeds career in China. Acta Agrestia Sinica, 2016, 24(3): 483-484. |
刘加文. 大力发展中国草种业. 草地学报, 2016, 24(3): 483-484. | |
3 | Tao Q B, Bai M J, Han Y H, et al. Use of plant growth regulators in forage seed production. Pratacultural Science, 2017, 34(6): 1238-1246. |
陶奇波, 白梦杰, 韩云华, 等. 植物生长调节剂在牧草种子生产中的应用. 草业科学, 2017, 34(6): 1238-1246. | |
4 | Wang M Y, Mao P S. Research advancement on seed production technology of forage grasses in China. Seed, 2012, 31(9): 55-60. |
王明亚, 毛培胜. 中国禾本科牧草种子生产技术研究进展. 种子, 2012, 31(9): 55-60. | |
5 | Nan Z B, Wang Y R, He J S, et al. Achievements, challenges and prospects of herbage seeds industry in China. Acta Prataculturae Sinica, 2022, 31(6): 1-10. |
南志标, 王彦荣, 贺金生, 等. 我国草种业的成就、挑战与展望. 草业学报, 2022, 31(6): 1-10. | |
6 | Lv Y Y. The mechanism of seed deterioration and vigour testing methods for forage species. Lanzhou: Lanzhou University, 2018. |
吕燕燕. 牧草种子劣变的机理及活力检测方法研究. 兰州: 兰州大学, 2018. | |
7 | Yang M S, Zhang Y, Hua Y G. Research on the developing trend of herbage mechanical engineering in our country. Journal of Agricultural Mechanization Research, 2004(1): 14-18. |
杨明韶, 张永, 华玉革. 我国草业机械工程发展趋势的研究. 农机化研究, 2004(1): 14-18. | |
8 | Xu R X, Zhang Y J. The application prospect of forage intercropping in the agricultural region. China Dairy, 2021(8): 3-8. |
许瑞轩, 张英俊. 饲草间混套作在农区的应用前景. 中国乳业, 2021(8): 3-8. | |
9 | Zhao Y R, Wang H S, Wang Q, et al. The suitable variety and mode of cultivating of high grade grass in cattle. China Cattle Science, 2010, 36(1): 88-90. |
赵益荣, 王惠生, 王清, 等. 优质牧草混种及与其他农作物的轮、间、套种的养牛模式. 中国牛业科学, 2010, 36(1): 88-90. | |
10 | Al-Amery M, Geneve R L, Sanches M F, et al. Near-infrared spectroscopy used to predict soybean seed germination and vigour. Seed Science Research, 2018, 28(3): 245-252. |
11 | Xiang Y Y, Li H Z, Zhang T T, et al. Study on early detection of seed vigor of maize and wheat seeds by conductivity method. Journal of China Agricultural University, 2020, 25(6): 12-19. |
向莹莹, 李浩卓, 张婷婷, 等. 电导率法早期检测玉米和小麦种子活力. 中国农业大学学报, 2020, 25(6): 12-19. | |
12 | Wang Y R, Liu Y L, Shen Y X. An evaluation of seed vigour tests for forage species. Acta Prataculturae Sinica, 2001, 10(1): 48-57. |
王彦荣, 刘友良, 沈益新. 牧草种子活力检测技术评述. 草业学报, 2001, 10(1): 48-57. | |
13 | Zhang R L. Seed vigour test of forage species. Chinese Journal of Tropical Agriculture, 2004, 24(4): 53-58. |
张如莲. 牧草种子活力的检测方法. 热带农业科学, 2004, 24(4): 53-58. | |
14 | Gao T T, Li Y, Wang X F, et al. Determination of maize seed vigor by cold-maceration. Molecular Plant Breeding, 2020, 18(23): 7879-7884. |
高婷婷, 李洋, 王秀芬, 等. 基于冷浸法测定玉米种子活力的研究. 分子植物育种, 2020, 18(23): 7879-7884. | |
15 | International Seed Testing Association. International rules for seed testing. Switzerland: Bassersdorf, 2016. |
16 | Sun Q J. Seed semipermeability of several Poaceae species and their relation to seed quality determination. Lanzhou: Lanzhou University, 2018. |
孙秋瑾. 数种禾本科植物种子半透性及其与种子质量测定的关系. 兰州: 兰州大学, 2018. | |
17 | Yan X J. Study on microstructure and location of semi-permeable layer in several grass species seed. Lanzhou: Lanzhou University, 2008. |
颜欣娟. 几种禾草种子显微结构研究与半透层定位. 兰州: 兰州大学, 2008. | |
18 | Luo Y, Lin C, Fu Y Y, et al. Single counts of radicle emergence can be used as a fast method to test seed vigour of indica rice. Seed Science and Technology, 2017, 45(1): 222-229. |
19 | Zhang L J. Studies of priming and drying treatment and chemical regulating substance on enhancement tobacco seeds chilling-tolerance. Urumqi: Xinjiang Agricultural University, 2004. |
张利军. 引发回干和化学调控剂提高烟草种子抗寒性的研究. 乌鲁木齐: 新疆农业大学, 2004. | |
20 | Marcos-Filho J. Seed vigor testing: An overview of the past, present and future perspective. Scientia Agricola, 2015, 72(4): 363-374. |
21 | Isely D. Vigor tests. Proceedings of the Association of Official Seed Analysts, 1957, 47: 176-182. |
22 | Perry D A. Report of the vigour test committee. Seed Science and Technology, 1978, 6: 159-181. |
23 | TeKrony D M, Egli D B. Relationship of seed vigor to crop yield: A review. Crop Science, 1991, 31(3): 816-822. |
24 | Shu Y J, Tao Y, Wang S, et al. Research progress on seed vigor biology of higher plant. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1709-1716. |
舒英杰, 陶源, 王爽, 等. 高等植物种子活力的生物学研究进展. 西北植物学报, 2013, 33(8): 1709-1716. | |
25 | Yu B, Du S G, Luo L P. Progress in determinations of seed vigor. Scientia Sinica Vitae, 2015, 45(7): 709-713. |
余波, 杜尚广, 罗丽萍. 种子活力测定方法. 中国科学: 生命科学, 2015, 45(7): 709-713. | |
26 | Wang Y, Mu C S, Hou Y, et al. Optimum harvest time of Vicia cracca in relation to high seed quality during pod development. Crop Science, 2008, 48(2): 709-715. |
27 | Delouche J C. A preliminary study of methods of separating crimson clover seed on basis of viability. Proceeding Association Official Seed Analysts, 1965, 55: 30-36. |
28 | Stewart G, Carlson J W. The quality of alfalfa seed as affected by color and plumpness. Agronomy Journal, 1932, 24(2): 146-155. |
29 | Xu X M, Lv P H, Zhao Y J, et al. On seed vigor of Astragalus sinicus with different colors through low temperature germination. Journal of Beijing University of Agriculture, 2021, 36(2): 16-19. |
徐小萌, 吕鹏辉, 赵阳佳, 等. 利用低温萌发试验评价不同颜色紫云英种子的活力. 北京农学院学报, 2021, 36(2): 16-19. | |
30 | Zhang Z D, Lu Z J, Lv P H, et al. Study on the relationship of seed color and seed vigor of Melilotus officinalis. Journal of Beijing University of Agriculture, 2020, 35(4): 26-30. |
张震东, 卢子健, 吕鹏辉, 等. 草木樨种子颜色与种子活力的关系研究. 北京农学院学报, 2020, 35(4): 26-30. | |
31 | Pang Y Y, Li T T, Cui Y P. Effect of seed maturity and soak seed in boiling water on seed germination of Lupinus polyphylla. Northern Horticulture, 2011(4): 111-112. |
庞运元, 李婷婷, 崔严葡. 多叶羽扇豆种子成熟度和烫种对发芽的影响. 北方园艺, 2011(4): 111-112. | |
32 | Zhao Y Q, Sudebilige, Tang F, et al. Analysis on germination capacity and vigor with different maturity of Medicago falcata L. seeds. Grassland and Prataculture, 2022, 34(2): 42-45. |
赵永泉, 苏德毕力格, 唐芳, 等. 不同成熟度黄花苜蓿种子发芽力与活力分析. 草原与草业, 2022, 34(2): 42-45. | |
33 | Stanisavljević R, Velijević N, Štrbanović R, et al. Seed quality of vetch (Vicia sativa) affected by different seed colors and sizes after various storage periods. International Journal of Agriculture & Biology, 2018, 20(12): 2655-2660. |
34 | Zou J X, Jin H, Pu R Z, et al. Seed germination and callus induction in Leymus chinensis of different seed colors. Journal of Anhui Agricultural Sciences, 2012, 40(3): 1501-1503. |
邹吉祥, 金华, 朴仁哲, 等. 不同颜色羊草种子对其发芽率及愈伤组织诱导的影响研究. 安徽农业科学, 2012, 40(3): 1501-1503. | |
35 | Lv P H, Zhang Z D, Wang Y, et al. Preliminary study on seed vigor of red clover seeds with different colors. Journal of Agricultural Science and Technology, 2021, 23(3): 58-65. |
吕鹏辉, 张震东, 王晔, 等. 不同颜色红三叶种子活力的初步研究. 中国农业科技导报, 2021, 23(3): 58-65. | |
36 | Atis I, Atak M, Can E, et al. Seed coat color effects on seed quality and salt tolerance of red clover (Trifolium pratense). International Journal of Agriculture & Biology, 2011, 13(3): 363-368. |
37 | Velijević N, Štrbanović R, Poštić D, et al. Effects of seed coat color on the seed quality and initial seedling growth of red clover cultivars (Trifolium pratense). Journal of Processing and Energy in Agriculture, 2017, 21(3): 174-177. |
38 | Ao Y N, Wang J F, Liu M X, et al. Larger seed size shows less germination and seedling growth decline caused by seed ageing under Na2CO3 stress in Leymus chinensis. Agronomy Journal, 2019, 111(5): 2326-2331. |
39 | Smith K F, McFarlane N M, Croft V M, et al. The effects of ploidy and seed mass on the emergence and early vigour of perennial ryegrass (Lolium perenne L.) cultivars. Australian Journal of Experimental Agriculture, 2003, 43(5): 481-486. |
40 | Carleton A E, Cooper C S. Seed size effects upon seedling vigor of three forage legumes. Crop Science, 1972, 12(2): 183-186. |
41 | Cooper C S, Ditterline R L, Welty L E. Seed size and seeding rate effects upon stand density and yield of alfalfa. Agronomy Journal, 1979, 71(1): 83-85. |
42 | McKersie B D, Tomes D T, Yamamoto S. Effect of seed size on germination, seedling vigor, electrolyte leakage, and establishment of bird’s-foot trefoil (Lotus corniculatus L.). Canadian Journal of Plant Science, 1981, 61(2): 337-343. |
43 | Townsend C E. Seedling emergence of yellow-flowered alfalfa as influenced by seed weight and planting depth. Agronomy Journal, 1992, 84(5): 821-826. |
44 | Beveridge J L, Wilsie C P. Influence of depth of planting, seed size, and variety on emergence and seeding vigor in alfalfa. Agronomy Journal, 1959, 51(12): 731-734. |
45 | Erickson L C. Effect of alfalfa seed size and depth of seeding upon the subsequent procurement of stand. Journal of the American Society of Agronomy, 1946, 38(11): 964-973. |
46 | Liang G H L, Riedl W A. Agronomic traits influencing forage and seed yield in alfalfa. Crop Science, 1964, 4(4): 394-396. |
47 | Townsend C E. Associations among seed weight, seedling emergence, and planting depth in cicer milkvetch. Agronomy Journal, 1979, 71(3): 410-414. |
48 | Townsend C E. Influence of seed size and depth of planting on seedling emergence of two milkvetch species. Agronomy Journal, 1972, 64(5): 627-630. |
49 | Qiu J A, Mosjidis J A. Influence of seed weight and planting depth on common vetch establishment and growth. Field Crops Research, 1993, 33(4): 353-366. |
50 | Negri V, Falcinelli M. Influence of seed weight on seedling vigor of two accessions of birdsfoot trefoil (Lotus corniculatus L.). 1. effect on leaf development and shoot growth. Agricoltura Mediterranea, 1990, 120(3): 316-321. |
51 | Twamley B E. Seed size and seedling vigor in birdsfoot trefoil. Canadian Journal of Plant Science, 1967, 47(5): 603-609. |
52 | Henson P R, Tayman L A. Seed weights of varieties of birdsfoot trefoil as affecting seedling growth. Crop Science, 1961, 1(4): 306. |
53 | Fransen S C, Cooper C S. Seed weight effects upon emergence, leaf development and growth of the sainfoin (Onobrychis spp.) seedling. Crop Science, 1976, 16(3): 434-437. |
54 | Mlodzianowsak D, Binek A, Marglewska-Lama B, et al. Effect of pod size on germination ability of sainfoin seed. Zeszyty Naukowe Akademii Rolniczey w Krakowie-Rolnictwo, 1977, 130(17): 105-121. |
55 | Haskins F A, Gorz H J. Influence of seed size, planting depth, and companion crop on emergence and vigor of seedlings of sweetclover. Agronomy Journal, 1975, 64(5): 652-654. |
56 | Mytton L R. The effect of seed weight on the early growth and nodulation of white clover. Annals of Applied Biology, 1973, 73(3): 329-338. |
57 | Evans P S. Effect of seed size and defoliation at three development stages on root and shoot growth of seedlings of some common pasture species. New Zealand Journal of Agricultural Research, 1973, 16(3): 389-394. |
58 | Radwan M S, Shiltwawi E M, Mahdi M T. The influence of seed size and seed source on germination and seedling vigour of berseem clover (Trifolium alexandrium L.). Proceedings of the International Seed Testing Association, 1972, 37(3): 763-770. |
59 | Gabrielson F C, Cross E A, Bradshaw D K, et al. Seed size influence on germination and plant growth of Kobe Lespedeza and other species used for surface mine revegetation. Reclamation and Revegetation Research, 1982, 1(3): 271-281. |
60 | Williams W A, Black J N, Donald C M. Effect of seed weight on the vegetative growth of competing annual Trifoliums. Crop Science, 1968, 8(6): 660-663. |
61 | Taylor G B. The effect of seed size on seedling growth in subterranean clover (Trifolium subterraneum L.). Australian Journal of Agricultural Research, 1972, 23(4): 595-603. |
62 | Anuradha R, Balamurugan P, Srimathi P, et al. Influence of seed size on seed quality of chickpea (Cicer arietinum L.). Legume Research, 2009, 32(2): 133-135. |
63 | Biçer B T. The effect of seed size on yield and yield components of chickpea and lentil. African Journal of Biotechnology, 2009, 8(8): 1482-1487. |
64 | Thomas R L. The influence of seed weight on seedling vigour in Loliun perenne. Annals of Botany, 1966, 30(1): 111-121. |
65 | Naylor R E L. Effects of seed size and emergence time on subsequent growth of perennial ryegrass. New Phytologist, 1980, 84(2): 313-318. |
66 | Aiken G E, Springer T L. Seed size distribution, germination, and emergence of 6 switchgrass cultivars. Rangeland Ecology & Management, 1995, 48(5): 455-458. |
67 | Smart A J, Moser L E. Switchgrass seedling development as affected by seed size. Agronomy Journal, 1999, 91(2): 335-338. |
68 | Bretagnolle F, Thompson J D, Lumaret R. The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Annals of Botany, 1995, 76(6): 607-615. |
69 | Berdahl J D, Frank A B. Seed maturity in four cool-season forage grasses. Agronomy Journal, 1998, 90(4): 483-488. |
70 | Larsen S U, Andreasen C. Light and heavy turfgrass seeds differ in germination percentage and mean germination thermal time. Crop Science, 2004, 44(5): 1710-1720. |
71 | Willenborg C J, Wildeman J C, Miller A K, et al. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science, 2005, 45(5): 2023-2029. |
72 | Ahring R M, Todd G W. Seed size and germination of hulled and unhulled bermudagrass seeds. Agronomy Journal, 1978, 70(4): 667-670. |
73 | Tossell W E. Early seedling vigour and seed weight in relation to breeding in smooth bromegrass, Bromus inermis Leyss. Canadian Journal of Plant Science, 1960, 40(2): 268-280. |
74 | Trupp C R, Carlson I T. Improvement of seedling vigor of smooth bromegrass (Bromus inermis Leyss) by recurrent selection for high seed weight. Crop Science, 1971, 11(2): 225-228. |
75 | Al-Ansary M M, Smith D C. Variation in seed and seedling characters of smooth bromegrass (Bromus inermis Leyss) in relation to environment. Euphytica, 1976, 25(2): 549-558. |
76 | Lewis E J, Garcia J A. The effect of seed weight and coleoptile tiller development on seedling vigour in tall fescue, Festuca arundinacea Schreb. Euphytica, 1979, 28(2): 393-402. |
77 | Brown K R. Parent seed weight, plant growth and seedling in ‘Grasslands Tama’ westerwolds ryegrass. New Zealand Journal of Experimental Agriculture, 1977, 5(2): 143-146. |
78 | Kneebone W R, Cremer C L. The relationship of seed size to seedling vigor in some native grass species. Agronomy Journal, 1955, 47(10): 472-477. |
79 | Vogel W G. Planting depth and seed size influence emergence of beardless wheatgrass seedlings. Rangeland Ecology & Management, 1963, 16(5): 273-274. |
80 | Kathju S, Lahiri A N, Shankarnarayan K A. Influence of seed size and composition on the dry matter yield of Cenchrus ciliaris. Experientia, 1978, 34(7): 848-849. |
81 | Powell A A, Matthews S, Oliveria M A. Seed quality in grain legumes. Advances in Applied Biology, 1984, 10: 217-285. |
82 | Peiffer R A, McKee G W, Ditmer W P. The quick swell test as an indicator of potential germination in crownvetch seed. Proceedings of the Association of Official Seed Analysts, 1972, 62: 101-108. |
83 | Carleton A E, Austin R D, Stroh J R, et al. Cicer milkvetch (Astragalus cicer L.): Seed germination, scarification and field emergence studies. Montana Agricultural Experiment Station Bulletin, 1971, 655: 1-21. |
84 | Delouche J C. Deterioration of crimson clover seed in storage. Proceedings of the Association of Official Seed Analysts, 1965, 55: 66-75. |
85 | Vaughan C E, Delouche J C. Relation of rate of seed swelling to viability in small seeded legumes. Proceedings of the Association of Official Seed Analysts, 1960, 50(1): 109-111. |
86 | Yu Z, Sun Y, Zhang H L, et al. A preliminary study on seed vigor of Caragana korshinskii and Hedysarum scoparium. Grassland of China, 1990(6): 65-68. |
于卓, 孙样, 张红蕾. 柠条、花棒种子活力研究初报. 中国草地, 1990(6): 65-68. | |
87 | Lv Y Y, Mo Q, Powell A A, et al. DNA replication during seed germination, deterioration, and its relation to vigor in alfalfa and white clover. Crop Science, 2018, 58(3): 1393-1401. |
88 | Lv Y Y, Wang Y R, Powell A A. Frequent individual counts of radicle emergence and mean just germination time predict seed vigour of Avena sativa and Elymus nutans. Seed Science and Technology, 2016, 44(1): 189-198. |
89 | Rissel D, Losch J, Peiter E. The nuclear protein poly (ADP-ribose) polymerase 3 (AtPARP3) is required for seed storability in Arabidopsis thaliana. Plant Biology, 2014, 16(6): 1058-1064. |
90 | Powell A A, Matthews S. Seed ageing/repair hypothesis leads to new testing methods. Seed Technology, 2012, 34: 15-25. |
91 | Matthews S, Khajeh-Hosseini M. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Science and Technology, 2006, 34(2): 339-347. |
92 | Yan H F, Yu X D, Jia W, et al. Length of the lag period of germination predicts the vigour differences and field emergence potential in Italian ryegrass (Lolium multiflorum) seed lots. Seed Science and Technology, 2017, 45(1): 238-242. |
93 | Tao Q B, Sun J P, Zhang Y Q, et al. Single count of radicle emergence and mean germination time estimate seed vigour of Chinese milk vetch (Astragalus sinicus). Seed Science and Technology, 2022, 50(1): 47-59. |
94 | Mo Q. DNA replication and several other methods used for seed vigour evaluation for common vetch. Lanzhou: Lanzhou University, 2018. |
莫青. DNA复制速率等方法用于箭筈豌豆种子的活力测定. 兰州: 兰州大学, 2018. | |
95 | Cheshmi M, Khajeh-Hosseini M. Effect of temperature on length of the lag period and its relationship with field performance of alfalfa (Medicago sativa) seeds. Seed Science and Technology, 2018, 46(2): 317-326. |
96 | Mao P S, Zhang X Y, Sun Y, et al. Relationship between the length of the lag period of germination and the emergence performance of oat (Avena sativa) seeds. Seed Science and Technology, 2013, 41(2): 281-291. |
97 | Akbarpour M, Khajeh-Hosseini M, Seifi A. Potential of a single radicle emergence count in predicting field emergence of Desi chickpea seed lots as an alternative vigour test. Seed Science and Technology, 2019, 47(3): 319-324. |
98 | Chinnasamy G P, Sundareswaran S, Vetrivel M. Correlation and R 2 analysis of radicle emergence test to predict seed vigour and field emergence in blackgram (Vigna mungo L.) seed lots. Journal of Applied and Natural Science, 2022, 41: 31-35. |
99 | Chinnasamy G P, Sundareswaran S. Evaluation of radicle emergence test to predict seed vigor and field emergence in different seed lots of cluster bean (Cyamopsis tetragonoloba L.). Madras Agricultural Journal, 2019, 106: 143-149. |
100 | Demir I, Kenanoglu B B, Ozden E. Seed vigour tests to estimate seedling emergence in cress (Lepidium sativum L.) seed lots. Notulae Botanicae Horti Agrobotanici, 2019, 47(3): 881-886. |
101 | Liu J G. Study on suitability of electrical conductivity and radicle emergence testing methods to determine seed vigor of three grass species. Lanzhou: Lanzhou University, 2021. |
刘菁戈. 电导率和胚根突破法用于3种禾草种子活力测定的适用性研究. 兰州: 兰州大学, 2021. | |
102 | Li F L, Li F H, Li F R, et al. Study on testing methods of oat seed vigour. Pratacultural Science, 2013, 30(5): 767-771. |
李富利, 李富花, 李富荣, 等. 燕麦种子活力测定方法. 草业科学, 2013, 30(5): 767-771. | |
103 | Maguire J D. Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Crop Science, 1962, 2(2): 176-177. |
104 | Lawrence T. A comparison of methods of evaluating Russian wild ryegrass for seedling vigour. Canadian Journal of Plant Science, 1963, 43(3): 307-311. |
105 | Havstad L T, Aamlid T S, Lomholt A. Evaluation of vigour tests for determination of seed storage potential in red clover (Trifolium pratensis L.) and timothy (Phleum pratense L.). Seed Science and Technology, 2011, 39(3): 637-648. |
106 | Steiner J J. Seedling rate of development index: Indicator of vigor and seedling growth response. Crop Science, 1990, 30(6): 1264-1271. |
107 | Wang Y R, Yu L, Liu Y L, et al. Vigour tests used to assess quality of seed lots and field emergence for several forage species. Acta Prataculturae Sinica, 2003, 12(5): 62-69. |
王彦荣, 余玲, 刘友良, 等. 用活力指标评价几种牧草的种批质量和田间出苗率. 草业学报, 2003, 12(5): 62-69. | |
108 | Wang J, Hu X W, He X Q, et al. The characteristics of germination and seedling emergence of several grasses seeds with different vigor. Pratacultural Science, 2011, 28(6): 998-1003. |
王娟, 胡小文, 何学青, 等. 不同活力种子的萌发与出苗特性. 草业科学, 2011, 28(6): 998-1003. | |
109 | Zhang Y, Wang J L, Yang Y, et al. Study on determination methods for seed vigor of highland barley. Journal of Plateau Agriculture, 2018, 2(3): 237-241, 306. |
张毅, 王建林, 杨洋, 等. 青稞种子活力测定方法研究. 高原农业, 2018, 2(3): 237-241, 306. | |
110 | Sun J H, Chen J H. A study of vigour testing methods for alfalfa seeds. Pratacultural Science, 1990, 7(4): 53-57. |
孙建华, 陈江辉. 紫花苜蓿种子活力的不同方法测定. 草业科学, 1990, 7(4): 53-57. | |
111 | Guan Y J, Yin M Q, Jia X W, et al. Single counts of radicle emergence can be used as a vigour test to predict emergence potential of wheat. Seed Science and Technology, 2018, 46(2): 349-357. |
112 | Matthews S, Beltrami E, Elkhadem R, et al. Evidence that time for repair during early germination leads to vigour differences in maize. Seed Science and Technology, 2011, 39(2): 501-509. |
113 | International Seed Testing Association. International rules for seed testing. Switzerland: Bassersdorf, 2019. |
114 | Osborne D J. Biochemical control systems operating in the early hours of germination. Canadian Journal of Botany, 1983, 61(12): 3568-3577. |
115 | Waterworth W M, Masnavi G, Bhardwaj R M, et al. A plant DNA ligase is an important determinant of seed longevity. The Plant Journal, 2010, 63(5): 848-860. |
116 | Pan J, Li R, Guo Y X, et al. Comparative study of seed vigor test in Medicago sativa. Pratacultural Science, 2017, 34(5): 1042-1048. |
潘佳, 李荣, 郭耘欣, 等. 紫花苜蓿种子活力测定方法的比较. 草业科学, 2017, 34(5): 1042-1048. | |
117 | Cheshmi M, Khajeh-Hosseini M. Single count of radicle emergence, DNA replication during seed germination and vigour in alfalfa seed lots. Seed Science and Technology, 2020, 48(3): 367-380. |
118 | Artola A, de los Santos G G, Castañeda G C. A seed vigour test for birdsfoot trefoil (Lotus corniculatus L.). Seed Science and Technology, 2003, 31(3): 753-757. |
119 | Munyaneza V, Li D M, Jia P, et al. Various vigour test methods to rank seed lot quality and predict field emergence in two forage grasses. Seed Science and Technology, 2022, 50(3): 345-356. |
120 | Bhuker A, Pandey V, Singh S, et al. Radicle emergence test-A quick germination test in different field crops. Seed Research, 2020, 48(1): 80-82. |
121 | Venuste M, Chen D L, Hu X W. Detection of seed vigour differences in Festuca sinensis seed lots. Seed Science and Technology, 2022, 50(1): 61-75. |
122 | Ozden E, Memis N, Gokdas Z, et al. Seed vigour evaluation of rocket (Eruca sativa Mill.) seed lots. Journal of the Institute of Science and Technology, 2020, 10(3): 1486-1493. |
123 | Li Y M, Hao N, Sun L H, et al. Research progress of seed vigor test methods. Liaoning Agricultural Sciences, 2013(1): 38-40. |
李月明, 郝楠, 孙丽惠, 等. 种子活力测定方法研究进展. 辽宁农业科学, 2013(1): 38-40. | |
124 | Górecki R J, Mierzejewska D, Kaszuba J, et al. Vigour evaluation of cocksfoot (Dactylis glomerata L.) seeds of different age. Acta Agrobotanica, 1989, 42(1/2): 23-33. |
125 | Pereira F E C B, Martins C C, Jeromini T S, et al. Tests to evaluate the physiological potential of Mombasa grass seeds. Revista Ciência Agronômica, 2020, 51(1): e20186359. |
126 | Cooper C S, Hughes M A, Ditterline R L. Seedling length day 3-A simple rapid technique for evaluating seedling vigor of birdsfoot trefoil (Lotus corniculatus L.). Journal of Seed Technology, 1980, 5(1): 17-25. |
127 | Wang Y R, Yu L, Nan Z B, et al. Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Science, 2004, 44(2): 535-541. |
128 | Yan H F, Mao P S. Optimizing the accelerated ageing condition of Siberian wildrye seeds. Seed, 2013, 32(7): 1-6. |
闫慧芳, 毛培胜. 老芒麦种子人工加速老化条件的筛选比较. 种子, 2013, 32(7): 1-6. | |
129 | Mo Q, Lv Y Y, Wang Y R. Optimized accelerated aging test for common vetch. Acta Prataculturae Sinica, 2017, 26(11): 131-138. |
莫青, 吕燕燕, 王彦荣. 箭筈豌豆种子人工加速老化条件筛选的研究. 草业学报, 2017, 26(11): 131-138. | |
130 | Zhang M M, Zhao Y, Yun J F, et al. Effects of accelerated aging on physiological and biochemical changes of Elymus canadensis seed. Seed, 2012, 31(4): 23-27. |
张苗苗, 赵彦, 云锦凤, 等. 老化处理对2种披碱草属牧草种子生理生化的影响. 种子, 2012, 31(4): 23-27. | |
131 | He X Q, Tao Q B, Shaya H L T, et al. Response of seed vigor and seedling growth of switchgrass to the artificial aging treatments. Acta Agrestia Sinica, 2016, 24(4): 834-840. |
何学青, 陶奇波, 沙亚·海拉提, 等. 柳枝稷种子活力及幼苗生长对人工老化处理的响应. 草地学报, 2016, 24(4): 834-840. | |
132 | Han L L, Mao P S. Optimizing the accelerated aging condition of the oat seeds. Seed, 2007, 26(11): 31-34. |
韩亮亮, 毛培胜. 燕麦种子人工加速老化条件的筛选优化. 种子, 2007, 26(11): 31-34. | |
133 | Borsato A V, Barros A S R, Ahrens D C, et al. Vigor tests evaluation for white-oat (Avena sativa L.) seeds. Revista Brasileira de Sementes, 2000, 22(1): 163-168. |
134 | Yang M M. Effects on genetic integrity of seed aging to Avena nuda L. germplasm resources. Hohhot: Inner Mongolia Normal University, 2017. |
杨苗苗. 裸燕麦种子老化处理对其种质资源遗传完整性的影响. 呼和浩特: 内蒙古师范大学, 2017. | |
135 | Garcia D C, Menezes N L. Accelerated aging test for ryegrass black oat and pearl millet seeds. Ciência Rural, 1999, 29(2): 233-237. |
136 | Wang Y H, Wang X G, Lian J J, et al. Optimization of the accelerated ageing condition for Kentucky bluegrass seeds. Acta Agrestia Sinica, 2008, 16(6): 600-604. |
王玉红, 王新国, 廉佳杰, 等. 草地早熟禾种子加速老化方法研究. 草地学报, 2008, 16(6): 600-604. | |
137 | Weng L, Mao P S, Tan J. The screening of artificial accelerated aging condition for Dactylis glomerata and green bristlegrass seeds. Seed, 2013, 32(9): 92-97. |
翁玲, 毛培胜, 谭捷. 鸭茅、狗尾草种子人工加速老化条件的筛选. 种子, 2013, 32(9): 92-97. | |
138 | Liu S Y, Sun Y. Screening and optimizing accelerated aging condition of three kinds of turfgrass. Acta Agrestia Sinica, 2012, 20(5): 894-898. |
刘士瑶, 孙彦. 3种草坪草种子人工加速老化的条件筛选和优化. 草地学报, 2012, 20(5): 894-898. | |
139 | Delouche J C, Baskin C C. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology, 1973, 1(1): 427-452. |
140 | Han J G, Mao P S, Pu X C, et al. A study on the seed vigour of tall fescue. Acta Agrestia Sinica, 1995, 3(4): 269-275. |
韩建国, 毛培胜, 浦心春, 等. 草坪型高羊茅种子活力的研究. 草地学报, 1995, 3(4): 269-275. | |
141 | Pu X C, Han J G, Mao P S, et al. Effects of accelerated ageing on the physiological and biochemical characters of tall fescue seed. Acta Agrestia Sinica, 1998, 6(3): 191-196. |
浦心春, 韩建国, 毛培胜, 等. 加速老化对高羊茅种子生理生化特性的影响. 草地学报, 1998, 6(3): 191-196. | |
142 | Souza F F J, Spehar C R, Souza N O S, et al. Accelerated ageing test for the evaluation of quinoa seed vigour. Seed Science and Technology, 2017, 45(1): 212-221. |
143 | Ma X L, He C, Luo F C, et al. Effects of artificial aging on seed vigor and physiological characteristics of Setaria sphacelata ‘Narok’ seeds. Acta Agrestia Sinica, 2017, 25(5): 1047-1054. |
马向丽, 何超, 罗富成, 等. 人工老化对纳罗克非洲狗尾草种子活力生理生化指标的影响. 草地学报, 2017, 25(5): 1047-1054. | |
144 | Clark S M. An evaluation of seed quality in crested dogstail in relation to storability. Seed Science and Technology, 1982, 10(3): 517-526. |
145 | Li Y R, Han J G, Bao Y L, et al. The changes of leakage from Rosana western wheatgrass seed during accelerated aging. Chinese Journal of Grassland, 2006, 28(6): 68-71. |
李玉荣, 韩建国, 宝艳蕾, 等. 人工加速老化过程中蓝茎冰草种子渗漏物的变化. 中国草地学报, 2006, 28(6): 68-71. | |
146 | Li Y R. Studies on seed deterioration and the physiology and biochemistry of Russian wildryegrass and Rosana western wheatgrass seeds. Beijing: China Agricultural University, 2004. |
李玉荣. 新麦草和蓝茎冰草种子的劣变与生理生化变化的研究. 北京: 中国农业大学, 2004. | |
147 | Li Y R, Han J G, Sun Y, et al. Physiological and biochemical changes in Russian wildryegrass seed during seed deterioration. Acta Agrestia Sinica, 2005, 13(3): 180-183. |
李玉荣, 韩建国, 孙彦, 等. 新麦草种子劣变过程中生理生化变化. 草地学报, 2005, 13(3): 180-183. | |
148 | Hampton J G, Cookson W R, Grama A, et al. Temperature and time variables for accelerated ageing testing of perennial ryegrass (Lolium perenne L.) seed lots. Seed Science and Technology, 2000, 28(3): 861-863. |
149 | Hall R D, Wiesner L E. Relationship between seed vigor tests and field performance of ‘Regar’ meadow bromegrass. Crop Science, 1990, 30(5): 967-970. |
150 | Mao P S, Chang S J, Wang Y H, et al. Effect of artificially ageing treatments on the membrane permeabiligy of Leymus chinensis seed. Acta Prataculturae Sinica, 2008, 17(6): 66-70. |
毛培胜, 常淑娟, 王玉红, 等. 人工老化处理对羊草种子膜透性的影响. 草业学报, 2008, 17(6): 66-70. | |
151 | Wu H, Zhou Q P, Yan H B, et al. Effects of artificial aging on physiological and biochemical characteristics of Elymus nutans seeds. Journal of Qinghai University (Natural Science Edition), 2014, 32(3): 6-10. |
吴浩, 周青平, 颜红波, 等. 垂穗披碱草种子老化过程中生理生化特性的研究. 青海大学学报(自然科学版), 2014, 32(3): 6-10. | |
152 | Zhou J, Wang Y R. Effects of artificial ageing treatment on vigor index of Elymus nutans seeds. Pratacultural Science, 2011, 28(7): 1275-1279. |
周晶, 王彦荣. 人工老化处理对垂穗披碱草种子活力指标的影响. 草业科学, 2011, 28(7): 1275-1279. | |
153 | Stanisavljevic R, Poštić D, Štrbanović R, et al. Effect of seed storage on seed germination and seedling quality of Festulolium in comparison with related forage grasses. Tropical Grasslands-Forrajes Tropicales, 2020, 8(2): 125-132. |
154 | Zhao X J, Li X Z, Wang P, et al. Effects of endophytic fungi on the seed physiology of Hordeum brevisubulatum under artificial ageing treatment. Acta Agrestia Sinica, 2015, 23(6): 1272-1277. |
赵晓静, 李秀璋, 王萍, 等. 内生真菌对野大麦种子人工老化处理下的生理影响. 草地学报, 2015, 23(6): 1272-1277. | |
155 | Ebone L A, Gonçalves I M, Lângaro N C. Accelerated aging test and image analysis for barely seed. Australian Journal of Crop Science, 2019, 13(9): 1546-1551. |
156 | Usberti R. Assessing the seed storage potential of Brachiaria decumbens by the accelerated aging test. Pesquisa Agropecuária Brasileira, 1990, 25(5): 691-699. |
157 | Oliveira A M S, Nery M C, Ribeiro K G, et al. Accelerated aging for evaluation of vigor in Brachiaria brizantha ‘Xaraés’ seeds. Journal of Seed Science, 2020, 42: e202042006. |
158 | Samarah N H. Effect of air-drying immature seeds in harvested pods on seed quality of common vetch (Vicia sativa L.). New Zealand Journal of Agricultural Research, 2006, 49(3): 331-339. |
159 | Helmer J D, Delouche J C, Lienhard M. Some indices of vigor and deterioration in seed of crimson clover. Proceedings of the Association of Official Seed Analysts, 1962, 52: 154-161. |
160 | Wang Y R, Hampton J G. Red clover (Trifolium pratense L.) seed quality. Proceedings Agronomy Society New Zealand, 1989, 19: 63-69. |
161 | Mao P S, Li Y F. Study on optimizing the accelerated ageing condition of alfalfa seeds. Seed, 2010, 29(10): 10-14. |
毛培胜, 李寅菲. 紫花苜蓿种子人工加速老化方法研究. 种子, 2010, 29(10): 10-14. | |
162 | Behtari B, de Luis M, Nasab A D M. Predicting germination of Medicago sativa and Onobrychis viciifolia seeds by using image analysis. Turkish Journal of Agriculture and Forestry, 2014, 38(5): 615-623. |
163 | Liu H, Mao P S, Kong L Q, et al. Standardization of germination and accelerated aging testing of the Indigofera pseudotinctoria seeds. Pratacultural Science, 2010, 27(2): 144-149. |
刘贺, 毛培胜, 孔令琪, 等. 马棘种子发芽及人工加速老化测定标准化研究. 草业科学, 2010, 27(2): 144-149. | |
164 | Guo C Y, Liu G H, He X. Effects on artificial accelerate aging seeds germination of Caryopteris mongholica Bunge. Seed, 2009, 28(2): 77-80. |
郭春燕, 刘果厚, 贺晓. 人工加速老化对蒙古莸种子发芽的影响. 种子, 2009, 28(2): 77-80. | |
165 | Wang M X, Yi J, Wuren Q M G. Effects of artificial aging on seeds vigor of Ceratoides arborescens. Grassland of China, 2003, 25(4): 31-35. |
王明霞, 易津, 乌仁其木格. 人工劣变处理对华北驼绒藜种子活力的影响. 中国草地, 2003, 25(4): 31-35. | |
166 | Na T. Study on physiological and biochemical changes and genomic DNA damages by ISSR of two Caragana species seeds during artificial aging. Yangzhou: Yangzhou University, 2007. |
那潼. 两种锦鸡儿种子人工老化中生理生化变化及基因组DNA损伤的ISSR研究. 扬州: 扬州大学, 2007. | |
167 | Artola A, Castañeda G C. Accelerated aging time estimation for birdsfoot trefoil seed. Seed Science and Technology, 2005, 33(2): 493-497. |
168 | Poonguzhali S, Kanagarasu S. Standardization and identification of reliable vigour test for delineation of unknown seed lots of blackgram [Vigna mungo (1) hepper] cv. VBN 5. Research Journal of Agricultural Sciences, 2015, 6(4): 834-837. |
169 | Liu X Y, Liu S J, Cheng H Y, et al. Changes in activities of reactive oxygen species scavenging enzymes of sweet sorghum seeds during artificial aging. Plant Physiology Communications, 2008, 44(4): 719-722. |
刘宣雨, 刘树君, 程红焱, 等. 甜高粱种子人工老化过程中活性氧清除酶活性的变化. 植物生理学通讯, 2008, 44(4): 719-722. | |
170 | Wang Y Y, Mao P S. Effect of ageing duration and temperature on the germination percentage of Sorghum bicolor × S. sudanense seeds. China Dairy Cattle, 2014(Z2): 17-21. |
王媛媛, 毛培胜. 老化时间和温度对高丹草种子发芽率的影响. 中国奶牛, 2014(Z2): 17-21. | |
171 | Dan X M, Wang C R, Wu B C, et al. Effect of seeds aging on genetic integrity in Pennisetum glaucum germplasm resources. Pratacultural Science, 2020, 37(8): 1508-1515. |
但旭明, 王成然, 武炳超, 等. 种子老化对美洲狼尾草种质资源遗传完整性的影响. 草业科学, 2020, 37(8): 1508-1515. | |
172 | Lu Q, Wang Q H, Wu J Y, et al. The seed characteristics and spread risk analysis of Pennisetum alopecuroides. Journal of Wuhan Botanical Research, 2007, 25(6): 636-640. |
卢清, 王庆海, 武菊英, 等. 狼尾草的种子特性与扩散风险分析. 武汉植物学研究, 2007, 25(6): 636-640. | |
173 | Mark J L, McKee G W. Relationships between five laboratory stress tests, seed vigor, field emergence, and seedling establishment in reed canarygrass. Agronomy Journal, 1968, 60(1): 71-76. |
174 | Kapoor N, Arya A, Siddiqui M A, et al. Seed deterioration in chickpea (Cicer arietinum L.) under accelerated ageing. Asian Journal of Plant Sciences, 2010, 9(3): 158-162. |
175 | Marinke L de S, Catão H C R M, Martins G Z, et al. Vigor of lentil seeds evaluated by the tests of accelerated aging and controlled deterioration. Brazilian Journal of Development, 2019, 5(12): 30846-30858. |
176 | Kalpana R, Madhava Rao K V. Protein metabolism of seeds of pigeonpea [Cajanus cajan (L.) Millsp.] cultivars during accelerated ageing. Seed Science and Technology, 1997, 25(2): 271-279. |
177 | Mattar E P L, Pinheiro D T, Pereira W D, et al. Physiological, morphological, and biochemical characterization of Cratylia argentea (Desv.) Kuntze seeds. Tropical Grasslands-Forrajes Tropicales, 2022, 10(3): 172-183. |
178 | Jianhua Z, McDonald M B. The saturated salt accelerated aging test for small seeded crops. Seed Science and Technology, 1997, 25(1): 123-131. |
179 | McDonald M B. Seed deterioration: Physiology, repair and assessment. Seed Science and Technology, 1999, 27: 177-237. |
180 | Silva C B, Pivetta K F L, Oliveira C A V M, et al. Accelerated ageing test to evaluate the physiological potential of Bermuda grass seeds. Revista Brasileira de Sementes, 2010, 32(2): 102-107. |
181 | Rosa T D A, Nadal A P, Maldaner H R, et al. Electrical conductivity and accelerated aging in amaranth (Amaranthus cruentus L.) seeds. Journal of Seed Science, 2018, 40(1): 44-51. |
182 | Yan H F, Sun J. Evaluation of seed vigor and storage tolerance of different quinoa. Seed, 2021, 40(12): 88-93. |
闫慧芳, 孙娟. 不同藜麦种子活力水平及耐储藏性评价. 种子, 2021, 40(12): 88-93. | |
183 | Silva V N, Bennett M, Jourdan P, et al. Image analysis techniques to evaluate Portulaca seed morphology and vigor. Seed Technology, 2013, 35(1): 75-88. |
184 | da Silva C B, Barbosa R M, Vieira R D. Accelerated aging as vigor test for sunn hemp seeds. Ciência Rural, 2017, 47(1): e20151527. |
185 | de Oliveira R C, Pedroso C E D S, Soares V N, et al. Sowing depth of annual ryegrass seed on different substrates as a vigor test. Journal of Seed Science, 2019, 41(2): 196-204. |
186 | Tyler T, Adams C R, MacDonald G, et al. Florida ecotype Elliott’s lovegrass (Eragrostis elliottii) germination testing for use in non-optimal restoration sites: The role of season and seed vigor. Native Plants, 2017, 18(2): 114-125. |
187 | Lopes R R, de Ávila M R, Gasparetto B F, et al. Accelerated aging parameters in the prediction of physiological and sanitary quality of birdsfoot trefoil (Lotus corniculatus L.) seeds. Journal of Seed Science, 2017, 39(1): 75-82. |
188 | Sanches M F G, dos Santos J F, Martins C C, et al. Accelerated ageing test for vigour assessment of pigeon pea ‘Cajanus cajan’ (L.) Millsp. seeds. Australian Journal of Crop Science, 2014, 8(9): 1298-1303. |
189 | de Freitas R A, Nascimento W M. Accelerated aging test on lentil seeds. Revista Brasileira de Sementes, 2006, 28(3): 59-63. |
190 | Araújo J O, Dias D C F S, Nascimento W M, et al. Accelerated aging test and antioxidant enzyme activity to assess chickpea seed vigor. Journal of Seed Science, 2021, 43: e202143038. |
191 | Deuner C, Almeida A da S, Testa M L, et al. Accelerated aging in sorghum sacarino seeds Sorghum bicolor (L.) Moench. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 2017, 12(3): 374-378. |
192 | Martins A B N, Costa C J, Xavier F da M, et al. Accelerated aging test in amaranth (Amaranthus cruentus L.) seeds. Australian Journal of Crop Science, 2018, 12(3): 444-448. |
193 | Gordin C R B, Scalon S de P Q, Masetto T E. Accelerated aging test in niger seeds. Journal of Seed Science, 2015, 37(3): 234-240. |
194 | Powell A A, Matthews S. Towards the validation of the controlled deterioration vigour test for small seeded vegetables. Seed Testing International, 2005, 129: 21-24. |
195 | Naylor R E L, Syversen M K. Assessment of seed vigour in Italian ryegrass. Seed Science and Technology, 1988, 16(2): 419-426. |
196 | Marshall A H, Naylor R E L. Seed vigour and field establishment in Italian ryegrass (Lolium multiflorum Lam.). Seed Science and Technology, 1985, 13(3): 781-794. |
197 | Wang Y R, Hampton J G, Hill M J. Red clover vigour testing - effects of three test variables. Seed Science and Technology, 1994, 22(1): 99-105. |
198 | Yan H F, Sun J. Effect of seed moisture content and deterioration time on seed vigor and seedling growth of Sorghum bicolor× Sorghum sudanense. Acta Prataculturae Sinica, 2021, 30(12): 152-160. |
闫慧芳, 孙娟. 含水量和劣变时间对高丹草种子活力及幼苗生长的影响. 草业学报, 2021, 30(12): 152-160. | |
199 | Chen Q Z, Mao P S, Kong L Q, et al. Effect of deterioration time and deterioration temperature on vigor of oat (Avena sativa L.) seeds with different moisture content. Seed, 2016, 35(11): 31-35. |
陈泉竹, 毛培胜, 孔令琪, 等. 劣变时间和温度对不同含水量燕麦种子的活力影响. 种子, 2016, 35(11): 31-35. | |
200 | Silva A B C, Galvão Í M, Barbosa R M, et al. Controlled deterioration test for evaluation of sunn hemp seed vigor. Journal of Seed Science, 2015, 37(4): 249-253. |
201 | Naderidarbaghshahi M, Bahari B. Assessment the relationship between seed vigor tests and seed field performance of some forage crops of Iran. International Journal of Agriculture and Crop Sciences, 2012, 4(23): 1763-1766. |
202 | Chen X L, Wei Z C, Chen D L, et al. Base water potential but not hydrotime predicts seedling emergence of Medicago sativa under water stress conditions. PeerJ, 2022, 10: e13206. |
203 | Wei D, Wang Y R, Sun J H. A study of the relationship between standard germination, electrical conductivity and field performance in Vicia faba. Journal of Gansu Sciences, 1995, 7(2): 13-16. |
卫东, 王彦荣, 孙建华. 蚕豆种子的标准发芽率、电导率、活力指数与田间质量表现的关系. 甘肃科学学报, 1995, 7(2): 13-16. | |
204 | Lv Y Y, He X Q, Hu X W, et al. The seed semipermeable layer and its relation to seed quality assessment in four grass species. Frontiers in Plant Science, 2017, 8: 1175. |
205 | Wang Y R, Yu L, Nan Z B. Use of seed vigour tests to predict field emergence of lucerne (Medicago sativa). New Zealand Journal of Agricultural Research, 1996, 39(2): 255-262. |
206 | Artola A, Castañeda G C. The bulk conductivity test for birdsfoot trefoil seed. Seed Science and Technology, 2005, 33(1): 231-236. |
207 | Khajeh-Hosseini M, Rezazadeh M. The electrical conductivity of soak water of chickpea seeds provides a quick test indicative of field emergence. Seed Science and Technology, 2011, 39(3): 692-696. |
208 | Araújo J de O, Dias D C F dos S, de Miranda R M, et al. Adjustment of the electrical conductivity test to evaluate the seed vigor of chickpea (Cicer arietinum L.). Journal of Seed Science, 2022, 44: e202244003. |
209 | Wang Y R, Yu L, Liu Y L, et al. Relationship between seed viability and membrane permeability during seed deterioration in several forage species. Acta Prataculturae Sinica, 2002, 11(3): 85-91. |
王彦荣, 余玲, 刘友良, 等. 数种牧草种子劣变的生活力与膜透性的关系. 草业学报, 2002, 11(3): 85-91. | |
210 | Tao Q B, Sun J P, Nie Y T, et al. Evaluation of seed vigor and prediction of field seedling emergence of Chinese milk vetch (Astragalus sinicus L.) by conductivity method. Chinese Journal of Grassland, 2022, 44(4): 95-103. |
陶奇波, 孙继鹏, 聂宇婷, 等. 电导率法评价紫云英种子活力并预测田间出苗表现. 中国草地学报, 2022, 44(4): 95-103. | |
211 | da Silva C B, Lopes M de M, Marcos-Filho J, et al. Automated system of seedling image analysis (SVIS) and electrical conductivity to assess sunn hemp seed vigor. Revista Brasileira de Sementes, 2012, 34(1): 55-60. |
212 | Mokhtari N E P, Kizilsimsek M. Application of electrical conductivity test to determine vigor of common vetch (Vicia sativa L.). Fresenius Environmental Bulletin, 2019, 28(3): 2153-2157. |
213 | Wang Y. The study on the pod and seed development and determination of seed optimum harvest time of Vicia cracca. Changchun: Northeast Normal University, 2008. |
王颖. 广布野豌豆荚果和种子发育动态及种子适宜收获时间的确定. 长春: 东北师范大学, 2008. | |
214 | dos Santos L A, Carvalho I R, Pinto C C, et al. Electrical conductivity test for measurement of white clover seeds vigor. Journal of Agricultural Science, 2019, 11(12): 40-49. |
215 | McKersie B D, Tomes D T. A comparison of seed quality and seedling vigor in birdsfoot trefoil. Crop Science, 1982, 22(6): 1239-1241. |
216 | Ching T M, Schoolcraft I. Physiological and chemical differences in aged seeds. Crop Science, 1968, 8(4): 407-409. |
217 | de Melo P A F R, Martins C C, Alves E U, et al. Development of methodology to test the electrical conductivity of Marandú grass seeds. Revista Ciência Agronômica, 2019, 50(1): 107-113. |
218 | Wang J Y, Yue Z T, Long J, et al. Effects of artificial aging on seed vigor and membrane permeability of switchgrass. Seed, 2018, 37(10): 6-9. |
王健宇, 岳子婷, 龙靖, 等. 人工老化对柳枝稷种子活力和膜透性的影响. 种子, 2018, 37(10): 6-9. | |
219 | Wang X G, Han J G, Chen Z H, et al. Studies on the vigor changes during seed maturation of Russian wildrye. Acta Agrestia Sinica, 2000, 8(4): 306-311. |
王显国, 韩建国, 陈志红, 等. 新麦草种子成熟过程中活力变化的研究. 草地学报, 2000, 8(4): 306-311. | |
220 | Yang H, Liu H F, Yang H L, et al. Effect of temperature and moisture content on the seed’s quality of Agropyron cristatum. Pratacultural Science, 2016, 33(10): 2033-2040. |
杨晗, 刘鸿飞, 杨合龙, 等. 贮藏温度和种子含水量对扁穗冰草种子质量的影响. 草业科学, 2016, 33(10): 2033-2040. | |
221 | Sun Q J, Lv Y Y, Han Y H, et al. Study of the semipermeable characteristics of Sorghum bicolor×Sorghum sudanense seeds. Acta Prataculturae Sinica, 2018, 27(5): 162-169. |
孙秋瑾, 吕燕燕, 韩云华, 等. 高丹草种子半透特性的研究. 草业学报, 2018, 27(5): 162-169. | |
222 | He X Q. Seed coat permeability and location of semipermeable layer in seeds of several grass species. Lanzhou: Lanzhou University, 2011. |
何学青. 数种禾草种皮透性及种子半透层定位研究. 兰州: 兰州大学, 2011. | |
223 | Ghassemi-Golezani K, Aliloo A A, Valizadeh M, et al. Effects of different priming techniques on seed invigoration and seedling establishment of lentil (Lens culinaris Medik). Journal of Food, Agriculture & Environment, 2008, 6(2): 222-226. |
224 | Wang J, Zhang Y, Zhang Y F, et al. Relationship between hard seed and seed vigor of Swainsonia salsula and Thermopsis lanceolate. Plant Physiology Communications, 2010, 46(12): 1219-1224. |
王进, 张勇, 张有富, 等. 苦马豆和披针叶黄花种子硬实特性与活力关系. 植物生理学通讯, 2010, 46(12): 1219-1224. | |
225 | Wang W, Yuan T, Cai P, et al. Exploration of optimun conditions for ultra-dry seed storage of two forage legumes. Inner Mongolia Prataculture, 2012, 24(1): 33-36. |
王伟, 苑涛, 蔡萍, 等. 2种豆科牧草种子超干贮藏适宜条件的探索. 内蒙古草业, 2012, 24(1): 33-36. | |
226 | Li H X, Han J G, Ma C H, et al. Seed vigor characters and seed yield formation of sweetclover during maturing. Acta Agrestia Sinica, 2000, 8(4): 297-305. |
李鸿祥, 韩建国, 马春晖, 等. 草木樨种子成熟过程中的活力特性及产量形成. 草地学报, 2000, 8(4): 297-305. | |
227 | Yang C, Li W S, Huang D, et al. Effect of storage temperature on vigor of sweet clover seed under different moisture content conditions. Acta Agrestia Sinica, 2016, 24(2): 251-257. |
杨超, 李宛姝, 黄丹, 等. 贮藏温度对不同含水量草木樨种子活力影响的研究. 草地学报, 2016, 24(2): 251-257. | |
228 | Xu B M, Bai Y S, Liang F F, et al. A study on the properties of hard seed of Oxytropis coerulea. Acta Agrestia Sinica, 1995, 3(4): 305-310. |
徐本美, 白原生, 梁飞凤, 等. 蓝花棘豆硬实种子特性的研究. 草地学报, 1995, 3(4): 305-310. | |
229 | Zhang Y J, Han R, Yuan Y, et al. Physiological and biochemical characteristics of Apocynum venetum seeds in the process of artificial aging. Pratacultural Science, 2011, 28(12): 2130-2135. |
张永娟, 韩蕊, 原烨, 等. 罗布麻种子老化过程中的生理生化特性. 草业科学, 2011, 28(12): 2130-2135. | |
230 | Wang X L, Li H Y, Li Z Y, et al. Physiological and seed vigour changes of Medicago ruthenica seeds during artificial aging course. Journal of Anhui Agricultural Sciences, 2010, 38(1): 515-517. |
王小丽, 李鸿雁, 李志勇, 等. 人工老化对扁蓿豆种子活力与生理特性的影响. 安徽农业科学, 2010, 38(1): 515-517. | |
231 | Huang Z Q, Jiao J, Liang Z S, et al. Study on germination characteristics of seed of Mongolian Astragalus. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(6): 151-155. |
黄正清, 焦劼, 梁宗锁, 等. 蒙古黄芪种子发芽特性的研究. 西北农业学报, 2012, 21(6): 151-155. | |
232 | Ma Z H. Study on seed vigor and seedlings resistance-cold ability of Astragalus fenzelianus and Vicia amoena. Xining: Qinghai University, 2008. |
马正华. 西北黄芪和山野豌豆种子活力及幼苗抗寒生理研究. 西宁: 青海大学, 2008. | |
233 | Bai C X. Studies on seed vigor and hard-seededness of Indigofera amblyantha and Lespedeza bicolor. Beijing: China Agricultural University, 2004. |
白春霞. 多花木蓝和二色胡枝子种子的活力与硬实特性的研究. 北京: 中国农业大学, 2004. | |
234 | Sun L P, Ning B, Bao L X. Study on vigor test method for forage seed. Grassland of China, 1991(3): 67-71. |
孙丽萍, 宁布, 包来晓. 牧草种子活力测定方法的研究. 中国草地, 1991(3): 67-71. | |
235 | Ma N, Han Y F, Chen W. Vitality change of Puna chicory seeds during maturity process and its suitable harvesting stage. Guizhou Agricultural Sciences, 2010, 38(1): 128-131. |
马宁, 韩永芬, 陈伟. 菊苣种子成熟过程中活力变化及适宜收获期. 贵州农业科学, 2010, 38(1): 128-131. | |
236 | Cheah K S E, Osborne D J. DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature, 1978, 272(5654): 593-599. |
237 | Ching T M. Adenosine triphosphate content and seed vigor. Plant Physiology, 1973, 51(2): 400-402. |
238 | Yuan J, Zheng W, Qi H N, et al. Progress in research of optical non-destructive test technology for seed vigor. Crops, 2020(5): 9-16. |
袁俊, 郑雯, 祁亨年, 等. 种子活力光学无损检测技术研究进展. 作物杂志, 2020(5): 9-16. | |
239 | Han L L, Mao P S, Wang X G, et al. Study on vigour test of oat seeds with near infrared reflectance spectroscopy. Journal of Infrared and Millimeter Waves, 2008, 27(2): 86-90. |
韩亮亮, 毛培胜, 王新国, 等. 近红外光谱技术在燕麦种子活力测定中的应用研究. 红外与毫米波学报, 2008, 27(2): 86-90. | |
240 | Zhang S H, Zeng H G, Ji W, et al. Non-destructive testing of alfalfa seed vigor based on multispectral imaging technology. Sensors, 2022, 22(7): 2760. |
241 | Wang X M, Zhang H, Song R, et al. Non-destructive identification of naturally aged alfalfa seeds via multispectral imaging analysis. Sensors, 2021, 21(17): 5804. |
242 | He Y Q, Zhao J, Yang B, et al. Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice. Plant Biotechnology Journal, 2020, 18(9): 1933-1945. |
243 | Wang W Q, Xu D Y, Sui Y P, et al. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice. Proceedings of the National Academy of Sciences, 2022, 119(9): e2026355119. |
244 | Li T, Zhang Y, Wang D, et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana. Molecular Plant, 2017, 10(12): 1540-1555. |
245 | Li W, He X, Chen Y, et al. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. New Phytologist, 2020, 225(4): 1667-1680. |
246 | Loeffler T. Seed science and technology. Seed Science and Technology, 2022, 50(1): 163-174. |
247 | Marin M, Laverack G, Powell A A, et al. Potential of the electrical conductivity of seed soak water and early counts of radicle emergence to assess seed quality in some native species. Seed Science and Technology, 2018, 46(1): 71-86. |
[1] | 孙守江, 毛培胜, 豆丽茹, 贾志程, 孙铭, 马馼, 欧成明, 王娟. 活性氧及染色体端粒调控种子老化研究[J]. 草业学报, 2023, 32(8): 202-213. |
[2] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[3] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[4] | 李想, 张梦, 刘春增, 朱益飞, 叶晓馨. 等离子体处理对紫云英种子萌发和生理特性的影响[J]. 草业学报, 2023, 32(10): 129-140. |
[5] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
[6] | 郭英姿, 贾文庆, 何松林, 王政. 花叶滇苦菜浸提液对3种花卉种子萌发和幼苗生长的化感作用[J]. 草业学报, 2022, 31(9): 96-106. |
[7] | 李春杰, 郎鸣晓, 陈振江, 陈泰祥, 刘静, 金媛媛, 魏学凯. Epichloë内生真菌对禾草种子萌发影响研究进展[J]. 草业学报, 2022, 31(3): 192-206. |
[8] | 赵欣桐, 陈晓东, 李子吉, 张巨明, 刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136. |
[9] | 张敏, NIPAPAN Kanjana, 李铷, 傅杨, 汤东生. 环境因子对云南扁穗雀麦种子萌发和出苗的影响[J]. 草业学报, 2021, 30(12): 143-151. |
[10] | 高玉莲, 常静, 王贻卉, 李锋, 李海平, 马崇勇. 瑞香狼毒根提取物对3种作物种子萌发和幼苗生长的化感作用[J]. 草业学报, 2021, 30(10): 83-91. |
[11] | 牛欢欢, 王森森, 贾宏定, 陈桂华. 光叶紫花苕子浸提液对4种牧草种子萌发过程的化感作用[J]. 草业学报, 2020, 29(9): 161-168. |
[12] | 李凤兰, 武佳文, 姚树宽, 赵梓颐, 赵潇璨, 贺付蒙, 朱元芳, 石奇海, 周磊, 徐永清. 假苍耳不同部位水浸提液对5种土著植物化感作用的研究[J]. 草业学报, 2020, 29(9): 169-178. |
[13] | 崔雪莲, 夏超. 外源脱落酸对醉马草内生真菌共生体幼苗建植过程的影响[J]. 草业学报, 2020, 29(7): 70-80. |
[14] | 王桔红, 史生晶, 陈文, 甘桂媚, 陈赛娜, 李张伟. 枯草芽孢杆菌和3种放线菌对盐胁迫下鬼针草和鳢肠种子萌发及幼苗生长的影响[J]. 草业学报, 2020, 29(12): 112-120. |
[15] | 李珍, 云岚, 石子英, 王俊, 张晨, 郭宏宇, 盛誉. 盐胁迫对新麦草种子萌发及幼苗期生理特性的影响[J]. 草业学报, 2019, 28(8): 119-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||