草业学报 ›› 2023, Vol. 32 ›› Issue (12): 189-197.DOI: 10.11686/cyxb2023091
• 研究简报 • 上一篇
聂洪辛1,2,3(), 李毓敏1,2,3, 庞凯悦1,2,3, 柴沙驼1,2,3,4, 申迪1,2,3, 曾子铭1,2,3, 廖扬1,2,3, 王迅1,2,3, 薛斌1, 刘书杰1,2,3, 王书祥1,2,3,4(), 杨英魁1,2,3,4()
收稿日期:
2023-04-02
修回日期:
2023-04-19
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
王书祥,杨英魁
作者简介:
yykui@qhu.edu.cn基金资助:
Hong-xin NIE1,2,3(), Yu-min LI1,2,3, Kai-yue PANG1,2,3, Sha-tuo CHAI1,2,3,4, Di SHEN1,2,3, Zi-ming ZENG1,2,3, Yang LIAO1,2,3, Xun WANG1,2,3, Bin XUE1, Shu-jie LIU1,2,3, Shu-xiang WANG1,2,3,4(), Ying-kui YANG1,2,3,4()
Received:
2023-04-02
Revised:
2023-04-19
Online:
2023-12-20
Published:
2023-10-18
Contact:
Shu-xiang WANG,Ying-kui YANG
摘要:
本试验旨在研究不同精粗比对牦牛粪便菌群结构的影响。选取24头体重相近、健康的3岁公牦牛,随机分成2组,分别饲喂低精粗比饲粮(35∶65, C35组)和高精粗比饲粮(65∶35, C65组)。预试期为15 d,试验期为90 d。运用16S rDNA高通量测序技术对粪便菌群结构变化进行分析。结果表明:1)2组共检测出1702个操作分类单元(OTU),其中两组共有的OTU数目为1273个,占总OTU数目的74.79%;C35组的物种数、Chao1指数与Shannon指数显著高于C65组(P<0.05)。2)在门水平下,C35组牦牛粪便中髌细菌门和蓝藻菌门极显著高于C65组(P<0.01),放线菌门显著高于C65组(P<0.05);C65组牦牛粪便中拟杆菌门、螺旋体门显著高于C35组(P<0.05)。3) C35组牦牛粪便中瘤胃球菌属极显著高于C65组(P<0.01),毛螺菌科_NK3A20显著高于C65组(P<0.05);C65组牦牛粪便中未培养的属极显著高于C35组(P<0.01),未培养细菌属、拟普雷沃氏菌属、密螺旋体属显著高于C35组(P<0.05)。4)利用PICRUSt预测粪便微生物的代谢途径和功能,在KEGG2水平,C65组复制和修复、翻译、核苷酸代谢、其他次生代谢物的合成、细胞生长和死亡的基因家族相对丰度极显著高于C35组(P<0.01)。综上,饲粮精粗比显著影响了牦牛粪便菌群的多样性与丰富度。且饲喂高精粗比饲粮(65∶35)促进了牦牛粪便中非纤维降解菌的增殖,提高了拟普雷沃氏菌属的丰度值,但抑制了毛螺菌科的生长,研究结果丰富了对牦牛粪便菌群结构的认识。
聂洪辛, 李毓敏, 庞凯悦, 柴沙驼, 申迪, 曾子铭, 廖扬, 王迅, 薛斌, 刘书杰, 王书祥, 杨英魁. 不同精粗比对牦牛粪便菌群结构的影响[J]. 草业学报, 2023, 32(12): 189-197.
Hong-xin NIE, Yu-min LI, Kai-yue PANG, Sha-tuo CHAI, Di SHEN, Zi-ming ZENG, Yang LIAO, Xun WANG, Bin XUE, Shu-jie LIU, Shu-xiang WANG, Ying-kui YANG. Effect of different concentrate to forage ratios on the structure of microflora in yak manure[J]. Acta Prataculturae Sinica, 2023, 32(12): 189-197.
原料Ingredients | C35 | C65 |
---|---|---|
燕麦干草Oats hay (%) | 65.00 | 35.00 |
玉米Corn (%) | 15.19 | 29.75 |
小麦Wheat (%) | 4.23 | 8.39 |
麸皮Wheat bran (%) | 4.35 | 8.56 |
菜籽粕Rapeseed meal (%) | 4.32 | 8.55 |
豆粕Soybean meal (%) | 1.47 | 2.91 |
棕榈油脂肪粉Palm oil powder (%) | 1.44 | 2.84 |
CaHPO4 (%) | 1.00 | 1.00 |
食盐NaCl (%) | 1.00 | 1.00 |
预混料Premix1) (%) | 2.00 | 2.00 |
合计Total (%) | 100.00 | 100.00 |
营养水平Nutrient levels2) | ||
代谢能Metabolic energy (ME,MJ·kg-1) | 10.08 | 11.89 |
粗蛋白质Crude protein (CP,%) | 11.72 | 13.18 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 43.53 | 31.36 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 27.88 | 18.36 |
钙Ca (%) | 0.44 | 0.48 |
磷 P (%) | 0.43 | 0.56 |
表1 试验饲粮组成及营养水平
Table 1 Composition and nutrient levels of experimental diets
原料Ingredients | C35 | C65 |
---|---|---|
燕麦干草Oats hay (%) | 65.00 | 35.00 |
玉米Corn (%) | 15.19 | 29.75 |
小麦Wheat (%) | 4.23 | 8.39 |
麸皮Wheat bran (%) | 4.35 | 8.56 |
菜籽粕Rapeseed meal (%) | 4.32 | 8.55 |
豆粕Soybean meal (%) | 1.47 | 2.91 |
棕榈油脂肪粉Palm oil powder (%) | 1.44 | 2.84 |
CaHPO4 (%) | 1.00 | 1.00 |
食盐NaCl (%) | 1.00 | 1.00 |
预混料Premix1) (%) | 2.00 | 2.00 |
合计Total (%) | 100.00 | 100.00 |
营养水平Nutrient levels2) | ||
代谢能Metabolic energy (ME,MJ·kg-1) | 10.08 | 11.89 |
粗蛋白质Crude protein (CP,%) | 11.72 | 13.18 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 43.53 | 31.36 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 27.88 | 18.36 |
钙Ca (%) | 0.44 | 0.48 |
磷 P (%) | 0.43 | 0.56 |
项目 Item | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
观测到的物种Observed species | 1097.15a | 912.33b | 37.56 | 0.01 |
Chao1指数Chao1 index | 1236.56a | 1068.56b | 37.02 | 0.01 |
Shannon指数Shannon index | 7.51a | 7.00b | 0.11 | 0.01 |
Simpson指数Simpson index | 0.98a | 0.97a | 0.01 | 0.21 |
表2 不同精粗比饲粮对牦牛粪便菌群Alpha多样性的影响
Table 2 Effects of different concentrate to forage ratio on diversity of faecal flora Alpha in yak
项目 Item | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
观测到的物种Observed species | 1097.15a | 912.33b | 37.56 | 0.01 |
Chao1指数Chao1 index | 1236.56a | 1068.56b | 37.02 | 0.01 |
Shannon指数Shannon index | 7.51a | 7.00b | 0.11 | 0.01 |
Simpson指数Simpson index | 0.98a | 0.97a | 0.01 | 0.21 |
门水平 Phylum level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
厚壁菌门Firmicutes | 0.745a | 0.696a | 0.017 | 0.15 |
拟杆菌门Bacteroidota | 0.176b | 0.252a | 0.020 | 0.04 |
放线菌门Actinobacteriota | 0.027a | 0.013b | 0.003 | 0.04 |
螺旋体门Spirochaetota | 0.006b | 0.020a | 0.004 | 0.04 |
疣微菌门Verrucomicrobiota | 0.014a | 0.006a | 0.003 | 0.20 |
髌细菌门Patescibacteria | 0.014a | 0.005b | 0.001 | <0.01 |
变形菌门Proteobacteria | 0.008a | 0.004a | 0.002 | 0.34 |
蓝藻菌门Cyanobacteria | 0.009a | 0.003b | 0.001 | <0.01 |
迷踪菌门Elusimicrobiota | 0.001a | 0.001a | 0.001 | 0.08 |
酸杆菌门Acidobacteriota | 0.001a | 0.001a | 0.001 | 0.32 |
表3 不同精粗比对牦牛粪便菌群组成的影响
Table 3 Effects of different concentrate to forage ratio on microflora composition of yak feces
门水平 Phylum level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
厚壁菌门Firmicutes | 0.745a | 0.696a | 0.017 | 0.15 |
拟杆菌门Bacteroidota | 0.176b | 0.252a | 0.020 | 0.04 |
放线菌门Actinobacteriota | 0.027a | 0.013b | 0.003 | 0.04 |
螺旋体门Spirochaetota | 0.006b | 0.020a | 0.004 | 0.04 |
疣微菌门Verrucomicrobiota | 0.014a | 0.006a | 0.003 | 0.20 |
髌细菌门Patescibacteria | 0.014a | 0.005b | 0.001 | <0.01 |
变形菌门Proteobacteria | 0.008a | 0.004a | 0.002 | 0.34 |
蓝藻菌门Cyanobacteria | 0.009a | 0.003b | 0.001 | <0.01 |
迷踪菌门Elusimicrobiota | 0.001a | 0.001a | 0.001 | 0.08 |
酸杆菌门Acidobacteriota | 0.001a | 0.001a | 0.001 | 0.32 |
属水平 Genus level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
UCG-005 | 0.200a | 0.214a | 0.009 | 0.48 |
未培养细菌属Uncultured_bacterium | 0.082b | 0.132a | 0.012 | 0.03 |
未识别属Unidentified | 0.074a | 0.099a | 0.010 | 0.21 |
理研菌科_RC9 Rikenellaceae_RC9 | 0.057a | 0.064a | 0.006 | 0.62 |
克里斯滕森菌科_R_7群 Christensenellaceae_R_7 group | 0.051a | 0.040a | 0.003 | 0.11 |
未培养的属Uncultured | 0.046a | 0.030b | 0.003 | <0.01 |
毛螺菌科_NK3A20群 Lachnospiraceae_NK3A20 group | 0.043a | 0.018b | 0.005 | 0.02 |
狭义梭菌属1 Clostridium_sensu_stricto_1 | 0.025a | 0.035a | 0.006 | 0.40 |
拟杆菌属Bacteroides | 0.034a | 0.021a | 0.005 | 0.24 |
罗姆布茨菌属Romboutsia | 0.027a | 0.018a | 0.003 | 0.15 |
单核球蛋白属Monoglobus | 0.024a | 0.018a | 0.002 | 0.07 |
拟普雷沃氏菌属Alloprevotella | 0.005b | 0.032a | 0.006 | 0.02 |
罗氏菌属Roseburia | 0.017a | 0.020a | 0.004 | 0.67 |
帕氏菌属Paeniclostridium | 0.021a | 0.010a | 0.003 | 0.07 |
苏黎士杆菌属Turicibacter | 0.011a | 0.017a | 0.003 | 0.37 |
密螺旋体属Treponema | 0.005b | 0.020a | 0.004 | 0.03 |
奥尔塞内拉属Olsenella | 0.015a | 0.007a | 0.003 | 0.16 |
泰泽雷拉菌属Tyzzerella | 0.009a | 0.013a | 0.002 | 0.36 |
黄斑菌属Acetitomaculum | 0.016a | 0.006a | 0.004 | 0.18 |
瘤胃球菌属Ruminococcus | 0.050a | 0.017b | 0.002 | <0.01 |
表4 不同精粗比饲粮对牦牛粪便菌群组成的影响
Table 4 Effects of different concentrate to forage ratio on bacterial community composition of yak feces
属水平 Genus level | C35 | C65 | SEM | P值 P-value |
---|---|---|---|---|
UCG-005 | 0.200a | 0.214a | 0.009 | 0.48 |
未培养细菌属Uncultured_bacterium | 0.082b | 0.132a | 0.012 | 0.03 |
未识别属Unidentified | 0.074a | 0.099a | 0.010 | 0.21 |
理研菌科_RC9 Rikenellaceae_RC9 | 0.057a | 0.064a | 0.006 | 0.62 |
克里斯滕森菌科_R_7群 Christensenellaceae_R_7 group | 0.051a | 0.040a | 0.003 | 0.11 |
未培养的属Uncultured | 0.046a | 0.030b | 0.003 | <0.01 |
毛螺菌科_NK3A20群 Lachnospiraceae_NK3A20 group | 0.043a | 0.018b | 0.005 | 0.02 |
狭义梭菌属1 Clostridium_sensu_stricto_1 | 0.025a | 0.035a | 0.006 | 0.40 |
拟杆菌属Bacteroides | 0.034a | 0.021a | 0.005 | 0.24 |
罗姆布茨菌属Romboutsia | 0.027a | 0.018a | 0.003 | 0.15 |
单核球蛋白属Monoglobus | 0.024a | 0.018a | 0.002 | 0.07 |
拟普雷沃氏菌属Alloprevotella | 0.005b | 0.032a | 0.006 | 0.02 |
罗氏菌属Roseburia | 0.017a | 0.020a | 0.004 | 0.67 |
帕氏菌属Paeniclostridium | 0.021a | 0.010a | 0.003 | 0.07 |
苏黎士杆菌属Turicibacter | 0.011a | 0.017a | 0.003 | 0.37 |
密螺旋体属Treponema | 0.005b | 0.020a | 0.004 | 0.03 |
奥尔塞内拉属Olsenella | 0.015a | 0.007a | 0.003 | 0.16 |
泰泽雷拉菌属Tyzzerella | 0.009a | 0.013a | 0.002 | 0.36 |
黄斑菌属Acetitomaculum | 0.016a | 0.006a | 0.004 | 0.18 |
瘤胃球菌属Ruminococcus | 0.050a | 0.017b | 0.002 | <0.01 |
项目Item | C35 | C65 | SEM | P值P-value |
---|---|---|---|---|
碳水化合物代谢Carbohydrate metabolism | 13.445a | 13.491a | 0.041 | 0.60 |
氨基酸代谢Amino acid metabolism | 12.961a | 12.971a | 0.032 | 0.89 |
辅助因子和维生素代谢Metabolism of cofactors and vitamins | 12.308a | 12.213a | 0.088 | 0.61 |
萜类和多酮类代谢Metabolism of terpenoids and polyketides | 10.461a | 10.157a | 0.094 | 0.11 |
其他氨基酸代谢Metabolism of other amino acids | 6.585a | 6.525a | 0.085 | 0.74 |
复制和修复Replication and repair | 6.368b | 6.524a | 0.028 | <0.01 |
脂类代谢Lipid metabolism | 5.572a | 5.682a | 0.044 | 0.22 |
能量代谢Energy metabolism | 5.506a | 5.566a | 0.023 | 0.22 |
翻译Translation | 3.578b | 3.645a | 0.014 | <0.01 |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 3.439a | 3.555a | 0.099 | 0.59 |
折叠、分拣和降解Folding, sorting and degradation | 3.420a | 3.411a | 0.001 | 0.57 |
细胞运动性Cell motility | 3.404a | 3.180a | 0.072 | 0.12 |
外来生物的生物降解和代谢Xenobiotics biodegradation and metabolism | 2.637a | 2.562a | 0.063 | 0.57 |
核苷酸代谢Nucleotide metabolism | 2.068b | 2.111a | 0.008 | <0.01 |
其他次生代谢物的合成Biosynthesis of other secondary metabolites | 1.993b | 2.055a | 0.013 | <0.01 |
膜运输Membrane transport | 1.712a | 1.740a | 0.022 | 0.55 |
细胞生长和死亡Cell growth and death | 1.524b | 1.560a | 0.006 | <0.01 |
转录Transcription | 1.345a | 1.361a | 0.010 | 0.41 |
信号转导Signal transduction | 0.396a | 0.385a | 0.006 | 0.39 |
耐药性∶抗菌素Drug resistance∶antimicrobial | 0.253a | 0.266a | 0.010 | 0.52 |
表5 不同精粗比饲粮对牦牛粪便菌群KEGG二级代谢通路的影响
Table 5 Effects of diets with different concentrate to forage ratios on KEGG secondary metabolic pathway of fecal bacteria in yaks
项目Item | C35 | C65 | SEM | P值P-value |
---|---|---|---|---|
碳水化合物代谢Carbohydrate metabolism | 13.445a | 13.491a | 0.041 | 0.60 |
氨基酸代谢Amino acid metabolism | 12.961a | 12.971a | 0.032 | 0.89 |
辅助因子和维生素代谢Metabolism of cofactors and vitamins | 12.308a | 12.213a | 0.088 | 0.61 |
萜类和多酮类代谢Metabolism of terpenoids and polyketides | 10.461a | 10.157a | 0.094 | 0.11 |
其他氨基酸代谢Metabolism of other amino acids | 6.585a | 6.525a | 0.085 | 0.74 |
复制和修复Replication and repair | 6.368b | 6.524a | 0.028 | <0.01 |
脂类代谢Lipid metabolism | 5.572a | 5.682a | 0.044 | 0.22 |
能量代谢Energy metabolism | 5.506a | 5.566a | 0.023 | 0.22 |
翻译Translation | 3.578b | 3.645a | 0.014 | <0.01 |
聚糖生物合成和代谢Glycan biosynthesis and metabolism | 3.439a | 3.555a | 0.099 | 0.59 |
折叠、分拣和降解Folding, sorting and degradation | 3.420a | 3.411a | 0.001 | 0.57 |
细胞运动性Cell motility | 3.404a | 3.180a | 0.072 | 0.12 |
外来生物的生物降解和代谢Xenobiotics biodegradation and metabolism | 2.637a | 2.562a | 0.063 | 0.57 |
核苷酸代谢Nucleotide metabolism | 2.068b | 2.111a | 0.008 | <0.01 |
其他次生代谢物的合成Biosynthesis of other secondary metabolites | 1.993b | 2.055a | 0.013 | <0.01 |
膜运输Membrane transport | 1.712a | 1.740a | 0.022 | 0.55 |
细胞生长和死亡Cell growth and death | 1.524b | 1.560a | 0.006 | <0.01 |
转录Transcription | 1.345a | 1.361a | 0.010 | 0.41 |
信号转导Signal transduction | 0.396a | 0.385a | 0.006 | 0.39 |
耐药性∶抗菌素Drug resistance∶antimicrobial | 0.253a | 0.266a | 0.010 | 0.52 |
1 | Guo W C, Liu Z H, Yang B M, et al. The boat of Plateau——Chinese yak. Special Economic Flora and Fauna, 1998, 1(5): 4-5. |
郭文场, 刘志宏, 杨柏明, 等. 高原之舟——中国牦牛. 特种经济动植物, 1998, 1(5): 4-5. | |
2 | Meng Q H, Chen Y X, Dong H M, et al. The distribution characteristics and population of yak. Journal of Domestic Animal Ecology, 2017, 38(3): 80-85. |
孟庆辉, 陈永杏, 董红敏, 等. 牦牛分布特点及其种群数量. 家畜生态学报, 2017, 38(3): 80-85. | |
3 | Liu X C, Zhang S, Sun B Z, et al. Progress in understanding quality characteristics of yak meat. Meat Research, 2020, 34(11): 78-83. |
刘晓畅, 张寿, 孙宝忠, 等. 牦牛肉品质特性研究进展. 肉类研究, 2020, 34(11): 78-83. | |
4 | Luo Z J, Ma J S, Bao G C, et al. Development status, existing problems and countermeasures of yak seed industry in Qinghai Province. Chinese Journal of Animal Science, 2021, 57(2): 231-234. |
骆正杰, 马进寿, 保广才, 等. 青海省牦牛种业发展现状、存在问题及应对策略. 中国畜牧杂志, 2021, 57(2): 231-234. | |
5 | Dai D W, Wang S X, Wang X, et al. Effect of supplementary feed levels on growth performance and serum biochemical indicators of yak in cold season. Feed Research, 2020, 43(9): 1-3. |
戴东文, 王书祥, 王迅, 等. 冷季精料补饲水平对牦牛生长性能和血清生化指标的影响. 饲料研究, 2020, 43(9): 1-3. | |
6 | Wang H R. Mechanism analysis and nutritional strategies for prevention of sub-acute ruminal acidosis in ruminants. Chinese Journal of Animal Nutrition, 2014, 26(10): 3140-3148. |
王洪荣. 反刍动物瘤胃酸中毒机制解析及其营养调控措施. 动物营养学报, 2014, 26(10): 3140-3148. | |
7 | Zhang X L, Wang H L, You W, et al. In vitro degradability of corn silage and Leymus chinensis silage and evaluation of their mixed ratios on performance, digestion and serum parameters in beef cattle. Journal of Animal Physiology and Animal Nutrition, 2020, 104(6): 1628-1636. |
8 | Li J W, Hou S Z, Wang Z Y, et al. Effect of dietary concentrate to forage ratio on intestinal bacterial diversity of early weaned Tibetan lambs. Southwest China Journal of Agricultural Sciences, 2021, 34(9): 2025-2031. |
李蒋伟, 侯生珍, 王志有, 等. 饲粮精粗比对早期断奶藏羔羊小肠细菌多样性的影响. 西南农业学报, 2021, 34(9): 2025-2031. | |
9 | Li J W, Zhou L, Hou S Z, et al. Effects of dietary concentrate to roughage ratio on intestinal fungal diversity in Tibetan sheep. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2784-2789. |
李蒋伟, 周力, 侯生珍, 等. 日粮精粗比对育肥藏羊肠道真菌多样性的影响. 西南农业学报, 2021, 34(12): 2784-2789. | |
10 | Chen L Y. Study on growth performance, fecal bacteria and differential metabolites in feces of Tan sheep with different RFI. Yinchuan: Ningxia University, 2021. |
陈丽尧. 不同RFI滩羊生长性能、粪便菌群和粪便差异代谢物研究. 银川: 宁夏大学, 2021. | |
11 | Liu Q, Zhu Y Y, Zhang C L, et al. Fecal microflora composition and drug resistance of Escherichia coli in captive Himalayan Tahr. Chinese Journal of Veterinary Medicine, 2021, 57(12): 51-55. |
刘青, 朱云芸, 张成林, 等. 圈养喜马拉雅塔尔羊粪便菌群结构及大肠杆菌耐药性试验. 中国兽医杂志, 2021, 57(12): 51-55. | |
12 | Sun G. The study of the Chinese herbal medicine additives on the growth performance, carcass traits, blood physicochemical and fecal flora of pigs. Zhengzhou: Henan Agricultural University, 2018. |
孙港. 中草药添加剂对猪的生长性能、胴体性状、血液理化及粪便菌群的研究. 郑州: 河南农业大学, 2018. | |
13 | Xie Y Y, Song L Y, Yang J H, et al. Small intestinal flora graft alters fecal flora, stool, cytokines and mood status in healthy mice. Life Science Alliance, 2021, 4(9): e202101039. |
14 | Wang J Q, Yang H J, Mo F, et al. Standard for raising beef cattle, NY/T815-2004. Beijing: China Agriculture Press, 2004. |
王加启, 杨红建, 莫放, 等. 肉牛饲养标准, NY/T815-2004. 北京: 中国农业出版社, 2004. | |
15 | Bürgmann H, Pesaro M, Widmer F, et al. A strategy for optimizing quality and quantity of DNA extracted from soil. Journal of Microbiological Methods, 2001, 45(1): 7-20. |
16 | Yang X, Fan W J, Tang Z P, et al. Effects of different mulching cultivation on bacterial diversity, enzyme activity and physicochemical properties of potato rhizosphere soil. Journal of Nuclear Agriculture, 2021, 35(9): 2145-2153. |
杨鑫, 樊吴静, 唐洲萍, 等. 不同覆盖栽培对马铃薯根际土壤细菌多样性、酶活性及化学性状的影响. 核农学报, 2021, 35(9): 2145-2153. | |
17 | Liu F H. The effect of dietary concentrate ratio on production performance, blood indexes, intestinal flora and short-chain fatty acids of obese empty-breasted cows. Hohhot: Inner Mongolia Agricultural University, 2021. |
刘飞鸿. 日粮精粗比对肥胖空怀母牛生产性能、血液指标、肠道菌群及其短链脂肪酸的影响. 呼和浩特: 内蒙古农业大学, 2021. | |
18 | Pang K Y, Yang Y K, Chai S T, et al. Dynamics changes of the fecal bacterial community fed diets with different concentrate to forage ratios in Qinghai Yaks. Animals, 2022, 12(18): 2334. |
19 | Callaway T R, Dowd S E, Edrington T S, et al. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tagencoded FLX amplicon pyrosequencing. Journal of Animal Science, 2010, 88(12): 3977-3983. |
20 | Dowd S E, Callaway T R, Wolcott R D, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tagencoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiology, 2008, 8(1): 1-8. |
21 | Shanks O C, Kelty C A, Archibeque S, et al. Community structures of fecal bacteria in cattle from different animal feeding operations. Applied and Environmental Microbiology, 2011, 77(9): 2992-3001. |
22 | Domínguez-Bello M G, Andersen G L, Rivera-Rivera M J, et al. Comparison of the fecal microbiota in feral and domestic goats. Genes, 2011, 3(1): 1-18. |
23 | De Oliveira M N V, Jewell K A, Freitas F S, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Veterinary Microbiology, 2013, 164(3/4): 307-314. |
24 | Spence C, Wells W G, Smith C J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13): 4663-4672. |
25 | Khafipour E, Li S, Tun H M, et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Animal Frontiers, 2016, 6(2): 13-19. |
26 | Pokusaeva K, Fitzgerald G F, Van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition, 2011, 6(3): 285-306. |
27 | Frey B, Rime T, Phillips M, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiology Ecology, 2016, 92(3): fiw018. |
28 | Tripp H J, Bench S R, Turk K A, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature, 2010, 464(7285): 90-94. |
29 | Li F H. Comparative study on the gastric microbiota diversity in small mammals. Baoding: Hebei University, 2019. |
李飞虹. 小型哺乳动物胃部微生物菌群的比较研究. 保定: 河北大学, 2019. | |
30 | Servin J A, Herbold C W, Skophammer R G, et al. Evidence excluding the root of the tree of life from the actinobacteria. Molecular Biology and Evolution, 2008, 25(1): 1-4. |
31 | Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. |
32 | Meale S J, Li S C, Azevedo P, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Scientific Reports, 2017, 7(1): 198. |
33 | La Reau A J, Meier-Kolthoff J P, Suen G. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microbial Genomics, 2016, 2(12): e000099. |
34 | Jiang F, Song P F, Wang H J, et al. Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Applied Microbiology Biotechnology, 2022, 106(3): 1325-1339. |
35 | Wang B, Ma M P, Diao Q Y, et al. Saponin induced shifts in the rumen microbiome and metabolome of young cattle. Frontiers in Microbiology, 2019, 10(2): 356-359. |
36 | Watts J E M, McDonald R, Daniel R, et al. Examination of a culturable microbial population from the gastroint-estinal tract of the wood eating loricariid catfish panaque nigrolineatus. Diversity, 2013, 5(3): 641-656. |
37 | Downes J, Dewhirst F E, Tanner A C R, et al. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 1214-1218. |
38 | Lamendella R, Santo Domingo J W, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiology, 2011, 11(1): 1-17. |
39 | Li Y J, Zhao S S, Ge L, et al. Research progress of carbohydrate nutrition in ruminants. Shandong Animal Husbandry and Veterinary Medicine, 2012, 33(8): 85-87. |
李玉军, 赵珊珊, 葛林, 等. 反刍动物碳水化合物营养的研究进展. 山东畜牧兽医, 2012, 33(8): 85-87. | |
40 | He D Y, Wang X L, Yang L. Advances in the regulation of amino acid metabolism in animals. Feed Industry, 2011, 32(18): 40-44. |
贺丹艳, 王新磊, 杨琳. 动物氨基酸代谢调控研究进展. 饲料工业, 2011, 32(18): 40-44. | |
41 | Dong W C, Zhuang S, Zhang T, et al. Advances in protein nutrition of ruminants. Animal Husbandry and Veterinary Medicine, 2013, 45(7): 104-109. |
董文超, 庄苏, 张腾, 等. 反刍动物蛋白质营养研究进展. 畜牧与兽医, 2013, 45(7): 104-109. | |
42 | Niehoff I D, Hüther L, Lebzien P. Niacin for dairy cattle: A review. British Journal of Nutrition, 2008, 101(1): 5-19. |
[1] | 者玉琦, 武志娟, 王吉坤, 钟金城, 柴志欣, 信金伟. 基于mtDNA COX3基因对西藏特色牦牛群体遗传结构的分析[J]. 草业学报, 2023, 32(9): 231-240. |
[2] | 吴刀知才让, 裴成芳, 马志远, 刘红山, 曹旭亮, 刘虎, 周建伟. 燕麦干草不同饲喂水平对牦牛日增重、血液生理生化指标及瘤胃发酵参数的影响[J]. 草业学报, 2023, 32(11): 119-129. |
[3] | 段嘉钰, 张博, 操君, 刘书杰, 崔占鸿. 70~100 kg牦牛犊牛钠、钾、镁元素分布规律及生长需要量[J]. 草业学报, 2023, 32(11): 130-139. |
[4] | 马士龙, 李小伟, 李响, 谢书琼, 刘益丽, 唐娇, 江明锋. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究[J]. 草业学报, 2022, 31(9): 183-194. |
[5] | 游茵洁, 周浩珍, 刘垚, 王晨曦, 彭忠利. 燕麦干草、青贮燕麦与天然牧草饲喂牦牛的营养价值比较研究[J]. 草业学报, 2022, 31(8): 99-110. |
[6] | 戴东文, 庞凯悦, 王迅, 杨英魁, 柴沙驼, 王书祥. 精料补饲水平对暖季放牧牦牛瘤胃发酵和菌群结构的影响[J]. 草业学报, 2022, 31(5): 169-177. |
[7] | 李玉洁, 沈启维, 张澳, 刘丹, 叶代桦, 李廷轩. 畜禽粪便处理下矿山生态型水蓼磷积累及去除能力研究[J]. 草业学报, 2022, 31(3): 114-123. |
[8] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[9] | 靳旭妹, 王莹莹, 刘崇义, 陈新义, 龙明秀, 何树斌. 生草对关中地区有机猕猴桃园土壤养分及细菌群落的影响[J]. 草业学报, 2022, 31(10): 53-63. |
[10] | 李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169. |
[11] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[12] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
[13] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[14] | 张强, 达娃央拉, 姬秋梅, 信金伟, 张成福, 朱勇, 洛桑顿珠, 次旦央吉, 孙光明, 姜辉. 西藏查吾拉地区不同性别牦牛产肉性能和肉营养成分的比较[J]. 草业学报, 2020, 29(7): 193-198. |
[15] | 杨勤, 官久强, 柴志欣, 李华德, 曹诗晓, 张翔飞, 柏琴, 钟金城, 罗晓林. 低海拔舍饲对牦牛肌肉品质的影响研究[J]. 草业学报, 2020, 29(5): 33-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||