草业学报 ›› 2023, Vol. 32 ›› Issue (12): 90-103.DOI: 10.11686/cyxb2023046
苗春丽1(), 李仲贤2, 赵志成3, 伏帅1, 高金龙1, 刘洁1, 冯琦胜1, 梁天刚1()
收稿日期:
2023-02-13
修回日期:
2023-05-04
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
梁天刚
作者简介:
Corresponding author. E-mail: tgliang@lzu.edu.cn基金资助:
Chun-li MIAO1(), Zhong-xian LI2, Zhi-cheng ZHAO3, Shuai FU1, Jin-long GAO1, Jie LIU1, Qi-sheng FENG1, Tian-gang LIANG1()
Received:
2023-02-13
Revised:
2023-05-04
Online:
2023-12-20
Published:
2023-10-18
Contact:
Tian-gang LIANG
摘要:
苜蓿作为重要的优质牧草,其产量和品质的监测对草牧业发展具有十分重要的作用。传统大范围栽培苜蓿盖度和产量的地面调查以及卫星遥感反演易受天气、人力和财力等因素的影响,在时空动态监测方面具有一定局限性。近年来随着传感器和人工智能(AI)的快速发展及其在作物监测和分析方面的普遍应用,为栽培苜蓿盖度及产量的精准实时估测提供了新的契机。本研究以新疆、内蒙古、甘肃、宁夏等北方四省区栽培苜蓿为研究对象,结合地面实测资料,利用深度学习算法(DL)、多元线性回归(MLR)和随机森林(RF)方法建立了栽培苜蓿盖度和产量估测模型;并对模型精度进行了评价。研究结果表明:1)总体而言,我国新疆、甘肃河西等地区的栽培苜蓿以灌溉为主,地块集中连片、地势平坦,一年刈割3~4次,苜蓿草地在盛草期的平均产量和盖度达5362.81 kg·hm-2、96.29%;以旱作生产方式为主的甘肃陇东、宁夏南部等地区的栽培苜蓿草地大多种植在山区水平梯田,一年刈割2~3次,其盛草期的平均产量和盖度达3987.57 kg·hm-2、91.55%;2)基于无人机可见光遥感数据的苜蓿草地盖度深度学习模型的R2达0.99,均方根误差(RMSE)为1.44%,模型准确度为92%,对栽培苜蓿草层盖度的动态监测效果较好;3)利用经度、纬度及海拔和苜蓿关键生物物理指标草高、盖度及二者乘积构建的苜蓿产量RF模型相较于MLR模型可以提升产量的估测精度,最优估测模型测试集的R2为0.69,RMSE为1151.24 kg·hm-2。研究结果可以为栽培苜蓿智能感知系统的关键生物物理指标快速评估提供算法依据,对多点位高时频的网络化、自动化和智能化栽培苜蓿生长数据采集与动态分析系统应用具有重要的技术支撑作用。
苗春丽, 李仲贤, 赵志成, 伏帅, 高金龙, 刘洁, 冯琦胜, 梁天刚. 栽培苜蓿草地智能感知系统关键生物物理指标实时监测及分析算法研究[J]. 草业学报, 2023, 32(12): 90-103.
Chun-li MIAO, Zhong-xian LI, Zhi-cheng ZHAO, Shuai FU, Jin-long GAO, Jie LIU, Qi-sheng FENG, Tian-gang LIANG. Real-time monitoring and analysis algorithm for key biophysical indicators of cultivated alfalfa in a grassland intelligent perception system[J]. Acta Prataculturae Sinica, 2023, 32(12): 90-103.
月份 Month | 采样地点 Sampling locations | 灌溉情况 Irrigation condition | 样本 数量 Sample size | 平均盖度 The average coverage (%) | 产量Yield (kg·hm-2) | |||
---|---|---|---|---|---|---|---|---|
平均 Average | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | |||||
5 | 甘肃河西地区Hexi corridor, Gansu (2020,2021) | 人工Artificial | 69 | 96.29 | 5362.81 | 6010.40 | 1164.80 | 1934.90 |
7 | 甘肃陇东Eastern Gansu、宁夏南部Southern Ningxia (2018,2019) | 旱作Dry farming | 28 | 69.70 | 2588.42 | 2902.80 | 483.80 | 1386.49 |
新疆Xinjiang (2018)、内蒙古Inner Mongolia (2019)、甘肃河西地区Hexi corridor, Gansu (2020) | 人工Artificial | 38 | 82.45 | 3822.21 | 5157.33 | 732.00 | 2158.86 | |
8 | 甘肃陇东、宁夏南部Eastern Gansu, Southern Ningxia (2021) | 旱作Dry farming | 18 | 91.55 | 3987.57 | 6566.53 | 1810.93 | 1436.25 |
9 | 甘肃河西地区Hexi corridor, Gansu (2021) | 人工Artificial | 32 | 95.00 | 3507.26 | 2902.80 | 1172.90 | 1380.26 |
表1 2018-2021年栽培苜蓿关键生物物理指标外业观测数据统计分析
Table 1 Statistical analysis of field observation data of key biophysical indicators of cultivated alfalfa from 2018 to 2021
月份 Month | 采样地点 Sampling locations | 灌溉情况 Irrigation condition | 样本 数量 Sample size | 平均盖度 The average coverage (%) | 产量Yield (kg·hm-2) | |||
---|---|---|---|---|---|---|---|---|
平均 Average | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | |||||
5 | 甘肃河西地区Hexi corridor, Gansu (2020,2021) | 人工Artificial | 69 | 96.29 | 5362.81 | 6010.40 | 1164.80 | 1934.90 |
7 | 甘肃陇东Eastern Gansu、宁夏南部Southern Ningxia (2018,2019) | 旱作Dry farming | 28 | 69.70 | 2588.42 | 2902.80 | 483.80 | 1386.49 |
新疆Xinjiang (2018)、内蒙古Inner Mongolia (2019)、甘肃河西地区Hexi corridor, Gansu (2020) | 人工Artificial | 38 | 82.45 | 3822.21 | 5157.33 | 732.00 | 2158.86 | |
8 | 甘肃陇东、宁夏南部Eastern Gansu, Southern Ningxia (2021) | 旱作Dry farming | 18 | 91.55 | 3987.57 | 6566.53 | 1810.93 | 1436.25 |
9 | 甘肃河西地区Hexi corridor, Gansu (2021) | 人工Artificial | 32 | 95.00 | 3507.26 | 2902.80 | 1172.90 | 1380.26 |
模型 Model | 样本量 Number of samples | 训练集Train set | 测试集Test set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (%) | AC (%) | R2 | RMSE (%) | AC (%) | ||
U-Net | 1124 | 1 | 0.06 | 98 | 0.99 | 1.44 | 92 |
表2 栽培苜蓿草地盖度反演模型参数
Table 2 Parameters of inversion model for cultivated alfalfa grassland coverage
模型 Model | 样本量 Number of samples | 训练集Train set | 测试集Test set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (%) | AC (%) | R2 | RMSE (%) | AC (%) | ||
U-Net | 1124 | 1 | 0.06 | 98 | 0.99 | 1.44 | 92 |
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors | X、Y、h | 0.03 | 4642.21 | 0.06 | 4617.09 |
生物物理指标Biophysical indicators of plants | H、C、H×C | 0.62 | 1221.78 | 0.62 | 1271.58 |
环境因子、生物物理指标Environmental factors and biophysical indicators | X、Y、h、H、C、H×C | 0.64 | 1189.00 | 0.63 | 1218.15 |
表3 基于环境因子和植物生物物理指标的多元线性回归估测模型十折交叉验证
Table 3 10-fold cross-validation of MLR estimation model based on environmental factors and vegetation biophysical indicators
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors | X、Y、h | 0.03 | 4642.21 | 0.06 | 4617.09 |
生物物理指标Biophysical indicators of plants | H、C、H×C | 0.62 | 1221.78 | 0.62 | 1271.58 |
环境因子、生物物理指标Environmental factors and biophysical indicators | X、Y、h、H、C、H×C | 0.64 | 1189.00 | 0.63 | 1218.15 |
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors (E) | X、Y、h | 0.87 | 837.96 | 0.37 | 1623.17 |
植物生物物理指标Biophysical indicators of plants (B) | H、C、H×C | 0.91 | 634.56 | 0.65 | 1216.24 |
E×B | X、Y、h、H、C、H×C | 0.94 | 536.09 | 0.69 | 1151.24 |
表4 基于环境因子和植物生物物理指标的RF估测模型十折交叉验证
Table 4 10-fold cross-validation of RF estimation model based on enviromental factors and vegetation biophysical indicators
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors (E) | X、Y、h | 0.87 | 837.96 | 0.37 | 1623.17 |
植物生物物理指标Biophysical indicators of plants (B) | H、C、H×C | 0.91 | 634.56 | 0.65 | 1216.24 |
E×B | X、Y、h、H、C、H×C | 0.94 | 536.09 | 0.69 | 1151.24 |
图4 基于不同因素组合的RF苜蓿产量估测模型模拟a: 基于环境因子模拟结果Simulation results based on environmental factors; b: 基于植物生物物理指标模拟结果Simulation results based on plant biophysical indexes; c: 基于环境因子和植物生物物理指标模拟结果Simulation results based on environmental factors and plant biophysical indexes; 图中圆形大小和颜色代表实测的苜蓿产量,红线表示预测数据和实测数据之间的回归线,虚线为1∶1线The size and color of the circle in the figure represent the measured alfalfa yield, the red line represents the regression line between the predicted data and the measured data, and the dotted line is 1∶1.
Fig.4 Simulation of the optimal alfalfa yield estimation model based on different factors
1 | Zhang C M, Wang C Z, Hu X F, et al. Research progress on nutritional value and application of alfalfa. China Feed, 2005, 38(1): 15-17. |
张春梅, 王成章, 胡喜峰, 等. 紫花苜蓿的营养价值及应用研究进展. 中国饲料, 2005, 38(1): 15-17. | |
2 | Yang Q C, Sun Y. The history, current situation and development of alfalfa breeding in China. Chinese Journal of Grassland, 2011, 33(6): 95-101. |
杨青川, 孙彦. 中国苜蓿育种的历史、现状与发展趋势. 中国草地学报, 2011, 33(6): 95-101. | |
3 | Li X L, Wan L Q. Research progress on Medicago sativa silage technology. Acta Prataculturae Sinica, 2005, 14(2): 9-15. |
李向林, 万里强. 苜蓿青贮技术研究进展. 草业学报, 2005, 14(2): 9-15. | |
4 | Zhao C J. State-of-the-art and recommended developmental strategic objectives of smart agriculture. Smart Agriculture, 2019, 1(1): 1-7. |
赵春江. 智慧农业发展现状及战略目标研究. 智慧农业, 2019, 1(1): 1-7. | |
5 | Sun K T, Wang X L, Jiang D W, et al. 2030 scientific and technological breakthrough plan in the field of agriculture and food in the United States and its enlightenment. Global Science, Technology and Economy Outlook, 2020, 35(11): 25-32. |
孙康泰, 王小龙, 蒋大伟, 等. 美国农业和食品领域2030科技突破计划及启示. 全球科技经济瞭望, 2020, 35(11): 25-32. | |
6 | Liu X, Li W H, Zhao C J, et al. High-quality development of modern smart ecological agriculture. Strategic Study of CAE, 2022, 24(1): 38-45. |
刘旭, 李文华, 赵春江, 等. 面向2050年我国现代智慧生态农业发展战略研究. 中国工程科学, 2022, 24(1): 38-45. | |
7 | Wu W B, Shi Y, Duan Y L, et al. The precise management of orchard production driven by the remote sensing big data with the SAGI. China Agricultural Informatics, 2019, 31(4): 1-9. |
吴文斌, 史云, 段云林, 等. 天空地遥感大数据赋能果园生产精准管理. 中国农业信息, 2019, 31(4): 1-9. | |
8 | Li Y, Zhang W W, Jiang F, et al. Air, space and earth integrated smart agricultural service and management platform. Geomatics & Spatial Information Technology, 2022, 45(2): 132-134. |
李岩, 张雯雯, 姜飞, 等. 空天地一体化智慧农业服务与管理平台. 测绘与空间地理信息, 2022, 45(2): 132-134. | |
9 | Liu P Z, Meng X W, Tian P, et al. Design of a precision agriculture information perception system based on the internet of things. Computer Engineering & Science, 2012, 34(3): 137-141. |
柳平增, 孟祥伟, 田盼, 等. 基于物联网的精准农业信息感知系统设计. 计算机工程与科学, 2012, 34(3): 137-141. | |
10 | Zhang J N, Zhang X F, Jian M, et al. Crop covering algorithm using convolution neural network based on prior threshold optimization. Journal of Signal Processing, 2012, 33(9): 1230-1238. |
张加楠, 张雪芬, 简萌, 等. 先验阈值优化卷积神经网络的作物覆盖度提取算法. 信号处理, 2012, 33(9): 1230-1238. | |
11 | Fu S, Feng Q S, Dang J Y, et al. Comparison of grassland vegetation coverage extraction algorithms from UAV technology. Pratacultural Science, 2022, 39(3): 455-464. |
伏帅, 冯琦胜, 党菁阳, 等. 基于无人机图像的草地植被盖度估算方法比较. 草业科学, 2022, 39(3): 455-464. | |
12 | Zhou T, Hu Z Q, Han J Z, et al. Green vegetation extraction based on visible light image of UAV. China Environmental Science, 2021, 41(5): 2380-2390. |
周涛, 胡振琪, 韩佳政, 等. 基于无人机可见光影像的绿色植被提取. 中国环境科学, 2021, 41(5): 2380-2390. | |
13 | Li B, Xu X M, Han J W, et al. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 2020, 16(1): 1-12. |
14 | Deng L X. Application of UAV images in monitoring flowering coverage and insect visiting activities of wetland plant communities. Wuhan: Wuhan University, 2022. |
邓璐希. 无人机影像用于监测湿地植物群落开花覆盖度与昆虫访花活动. 武汉: 武汉大学, 2022. | |
15 | Wang C B. Research of corn vegetation fraction based on UAV visible spectrum. Kunming: Kunming University of Science and Technology, 2017. |
王成波. 基于无人机可视光谱的玉米植被覆盖度研究. 昆明: 昆明理工大学, 2017. | |
16 | Wang K N, Wang X X. Research on winter wheat yield estimation with the multiply remote sensing vegetation index combination. Journal of Arid Land Resources and Environment, 2017, 32(3): 44-49. |
王恺宁, 王修信. 多植被指数组合的冬小麦遥感估产方法研究. 干旱区资源与环境, 2017, 32(3): 44-49. | |
17 | Zhu Z C, Chen L Q, Zhang J S, et al. Division of winter wheat yield estimation by remote sensing based on MODIS EVI time series data and spectral angle clustering. Spectroscopy and Spectral Analysis, 2012, 32(7): 1899-1903. |
朱再春, 陈联裙, 张锦水, 等. MODIS EVI 时间序列数据和光谱角聚类的冬小麦遥感估产分区方法研究. 光谱学与光谱分析, 2012, 32(7): 1899-1903. | |
18 | Li H. Rice growth monitoring and yield forecasting through HJ-1A/B image. Hefei: Anhui Agricultural University, 2013. |
李花. HJ-1A/B遥感监测水稻长势与产量的研究. 合肥: 安徽农业大学, 2013. | |
19 | An M L. Study on of spring maize-yield estimation of Ganzhou District by remote sensing in the middle reaches of Heihe River. Lanzhou: Northwest Normal University, 2015. |
安美玲. 黑河中游甘州区春玉米遥感估产研究. 兰州: 西北师范大学, 2015. | |
20 | Cheng Y F. Study of remote sensing cotton yield estimation model in north of Xinjiang. Urumqi: Xinjiang University, 2012. |
程乙峰. 新疆北疆棉花遥感估产模型研究. 乌鲁木齐: 新疆大学, 2012. | |
21 | A R N. The potato yield estimation and it’s accuracy accessment using multi-source remote sensing data. Hohhot: Inner Mongolia Normal University, 2015. |
阿茹娜. 基于多源遥感数据的马铃薯估产与精度评估. 呼和浩特: 内蒙古师范大学, 2015. | |
22 | Yuan H, Yang G, Li C, et al. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sensing, 2017, 9(4): 309. |
23 | Jing X, Zhang J, Wang J J, et al. Comparison of machine learning algorithms for remote sensing monitoring of rice yields. Spectroscopy and Spectral Analysis, 2022, 42(5): 1620-1627. |
竞霞, 张杰, 王娇娇, 等. 水稻产量遥感监测机器学习算法对比. 光谱学与光谱分析, 2022, 42(5): 1620-1627. | |
24 | Yin H M, Guli J P E, Yu T, et al. Wheat yield estimation with remote sensing in Northern Kazakhstan. Arid Land Geography, 2022, 45(2): 488-498. |
尹瀚民, 古丽·加帕尔, 于涛, 等. 哈萨克斯坦北部小麦估产方法研究. 干旱区地理, 2022, 45(2): 488-498. | |
25 | Yu X H, Zhao W Q, Zhu Z C, et al. Research in crop yield estimation models on different scales based on remote sensing and crop growth model. Spectroscopy and Spectral Analysis, 2021, 41(7): 2205-2211. |
余新华, 赵维清, 朱再春, 等. 基于遥感数据和作物生长模型的多尺度冬小麦估产研究. 光谱学与光谱分析, 2021, 41(7): 2205-2211. | |
26 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation//International conference on medical image computing and computer assisted intervention. Heidelberg, Germany: Springer, 2015: 234-241. |
27 | Liang H, Gui J, Hua Y, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 2019, 15: 10. |
28 | Meng B, Gao J, Liang T, et al. Modeling of alpine grassland cover based on unmanned aerial vehicle technology and multi-factor methods: A case study in the east of Tibetan Plateau, China. Remote Sensing, 2018, 10(2): 320. |
29 | Park D, El-sharkawi M, Marks R, et al. Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 1991(2): 442-449. |
30 | Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32. |
31 | Liaw A, Wiener M. Classification and regression by random forest. R News, 2002, 2(3): 18-22. |
32 | Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 2005, 95(2): 177-194. |
33 | Chen J, Yang Z Y, Li Z G. Design and implementation expert system of apple precise management. Science Technology and Engineering, 2011, 11(6): 1231-1236. |
陈健, 杨志义, 李志刚. 苹果精准管理专家系统的设计与实现. 科学技术与工程, 2011, 11(6): 1231-1236. | |
34 | Wang X D. Design and implementation of farmland intelligent irrigation system based on WSN. Harbin: Northeast Agricultural University, 2018. |
王旭东. 基于WSN的农田智能灌溉系统的设计与实现. 哈尔滨: 东北农业大学, 2018. | |
35 | Zheng L H, Li M Z, Ji R H, et al. Development of soil moisture management models based on GIS for farmland and its application. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(Supp.2): 13-17. |
郑立华, 李民赞, 冀荣华, 等. 基于GIS的农田土壤水分状况管理模型及应用. 农业工程学报, 2009, 25(增刊2): 13-17. | |
36 | Yu G X, Wang W X, Xie J X, et al. Information acquisition and expert decision system in litchi based on internet of things. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 144-152. |
余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统. 农业工程学报, 2016, 32(20): 144-152. | |
37 | Yu Z H. Research on automatic observation technology of maize development stage based on image. Wuhan: Huazhong University of Science and Technology, 2014. |
余正泓. 基于图像的玉米发育期自动观测技术研究. 武汉: 华中科技大学, 2014. | |
38 | Yan J C. Technology on remote automatic monitoring of crop canopy coverage and height. Hangzhou: Zhejiang Sci-Tech University, 2016. |
严锦程. 作物冠层覆盖率、株高的远程自动监测技术. 杭州: 浙江理工大学, 2016. | |
39 | Wu Z L, Liang D, Zhao J L, et al. Image segemention method for Achnatherum splendens coverage based on UAV remote sensing image. Transducer and Microsystem Technologies, 2018, 37(4): 51-53. |
吴赵丽, 梁栋, 赵晋陵, 等. 基于无人机遥感影像芨芨草盖度的图像分割方法. 传感器与微系统, 2018, 37(4): 51-53. | |
40 | Zhao X Y, Chen J J, Zhang K Q, et al. Automatic extraction of vegetation coverage from unmanned aerial vehicle images based on HSV and Otsu algorithm. Science Technology and Engineering, 2021(35): 15160-15166. |
赵晓宇, 陈建军, 张凯琪, 等. 基于 HSV 色彩空间和 Otsu算法的无人机影像植被覆盖度自动提取. 科学技术与工程, 2021(35): 15160-15166. | |
41 | Li R, Li C J, Xu X G, et al. Winter wheat yield estimation based on support vector machine regression and multi-temporal remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 114-117. |
黎锐, 李存军, 徐新刚, 等. 基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产. 农业工程学报, 2009, 25(7): 114-117. | |
42 | Guo F C, Chen Z W, Zhang Z G. Research on remote sensing estimation of forage above-ground biomass based on optimal model selection. Acta Agrestia Sinica, 2021, 29(5): 946-955. |
郭凡超, 陈泽威, 张志高. 基于最优模型选择的牧草地上生物量遥感估算研究. 草地学报, 2021, 29(5): 946-955. | |
43 | Mohsen A, Davoud A, Hossein A, et al. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sensing Applications: Society and Environment, 2022, 25: 100657. |
44 | Wang J G, Lv X D, Yao G P, et al. Estimation of fresh forage yield of mixed sowing pastures of alfalfa and smooth-brome with hyperspectral remote sensing. Chinese Journal of Grassland, 2013, 35(1): 35-41. |
王建光, 吕小东, 姚贵平, 等. 苜蓿和无芒雀麦混播草地高光谱遥感估产研究. 中国草地学报, 2013, 35(1): 35-41. | |
45 | Gao H Y, Hou M J, Ge J, et al. Hyperspectral estimation of aboveground biomass of alpine grassland based on random forest algorithm. Acta Agrestia Sinica, 2021, 29(8): 1757-1768. |
高宏元, 侯蒙京, 葛静, 等. 基于随机森林的高寒草地地上生物量高光谱估算. 草地学报, 2021, 29(8): 1757-1768. | |
46 | Cui M R. Machine learning-based hyperspectral estimation of potato yield. Hohhot: Inner Mongolia Agricultural University, 2022. |
崔孟然. 基于机器学习的马铃薯产量高光谱估算. 呼和浩特: 内蒙古农业大学, 2022. | |
47 | Yang B P, Chen S B, Yu H Y, et al. Remote sensing estimation of rice yield based on random forest regression method. Journal of China Agricultural University, 2020, 25(6): 26-34. |
杨北萍, 陈圣波, 于海洋, 等. 基于随机森林回归方法的水稻产量遥感估算. 中国农业大学学报, 2020, 25(6): 26-34. |
[1] | 杨志贵, 张建国, 李锦荣, 于红妍, 常丽, 宜树华, 吕燕燕, 张玉琢, 孟宝平. 内蒙古温性草原草地类型近20年时空动态变化研究[J]. 草业学报, 2023, 32(9): 1-16. |
[2] | 花蕊, 包达尔罕, 董瑞, 唐庄生, 楚彬, 郝媛媛, 花立民. 基于无人机遥感的天然草原鼠害发生面积调查方法研究[J]. 草业学报, 2023, 32(5): 71-82. |
[3] | 郭芮, 伏帅, 侯蒙京, 刘洁, 苗春丽, 孟新月, 冯琦胜, 贺金生, 钱大文, 梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究[J]. 草业学报, 2023, 32(4): 15-29. |
[4] | 李云昊, 李仲贤, 伏帅, 张忠雪, 茆士琴, 冯琦胜, 梁天刚, 李彦忠. 基于AlexNet的栽培苜蓿病害识别[J]. 草业学报, 2023, 32(12): 104-114. |
[5] | 厉方桢, 钟华平, 欧阳克蕙, 赵小敏, 李愈哲. 基于机器学习的阿勒泰地区草地地下生物量估测与数字制图[J]. 草业学报, 2022, 31(8): 13-23. |
[6] | 花蕊, 周睿, 包达尔罕, 董克池, 唐庄生, 花立民. 基于旋翼无人机低空遥感的高原鼠兔危害等级划分技术研究[J]. 草业学报, 2022, 31(4): 165-176. |
[7] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[8] | 金哲人, 冯琦胜, 王瑞泾, 梁天刚. 基于MODIS数据与机器学习的青藏高原草地地上生物量研究[J]. 草业学报, 2022, 31(10): 1-17. |
[9] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[10] | 杨帆, 邵全琴, 郭兴健, 李愈哲, 王东亮, 张雅娴, 汪阳春, 刘纪远, 樊江文. 玛多县大型野生食草动物种群数量对草畜平衡的影响研究[J]. 草业学报, 2018, 27(7): 1-13. |
[11] | 葛静, 孟宝平, 杨淑霞, 高金龙, 冯琦胜, 梁天刚, 黄晓东, 高新华, 李文龙, 张仁平, 王云龙. 基于UAV技术和MODIS遥感数据的高寒草地盖度动态变化监测研究—以黄河源东部地区为例[J]. 草业学报, 2017, 26(3): 1-12. |
[12] | 高爱民,吴劲锋,戴飞,张锋伟,韩正晟. 割草机土壤压实与苜蓿产量相关性研究[J]. 草业学报, 2014, 23(2): 59-65. |
[13] | 韩华雯,孙丽娜,姚拓,荣良燕,刘青海,卢虎,马晖玲. 不同促生菌株组合对紫花苜蓿产量和品质的影响[J]. 草业学报, 2013, 22(5): 104-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||