草业学报 ›› 2023, Vol. 32 ›› Issue (11): 155-167.DOI: 10.11686/cyxb2023016
• 研究论文 • 上一篇
覃娟清(), 党浩千(), 金华云, 郭宇康, 张富, 刘庆华()
收稿日期:
2023-01-06
修回日期:
2023-03-27
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
刘庆华
作者简介:
E-mail: 83793089@163.com基金资助:
Juan-qing QIN(), Hao-qian DANG(), Hua-yun JIN, Yu-kang GUO, Fu ZHANG, Qing-hua LIU()
Received:
2023-01-06
Revised:
2023-03-27
Online:
2023-11-20
Published:
2023-09-27
Contact:
Qing-hua LIU
摘要:
探究不同添加剂处理笋壳对其发酵品质及湖羊瘤胃微生物的影响,采用小罐青贮的方式进行单独以及复合添加甲酸、纤维素酶、EM菌对笋壳发酵效果的影响研究,试验分为8个组:CK组(对照组)、FA组(甲酸)、CE组(纤维素酶)、EM组(EM菌)、FC组(甲酸+纤维素酶)、CM组(纤维素酶+EM菌)、FM组(甲酸+ EM菌)、FCM组(甲酸+纤维素酶+EM菌),发酵80 d后测定营养成分和发酵品质。随之筛选出较优FM、FCM组进行湖羊饲养试验,采用单因素随机试验设计,选取30只体重相近[初始体重(16.68±1.05) kg]、健康状况良好的公湖羊,将试验羊随机分为3组,每组10只。结果表明:1)FM和FCM组青贮感官评价良好,CK和CM组较差,其他各组一般。2)FA、EM、FC、FM、FCM组干物质(DM)、粗蛋白(CP)含量分别为:32.14%、32.37%、32.30%、33.96%、34.15%;9.31%、9.64%、9.80%、10.82%、11.18%;均显著高于CK组(29.34%、8.57%)(P<0.05);FCM组中性洗涤纤维(NDF,35.06%)显著低于FM组(37.48%)(P<0.05);FM、FCM组酸性洗涤纤维(ADF)分别为:27.45%、26.61%,均显著低于对照组(34.39%)(P<0.05)。3)FA、FCM组pH(3.75、3.74)显著低于FM、FC、CK组(3.94、3.86、4.15)(P<0.05);FA、EM、FC、FM、FCM组乳酸含量分别为:8.44%、8.33%、9.25%、10.83%、11.23%,均显著高于对照组(7.90%)(P<0.05),其中FM和FCM组显著高于其他组(P<0.05);FA、FC、FM、FCM组氨态氮/总氮(AN/TN)分别为:5.51、6.05、5.97、5.45,均显著低于对照组(7.24)(P<0.05)。4)FCM、FM组瘤胃乳头长度分别为:1.79、1.72 mm,显著高于CK组(1.28 mm)(P<0.05)。5)FCM、FM组 Chao1指数分别为3007.31、2897.70,均显著高于CK组(2456.21)(P<0.05)。6)CK、FCM组瘤胃球菌科相对丰度分别为:17.12%、19.12%,均低于FM组(20.98%),但无显著差异(P>0.05);FM组(6.44%)、FCM组(6.12%)BS11科相对丰度高于CK组(1.84%),但无显著差异(P>0.05)。综上所述,复合添加青贮剂发酵笋壳感官品质、发酵特性和营养品质提高,用于饲喂湖羊,能促进湖羊瘤胃形态发育,但改善瘤胃微生物组成和结构的作用不太明显。
覃娟清, 党浩千, 金华云, 郭宇康, 张富, 刘庆华. 不同添加剂处理笋壳对其发酵品质及湖羊瘤胃微生物的影响[J]. 草业学报, 2023, 32(11): 155-167.
Juan-qing QIN, Hao-qian DANG, Hua-yun JIN, Yu-kang GUO, Fu ZHANG, Qing-hua LIU. Effects of different additives on the fermentation quality of bamboo shoot shells and on rumen microorganisms in Hu Sheep[J]. Acta Prataculturae Sinica, 2023, 32(11): 155-167.
项目Items | 气味Smell | 色泽Colour and lustre | 质地Quality of a material |
---|---|---|---|
优等High-class | 甘酸味,舒适感Glycoside flavor, comfort | 亮黄色Luminous yellow | 松散柔软,不黏手Loose and soft, not sticky |
良好Good | 淡酸味Light sour taste | 褐黄色Isabellinus | 两者之间Between |
一般General | 刺鼻,酒酸味Pungent, sour wine | 两者之间Between | 略带黏性Slightly viscous |
劣等Low-grade | 腐败味Putrefaction | 黑褐色Black brown | 发黏,结块Sticky clumps |
表1 青贮饲料质量评定标准
Table 1 Quality evaluation standard of silage
项目Items | 气味Smell | 色泽Colour and lustre | 质地Quality of a material |
---|---|---|---|
优等High-class | 甘酸味,舒适感Glycoside flavor, comfort | 亮黄色Luminous yellow | 松散柔软,不黏手Loose and soft, not sticky |
良好Good | 淡酸味Light sour taste | 褐黄色Isabellinus | 两者之间Between |
一般General | 刺鼻,酒酸味Pungent, sour wine | 两者之间Between | 略带黏性Slightly viscous |
劣等Low-grade | 腐败味Putrefaction | 黑褐色Black brown | 发黏,结块Sticky clumps |
组别Groups | 性状 Traits | |||
---|---|---|---|---|
气味Smell | 色泽Colour and lustre | 质地Character | 评定Evaluate | |
CK | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FA | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
EM | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
CE | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FM | 甘酸味Sweet acid taste | 褐黄色Isabellinus | 松散柔软,略带黏性Loose and soft, slightly sticky viscous | 良好Good |
FC | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
CM | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FCM | 甘酸味Sweet acid taste | 褐黄色Isabellinus | 松散柔软,略带黏性Loose and soft, slightly sticky viscous | 良好Good |
表2 不同添加剂处理笋壳青贮的感官评定
Table 2 Sensory evaluation of silage treated with different additives
组别Groups | 性状 Traits | |||
---|---|---|---|---|
气味Smell | 色泽Colour and lustre | 质地Character | 评定Evaluate | |
CK | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FA | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
EM | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
CE | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FM | 甘酸味Sweet acid taste | 褐黄色Isabellinus | 松散柔软,略带黏性Loose and soft, slightly sticky viscous | 良好Good |
FC | 刺鼻,酒酸味Pungent, sour wine | 暗绿色Dark green | 略带黏性Slightly viscous | 一般General |
CM | 腐败味Putrefaction | 黑褐色Black brown | 发黏结块Sticky clumps | 劣等Low-grade |
FCM | 甘酸味Sweet acid taste | 褐黄色Isabellinus | 松散柔软,略带黏性Loose and soft, slightly sticky viscous | 良好Good |
组别Groups | 组别 Groups | ||||
---|---|---|---|---|---|
干物质Dry matter | 粗蛋白 Crude protein | 中性洗涤纤维Neutral detergent fiber | 酸性洗涤纤维Acid detergent fiber | 半纤维素Hemicellulose | |
CK | 29.34±0.22c | 8.57±0.36d | 44.42±0.74a | 34.39±1.33a | 10.03±1.98a |
FA | 32.14±0.06b | 9.31±0.16c | 39.38±0.87b | 32.44±0.92a | 6.94±0.45b |
EM | 32.37±0.12b | 9.64±0.26bc | 40.62±1.36b | 33.00±0.73a | 10.41±1.28a |
FC | 32.30±0.13b | 9.80±0.24b | 40.66±1.34b | 30.22±1.33b | 7.66±2.05ab |
FM | 33.96±0.09a | 10.82±0.07a | 37.48±0.44c | 27.45±1.40c | 10.02±1.82a |
FCM | 34.15±0.16a | 11.18±0.04a | 35.06±0.80d | 26.61±1.35c | 8.89±0.17a |
表3 不同处理青贮80 d对笋壳饲料营养成分的影响
Table 3 Effects of 80 days silage with different treatments on nutrient composition of bamboo shell feed (%)
组别Groups | 组别 Groups | ||||
---|---|---|---|---|---|
干物质Dry matter | 粗蛋白 Crude protein | 中性洗涤纤维Neutral detergent fiber | 酸性洗涤纤维Acid detergent fiber | 半纤维素Hemicellulose | |
CK | 29.34±0.22c | 8.57±0.36d | 44.42±0.74a | 34.39±1.33a | 10.03±1.98a |
FA | 32.14±0.06b | 9.31±0.16c | 39.38±0.87b | 32.44±0.92a | 6.94±0.45b |
EM | 32.37±0.12b | 9.64±0.26bc | 40.62±1.36b | 33.00±0.73a | 10.41±1.28a |
FC | 32.30±0.13b | 9.80±0.24b | 40.66±1.34b | 30.22±1.33b | 7.66±2.05ab |
FM | 33.96±0.09a | 10.82±0.07a | 37.48±0.44c | 27.45±1.40c | 10.02±1.82a |
FCM | 34.15±0.16a | 11.18±0.04a | 35.06±0.80d | 26.61±1.35c | 8.89±0.17a |
组别 Groups | 项目 Items | ||
---|---|---|---|
pH | 乳酸 Lactic acid (%) | 氨态氮/总氮Ammoniacal nitrogen/total nitrogen | |
CK | 4.15±0.01a | 7.90±0.24d | 7.24±0.53a |
FA | 3.75±0.03d | 8.44±0.24c | 5.51±0.21c |
EM | 4.21±0.01a | 8.33±0.31c | 6.99±0.63ab |
FC | 3.86±0.02c | 9.25±0.17b | 6.05±0.69bc |
FM | 3.94±0.02b | 10.83±0.15a | 5.97±0.75c |
FCM | 3.74±0.01d | 11.23±0.22a | 5.45±0.02c |
表4 不同处理青贮80 d对笋壳pH和青贮品质的影响
Table 4 Effects of different treatments on pH and silage quality of bamboo shell silage for 80 days
组别 Groups | 项目 Items | ||
---|---|---|---|
pH | 乳酸 Lactic acid (%) | 氨态氮/总氮Ammoniacal nitrogen/total nitrogen | |
CK | 4.15±0.01a | 7.90±0.24d | 7.24±0.53a |
FA | 3.75±0.03d | 8.44±0.24c | 5.51±0.21c |
EM | 4.21±0.01a | 8.33±0.31c | 6.99±0.63ab |
FC | 3.86±0.02c | 9.25±0.17b | 6.05±0.69bc |
FM | 3.94±0.02b | 10.83±0.15a | 5.97±0.75c |
FCM | 3.74±0.01d | 11.23±0.22a | 5.45±0.02c |
图1 不同添加剂青贮笋壳对湖羊瘤胃上皮组织结构的影响黄色箭头代表乳头长度,黑色箭头代表肌层厚度。The yellow arrow represents the length of the nipple and the black arrow represents the thickness of the muscle layer.
Fig.1 Effects of silage bamboo shoot shells with different additives on rumen epithelial tissue structure of Hu Sheep (×200)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
乳头长度 Nipple length | 1.28±0.16b | 1.72±0.21a | 1.79±0.14a |
肌层厚度 Muscle thickness | 1.17±0.20b | 1.61±0.12b | 2.33±0.91a |
表5 不同添加剂青贮笋壳对湖羊瘤胃形态的影响
Table 5 Effects of different additives on rumen morphology of Hu Sheep (mm)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
乳头长度 Nipple length | 1.28±0.16b | 1.72±0.21a | 1.79±0.14a |
肌层厚度 Muscle thickness | 1.17±0.20b | 1.61±0.12b | 2.33±0.91a |
项目Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
Chao1 | 2456.21±337.90b | 2897.70±19.78a | 3007.31±85.07a |
Shannon | 8.27±1.06a | 9.21±0.08a | 9.41±0.19a |
Simpson | 0.97±0.04a | 0.99±0.01a | 0.99±0.01a |
表6 Alpha多样性指数
Table 6 Alpha diversity index
项目Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
Chao1 | 2456.21±337.90b | 2897.70±19.78a | 3007.31±85.07a |
Shannon | 8.27±1.06a | 9.21±0.08a | 9.41±0.19a |
Simpson | 0.97±0.04a | 0.99±0.01a | 0.99±0.01a |
图3 基于Unweighted Unifrac (A)和Weighted Unifrac (B)距离的瘤胃微生物群落结构的主坐标分析
Fig.3 Principal coordinate analysis of rumen microbial community structure based on Unweighted Unifrac (A) and Weighted Unifrac distance (B)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
厚壁菌门Firmicutes | 58.18±16.43a | 52.24±9.65a | 55.07±7.17a |
拟杆菌门Bacteroidetes | 37.26±17.55a | 39.95±6.47a | 39.34±9.21a |
TM7菌门TM7 | 2.59±1.31a | 2.28±1.23a | 2.61±1.46a |
软壁菌门Tenericutes | 0.26±0.31a | 4.00±5.85a | 1.13±1.02a |
变形菌门Proteobacteria | 0.75±0.17a | 0.43±0.20a | 0.62±0.27a |
放线菌门Actinobacteria | 0.29±0.26a | 0.21±0.09a | 0.37±0.12a |
表7 门水平微生物相对丰度
Table 7 Relative abundance of microorganisms at phylum level (%)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
厚壁菌门Firmicutes | 58.18±16.43a | 52.24±9.65a | 55.07±7.17a |
拟杆菌门Bacteroidetes | 37.26±17.55a | 39.95±6.47a | 39.34±9.21a |
TM7菌门TM7 | 2.59±1.31a | 2.28±1.23a | 2.61±1.46a |
软壁菌门Tenericutes | 0.26±0.31a | 4.00±5.85a | 1.13±1.02a |
变形菌门Proteobacteria | 0.75±0.17a | 0.43±0.20a | 0.62±0.27a |
放线菌门Actinobacteria | 0.29±0.26a | 0.21±0.09a | 0.37±0.12a |
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
未鉴定的拟杆菌科Unidentified_Bacteroidales | 30.14±21.02a | 25.48±3.32a | 20.50±4.56a |
瘤胃球菌科 Ruminococcaceae | 17.12±1.21a | 20.98±3.20a | 19.12±2.15a |
未鉴定的梭菌科Unidentified_Clostridiales | 16.69±8.37a | 15.94±2.90a | 15.80±2.81a |
毛螺菌科Lachnospiraceae | 12.39±10.02a | 5.33±2.79a | 8.07±3.86a |
BS11 | 1.84±0.88a | 6.44±5.09a | 6.12±3.27a |
普雷沃氏菌科Prevotellaceae | 1.98±1.24a | 3.39±2.81a | 7.24±3.54a |
F16 | 2.60±1.31a | 2.28±1.24a | 2.61±1.46a |
梭菌科Clostridiaceae | 2.88±1.47a | 1.26±0.62a | 3.24±1.63a |
克里斯滕森菌科Christensenellaceae | 1.94±0.28a | 1.83±0.53a | 2.55±0.90a |
韦荣球菌科Veillonellaceae | 2.40±0.95a | 1.83±0.53a | 1.80±1.16a |
副萼苔科Paraprevotellaceae | 1.20±1.35a | 1.45±0.78a | 2.12±1.25a |
表8 科水平微生物相对丰度
Table 8 Relative abundance of microorganisms at family level (%)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
未鉴定的拟杆菌科Unidentified_Bacteroidales | 30.14±21.02a | 25.48±3.32a | 20.50±4.56a |
瘤胃球菌科 Ruminococcaceae | 17.12±1.21a | 20.98±3.20a | 19.12±2.15a |
未鉴定的梭菌科Unidentified_Clostridiales | 16.69±8.37a | 15.94±2.90a | 15.80±2.81a |
毛螺菌科Lachnospiraceae | 12.39±10.02a | 5.33±2.79a | 8.07±3.86a |
BS11 | 1.84±0.88a | 6.44±5.09a | 6.12±3.27a |
普雷沃氏菌科Prevotellaceae | 1.98±1.24a | 3.39±2.81a | 7.24±3.54a |
F16 | 2.60±1.31a | 2.28±1.24a | 2.61±1.46a |
梭菌科Clostridiaceae | 2.88±1.47a | 1.26±0.62a | 3.24±1.63a |
克里斯滕森菌科Christensenellaceae | 1.94±0.28a | 1.83±0.53a | 2.55±0.90a |
韦荣球菌科Veillonellaceae | 2.40±0.95a | 1.83±0.53a | 1.80±1.16a |
副萼苔科Paraprevotellaceae | 1.20±1.35a | 1.45±0.78a | 2.12±1.25a |
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
未鉴定的拟杆菌属Unidentified_Bacteroidales | 30.14±21.02a | 25.48±3.32a | 20.50±4.56a |
未鉴定的瘤胃球菌属Unidentified_Ruminococcaceae | 15.61±0.87a | 18.64±3.52a | 16.43±2.23a |
未鉴定的梭菌属Unidentified_Clostridiales | 16.69±8.38a | 15.94±2.90a | 15.80±2.81a |
未鉴定的毛螺菌属Unidentified_Lachnospiraceae | 8.84±8.75a | 2.86±2.07a | 4.54±2.68a |
未鉴定BS11 Unidentified_BS11 | 1.83±0.88a | 6.44±5.09a | 6.12±3.27a |
普雷沃氏菌属Prevotella | 1.91±1.32a | 3.26±2.71a | 7.01±3.38a |
未鉴定的F16 Unidentified_F16 | 2.60±1.31a | 2.28±1.24a | 2.61±1.46a |
梭菌属Clostridium | 2.88±1.47a | 1.26±0.62a | 3.24±1.63a |
丁酸弧菌属Butyrivibrio | 2.56±1.49a | 1.29±0.28a | 2.19±0.71a |
未鉴定的克里斯滕森菌属Unidentified_Christensenellaceae | 2.40±0.95a | 1.83±0.53a | 1.80±1.16a |
未分类的梭菌属Unclassified_Clostridiales | 1.61±0.47a | 1.81±0.71a | 1.47±0.46a |
表9 属水平微生物相对丰度
Table 9 Relative abundance of microorganisms at genus level (%)
项目 Items | 组别 Groups | ||
---|---|---|---|
CK | FM | FCM | |
未鉴定的拟杆菌属Unidentified_Bacteroidales | 30.14±21.02a | 25.48±3.32a | 20.50±4.56a |
未鉴定的瘤胃球菌属Unidentified_Ruminococcaceae | 15.61±0.87a | 18.64±3.52a | 16.43±2.23a |
未鉴定的梭菌属Unidentified_Clostridiales | 16.69±8.38a | 15.94±2.90a | 15.80±2.81a |
未鉴定的毛螺菌属Unidentified_Lachnospiraceae | 8.84±8.75a | 2.86±2.07a | 4.54±2.68a |
未鉴定BS11 Unidentified_BS11 | 1.83±0.88a | 6.44±5.09a | 6.12±3.27a |
普雷沃氏菌属Prevotella | 1.91±1.32a | 3.26±2.71a | 7.01±3.38a |
未鉴定的F16 Unidentified_F16 | 2.60±1.31a | 2.28±1.24a | 2.61±1.46a |
梭菌属Clostridium | 2.88±1.47a | 1.26±0.62a | 3.24±1.63a |
丁酸弧菌属Butyrivibrio | 2.56±1.49a | 1.29±0.28a | 2.19±0.71a |
未鉴定的克里斯滕森菌属Unidentified_Christensenellaceae | 2.40±0.95a | 1.83±0.53a | 1.80±1.16a |
未分类的梭菌属Unclassified_Clostridiales | 1.61±0.47a | 1.81±0.71a | 1.47±0.46a |
图4 CK和FM组,CK和FCM组基于LEfSe分析的组间差异物种在LEfSe分析(LDA score>4)中,FCM组没有达到条件的生物标志物(LDA score>4),因此CK和FCM组基于LEfSe分析的组间差异物种只显示CK组。 In the LEfSe analysis (LDA score>4), there were no biomarkers that met the condition in the FCM group (LDA score>4), so intergroup differences in species between the CK and FCM groups based on the LEfSe analysis are only shown for the CK group.
Fig.4 Different species of CK and FM group, CK and FCM group based on LEfSe analysis
1 | Liu Y, Wu X F, Huang Q L, et al. Effects of different substitution ratios of bamboo shoot shell silage in diets on digestion and metabolism of mutton sheep. Chinese Journal of Animal Nutrition, 2020, 32(12): 5712-5723. |
刘远, 吴贤锋, 黄勤楼, 等. 饲粮中不同青贮笋壳替代比例对肉羊消化代谢的影响. 动物营养学报, 2020, 32(12): 5712-5723. | |
2 | Yang J L, Gao G B, Zhang F S, et al. Quality analysis and evaluation of five cultivars of Chimonobambusa quadrangularis shoots with color shell from Jinfoshan mountain. Food Science, 2022, 43(6): 303-308. |
杨金来, 高贵宾, 张甫生, 等. 5种彩色笋壳的金佛山方竹笋品质分析与评价. 食品科学, 2022, 43(6): 303-308. | |
3 | Gao Q, Ni L, He Y, et al. Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells. Energy, 2022, 247: 123510. |
4 | Wang Y Y, Hu Q, Gong W H, et al. Effects of alkaline combined with ultra-high pressure pretreatment on enzymatic hydrolysis efficiency of bamboo shell. Chemical Industry and Engineering Progress, 2022, 41(3): 1357-1363. |
王延云, 胡强, 龚卫华, 等. 碱联合超高压预处理对笋壳酶解效率的影响. 化工进展, 2022, 41(3): 1357-1363. | |
5 | Yan R, Yisha M, Zhidan Z, et al. Total alkaloids from bamboo shoots and bamboo shoot shells of Pleioblastus amarus (Keng) Keng f. and their anti-inflammatory activities. Molecules, 2019, 24(15): 2699. |
6 | Zhang S, Zheng B D, Lin L M, et al. Microwave-ultrasonic assisted extraction and antioxidant activity of polysaccharides from bamboo shoot shell. Food Science, 2015, 36(16): 72-76. |
张帅, 郑宝东, 林良美, 等. 笋壳多糖的微波-超声波联合辅助提取工艺优化及其抗氧化活性. 食品科学, 2015, 36(16): 72-76. | |
7 | Zhao J, Wang S, Dong Z, et al. Effect of substituting Pennisetum sinese with bamboo shoot shell (BSS) on aerobic stability and digestibility of ensiled total mixed ration. Italian Journal of Animal Science, 2021, 20(1): 1706-1715. |
8 | Wang H, Li K, Tian Y, et al. The current situation of bamboo shoot shell utilization and its analysis-Sichuan Province as an example. Rural Economy and Science-Technology, 2018, 29(9): 45-57. |
王浩, 李凯, 田瑶, 等. 笋壳利用现状及其分析——以四川省为例. 农村经济与科技, 2018, 29(9): 45-57. | |
9 | Wang H, Zhou H L, Chen H B, et al. Effects of microbial stored bamboo shoot shell on growth performance, meat quality and blood physiological and biochemical indexes of Hu sheep. Chinese Journal of Animal Science, 2021, 57(1): 153-157. |
王华, 周华林, 陈洪博, 等. 微贮笋壳对湖羊生长性能、肉品质及血液生理生化指标的影响. 中国畜牧杂志, 2021, 57(1): 153-157. | |
10 | Zhao J, Dong Z, Chen L, et al. The replacement of whole-plant corn with bamboo shoot shell on the fermentation quality, chemical composition, aerobic stability and in vitro digestibility of total mixed ration silage. Animal Feed Science and Technology, 2020, 259(C): 114348. |
11 | Undiandeye J, Gallegos D, Lenz J, et al. Effect of novel Aspergillus and Neurospora species-based additive on ensiling parameters and biomethane potential of sugar beet leaves. Applied Sciences, 2022, 12(5): 2684. |
12 | Wan J C, Xie K Y, Wang Y X, et al. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Asian-Australasian Journal of Animal Sciences, 2020, 34(1): 56-65. |
13 | Xian Z, Wu J, Deng M, et al. Effects of cellulase and Lactiplantibacillus plantarum on the fermentation parameters, nutrients, and bacterial community in Cassia alata silage. Frontiers in Microbiology, 2022(13): 926065. |
14 | Chatchai K, Waroon K, Pongsatorn G, et al. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture, 2020, 10(7): 262. |
15 | Su R, Ni K, Wang T, et al. Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ, 2019(7): 7712. |
16 | Ohland C L, Macnaughton W K. Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010, 298(6): G807-G819. |
17 | Reszka P, Cygan-Szczegielniak D, Jankowiak H, et al. Effects of effective microorganisms on meat quality, microstructure of the longissimus lumborum muscle, and electrophoretic protein separation in pigs fed on different diets. Animals, 2020, 10(10): 1755. |
18 | Liu D Q, Chen W X, Hua Y. Effect of lactic acid bacteria mixture on silage quality of bamboo shoots shell. Chinese Journal of Animal Nutrition, 2015, 27(6): 1963-1969. |
刘大群, 陈文烜, 华颖. 混合乳酸菌对笋壳青贮品质的影响. 动物营养学报, 2015, 27(6): 1963-1969. | |
19 | Liu J C. The research on the change of nutrients and organic acids in the process of the silage of bamboo shoot shell mix with wheat bran, rice husk and straw. Hefei: Anhui Agricultural University, 2015. |
柳俊超. 笋壳与麦麸、稻壳、稻草混合青贮过程营养成分及有机酸变化的研究. 合肥: 安徽农业大学, 2015. | |
20 | Liu J X, Yang Z H, Ye J A, et al. Rational preparation of silage and quality assessment criteria (continued). Feed Industry, 1999(4): 3-5. |
刘建新, 杨振海, 叶均安, 等. 青贮饲料的合理调制与质量评定标准(续). 饲料工业, 1999(4): 3-5. | |
21 | Song J C, Niu Y B. Feed analysis and feed quality testing technology. Beijing: China Agricultural Science and Technology Press, 2012. |
宋金昌, 牛一兵. 饲料分析与饲料质量检测技术. 北京: 中国农业科学技术出版社, 2012. | |
22 | Van Soest P J. Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 1967, 26(1): 119-128. |
23 | Yuan X J, Wen A Y, Wang J, et al. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa(Medicago sativa L.) silage. Journal of the Science of Food and Agriculture, 2018, 98(1): 328-335. |
24 | Licitra G, Hernadez T M, Soest T P. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science & Technology, 1996, 57(4): 347-358. |
25 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and amino acids in ruminal fluids and in vitro media. Journal of Dairy Science, 1980, 80: 2964-2971. |
26 | Dang H Q, Qin J Q, Guo Y K, et al. Effects of different additives on fermentation quality of bamboo shoot shell and growth performance and rumen fermentation function of Hu sheep. Acta Prataculturae Sinica, 2023, 32(7): 135-148. |
党浩千, 覃娟清, 郭宇康, 等. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响. 草业学报, 2023, 32(7): 135-148. | |
27 | National Scientific Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, D. C.: National Academies Press, 2007. |
28 | Wang Y G, Zhang F, Wu X F, et al. Effects of different proportions of concentrate in brewer’s grains on rumen fermentation and microbial diversity of Hu sheep. Fujian Journal of Agricultural Sciences, 2023, 38(3): 1-9. |
王迎港, 张富, 吴贤锋, 等. 啤酒糟替代饲粮中不同比例精料对湖羊瘤胃发酵及微生物多样性的影响. 福建农业学报, 2023, 38(3): 1-9. | |
29 | Zeng J Q. Resourceful utilization of bamboo shoot shell feed stuff and the study of its detoxication methods of cyanide glycoside. Hangzhou: Zhejiang Agriculture & Forestry University, 2015. |
曾俊棋. 笋壳饲料的资源化利用及其氰甙脱毒方法的研究. 杭州: 浙江农林大学, 2015. | |
30 | Zou S Y, Chen S K, Tang Q Y, et al. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
邹诗雨, 陈思葵, 唐启源, 等. 青贮剂对再生稻头季全株青贮品质和体外瘤胃发酵特性的影响. 草业学报, 2021, 30(7): 122-132. | |
31 | Huang X Y, Chen C F, Huang Q L, et al. Effect of lactic acid bacteriaand cellulase on the mixed silage of Pennisetum and Chamaecrista rotundifolia. Animal Husbandry & Veterinary Medicine, 2022, 54(2): 36-40. |
黄小云, 陈长福, 黄勤楼, 等. 乳酸菌和纤维素酶对狼尾草和圆叶决明混合青贮品质的影响. 畜牧与兽医, 2022, 54(2): 36-40. | |
32 | Yang L, Hu M L, Li L Y, et al. Effects of lactic acid bacteria and cellulase treatments on the fermentation quality of ‘Tifton 85’ bermudagrass silage. Chinese Journal of Grassland, 2022, 44(6): 91-97. |
杨烈, 胡茂雷, 李玲玉, 等. 添加乳酸菌与纤维素酶对‘Tifton 85’狗牙根青贮发酵品质的影响. 中国草地学报, 2022, 44(6): 91-97. | |
33 | Lin G H. The significance and method of forage silage. Modern Animal Husbandry Science & Technology, 2022(3): 80-81. |
蔺光辉. 饲草青贮的意义及方法. 现代畜牧科技, 2022(3): 80-81. | |
34 | Chen T, Liu Y, Sun R, et al. Effect of formic acid on silage quality and nutrient composition of Broussonetia papyrifera. Feed Research, 2022, 45(4): 103-105. |
陈婷, 刘悦, 孙蓉, 等. 添加甲酸对构树青贮品质和营养成分的影响. 饲料研究, 2022, 45(4): 103-105. | |
35 | Zhao X X, Guo F G, Luo F C. Effect of storage time and cellulase on silage quality of Chenopodium formosanum Koidz. Feed Research, 2022(10): 76-80. |
赵小雪, 郭凤根, 罗富成. 贮藏时间及纤维素酶对台湾红藜青贮品质的影响. 饲料研究, 2022(10): 76-80. | |
36 | Zhu J W, Li Y P, Xu Z Y, et al. Research on fermentation quality of mulberrysilage of adding Bacillus subtilis. China Feed, 2020(3): 82-86. |
朱佳文, 李峪鹏, 许祯莹, 等. 添加枯草芽孢杆菌对桑青贮发酵品质的研究. 中国饲料, 2020(3): 82-86. | |
37 | Tian J P, Liu B Y, Gu H R, et al. Effects of lactic acid bacteria and calcium propionate on fermentation quality and mycotoxin contents of whole plant maize and oat silages. Acta Prataculturae Sinica, 2022, 31(8): 157-166. |
田吉鹏, 刘蓓一, 顾洪如, 等. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响. 草业学报, 2022, 31(8): 157-166. | |
38 | Chen Y F, Yu W R, Wang F F, et al. Study on effects of mixed silage of reed and licorice stems & leaves with different proportions. Chinese Journal of Animal Nutrition, 2022, 35(1): 460-468. |
陈亚飞, 郁万瑞, 王芳芳, 等. 不同比例芦苇与甘草茎叶混合青贮效果研究. 动物营养学报, 2022, 35(1): 460-468. | |
39 | Hu Y B, Liang X Y, Yi J, et al. Effects of mixing ratio and additives on the quality of napier grassand whole-plant corn mixed silage. Pratacultural Science, 2022, 39(4): 778-786. |
胡远彬, 梁小玉, 易军, 等. 混合比例和添加剂对象草和全株玉米混合青贮品质的影响. 草业科学, 2022, 39(4): 778-786. | |
40 | Sun Y N, Li M, Liu Y L, et al. Physiological characterization of three strains of lactic acid bacteria. Farm Products Processing, 2022(10): 16-22. |
孙亚楠, 李梅, 刘玉龙, 等. 青贮发酵饲料中三株乳酸菌的生理特性研究. 农产品加工, 2022(10): 16-22. | |
41 | Zhou D, Yang S, Zhang X X, et al. Effects of additive types and combinations on silage quality of whole-plant rape after harvesting and air-drying. Acta Prataculturae Sinica, 2022, 31(4): 124-135. |
周迪, 杨帅, 张欣欣, 等. 添加剂种类和组合对晾晒后全株油菜青贮效果的影响. 草业学报, 2022, 31(4): 124-135. | |
42 | Zhang X, Liu X, Chang S, et al. Effect of Cistanche deserticola on rumen microbiota and rumen function in grazing sheep. Frontiers in Microbiology, 2022(13): 840725. |
43 | Tang J, Xia G, Liu Y L, et al. The research of histomorphological and transcriptomic of yak rumen at different ages. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3797-3810. |
唐娇, 夏果, 刘益丽, 等. 不同年龄段牦牛瘤胃组织形态学与转录组研究. 畜牧兽医学报, 2022, 53(11): 3797-3810. | |
44 | Zhang D Y, Zhang X X, Li F D, et al. Association of rumen histomorphology of sheep with different feed efficiencies. Scientia Agricultura Sinica, 2020, 53(24): 5115-5124. |
张德印, 张小雪, 李发弟, 等. 不同饲料效率与绵羊瘤胃组织形态学关系. 中国农业科学, 2020, 53(24): 5115-5124. | |
45 | Liu Q F. Protein requirements of 3-4 months old calves and rumen development of ruminants. Hangzhou: Zhejiang Normal University, 2020. |
刘清锋. 3~4月龄犊牛蛋白质需要及反刍动物瘤胃发育研究. 杭州: 浙江师范大学, 2020. | |
46 | Li J W, Wang Z Y, Hou S Z, et al. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep. Acta Prataculturae Sinica, 2021, 30(3): 100-109. |
李蒋伟, 王志有, 侯生珍, 等. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响. 草业学报, 2021, 30(3): 100-109. | |
47 | Yang D S, Yin M J, Luo D M, et al. Nutrient degradation and rumen microbial adhesion characteristics of corn straw with different specific surface areas. Chinese Journal of Animal Nutrition, 2022, 34(11): 7272-7281. |
杨大盛, 尹梦洁, 骆东梅, 等. 不同比表面积玉米秸秆营养物质降解及瘤胃微生物黏附特性的研究. 动物营养学报, 2022, 34(11): 7272-7281. | |
48 | Liao Q, Jiang S Z, Cao X, et al. Application progress of cellulase in livestock production. Feed Review, 2017(11): 17-19. |
廖奇, 江书忠, 曹霞, 等. 纤维素酶在畜牧生产中的应用进展. 饲料博览, 2017(11): 17-19. | |
49 | Yu J K, Cai L Y, Zhang J C, et al. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms, 2020, 8(8): 1160. |
50 | Chen Y. Effects of exogenous enzymes on Hu sheep rumen microbial flora. Cereal & Feed Industry, 2017(1): 57-63. |
陈宇. 外源酶对湖羊瘤胃微生物区系的影响. 粮食与饲料工业, 2017(1): 57-63. | |
51 | Jia P. Effect of different dietary biological agents on growth performance, nutrient digestion and ruminal microbial flora of Dorper×thin-tailed Han crossbred mutton lambs. Urumqi: Xinjiang Agricultural University, 2018. |
贾鹏. 不同生物制剂对杜寒杂交肉羊生产性能、物质消化和瘤胃微生物区系的影响. 乌鲁木齐: 新疆农业大学, 2018. | |
52 | Jiang B W. Effects of enzyme bacteria mixed treatment of roughage on fiber structure, growth performance and rumen microflora of Tan sheep. Yinchuan: Ningxia University, 2021. |
姜碧薇. 酶菌混合处理粗饲料对其纤维结构及滩羊生长性能和瘤胃菌群的影响. 银川: 宁夏大学, 2021. | |
53 | Cammack K M, Austin K J, Lamberson W R, et al. RUMINANT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96(10): 4481. |
54 | Cui H R. Effects of high and low proportion cottonseed shell diet on rumination, digestive metabolism and microbial flora of Duolang sheep. Alaer: Tarim University, 2022. |
崔浩然. 高低比例棉籽壳饲粮对多浪羊反刍、消化代谢及微生物区系的影响. 阿拉尔: 塔里木大学, 2022. | |
55 | Chen L J, Li D J, Zhang Y H. Effects of different combination ratios of paper mulberry and alfalfa on rumen bacterial diversity in Angus cows. Pratacultural Science, 2020, 37(8): 1579-1587. |
陈丽娟, 李道捷, 张云华. 不同比例构树与苜蓿混合对安格斯母牛瘤胃细菌多样性的影响. 草业科学, 2020, 37(8): 1579-1587. | |
56 | Zhang J, Zhang L L, Xu X F. Research progress of Prevotella in the rumen of ruminants. China Feed, 2020(7): 17-21. |
张洁, 张力莉, 徐晓锋. 反刍动物瘤胃内普雷沃氏菌的研究进展. 中国饲料, 2020(7): 17-21. |
[1] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[2] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[3] | 党浩千, 覃娟清, 郭宇康, 张富, 王迎港, 刘庆华. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响[J]. 草业学报, 2023, 32(7): 135-148. |
[4] | 梁梦琪, 武齐丰, 邵涛, 吴艾丽, 刘秦华. 添加剂对多花黑麦草青贮发酵品质、α-生育酚和β-胡萝卜素含量的影响[J]. 草业学报, 2023, 32(5): 180-189. |
[5] | 王钊, 刘静, 于昊, 李鹏, 牛伟强, 万永杰, 张艳丽, 茆达干. 日粮添加蚕豆皮对湖羊生长性能、屠宰性能、器官发育和肉品质的影响[J]. 草业学报, 2023, 32(10): 162-172. |
[6] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[7] | 李影正, 程榆林, 徐璐璐, 李万松, 严旭, 李晓锋, 何如钰, 周阳, 郑军军, 汪星宇, 张德龙, 程明军, 夏运红, 何建美, 唐祈林. 不同玉米品种(系)的全株、果穗与秸秆青贮特性比较[J]. 草业学报, 2022, 31(8): 144-156. |
[8] | 吴永杰, 丁浩, 邵涛, 赵杰, 董东, 代童童, 尹雪敬, 宗成, 李君风. 酶制剂对水稻秸秆青贮发酵品质及体外消化特性的影响[J]. 草业学报, 2022, 31(8): 167-177. |
[9] | 李君风, 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛. 瘤胃纤维素降解菌系对灭菌水稻秸秆结构性碳水化合物降解的影响[J]. 草业学报, 2022, 31(7): 85-95. |
[10] | 郭香, 吴硕, 郑明扬, 陈德奎, 邹璇, 陈晓阳, 周玮, 张庆. 添加黄梁木叶和壳寡糖对甘蔗梢青贮饲料发酵品质及有氧稳定性的影响[J]. 草业学报, 2022, 31(6): 202-210. |
[11] | 周迪, 杨帅, 张欣欣, 袁婧, 高艳霞, 李建国, 汪波, 周广生, 傅廷栋, 叶俊, 杨利国, 滑国华. 添加剂种类和组合对晾晒后全株油菜青贮效果的影响[J]. 草业学报, 2022, 31(4): 124-135. |
[12] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[13] | 周承福, 汪水平, 张佰忠, 张秀敏, 王荣, 马志远, 王敏. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响[J]. 草业学报, 2022, 31(2): 171-181. |
[14] | 李海萍, 关皓, 贾志锋, 刘文辉, 马祥, 刘勇, 汪辉, 马力, 周青平. 抗冻融乳酸菌的筛选及其对燕麦青贮品质和有氧稳定性的影响[J]. 草业学报, 2022, 31(12): 158-170. |
[15] | 范阳, 齐伟彪, 朱崇淼, 殷雨洋, 毛胜勇. 日粮中添加发酵豆渣对湖羊生长性能、养分表观消化率、肉品质及血清生化指标的影响[J]. 草业学报, 2022, 31(11): 86-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||