草业学报 ›› 2023, Vol. 32 ›› Issue (9): 231-240.DOI: 10.11686/cyxb2022475
• 研究简报 • 上一篇
者玉琦1,3(), 武志娟1,3, 王吉坤1,3, 钟金城1,3, 柴志欣1,3(), 信金伟2()
收稿日期:
2022-11-30
修回日期:
2023-01-13
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
柴志欣,信金伟
作者简介:
xinjinwei80@163.com基金资助:
Yu-qi ZHE1,3(), Zhi-juan WU1,3, Ji-kun WANG1,3, Jin-cheng ZHONG1,3, Zhi-xin CHAI1,3(), Jin-wei XIN2()
Received:
2022-11-30
Revised:
2023-01-13
Online:
2023-09-20
Published:
2023-07-12
Contact:
Zhi-xin CHAI,Jin-wei XIN
摘要:
为探究西藏特色牦牛群体的遗传多样性、系统进化及亲缘关系,本研究利用PCR和直接测序法分别测定了西藏帕里牦牛、嘉黎牦牛、类乌齐牦牛、工布江达牦牛、斯布牦牛、桑日牦牛、江达牦牛7个群体共140头个体的mtDNA COX3基因蛋白质编码区(CDS)序列,利用DNAMAN、DNASP 5.1、MEGA 7.0软件分析了其序列多态性、单倍体多样性,并构建了系统发育树。结果表明,西藏牦牛群体的COX3基因CDS序列长度均为781 bp,共检测获得55个变异位点。在140头个体中共检测出11种单倍型,平均单倍型多样性(Hd)及核苷酸多样性(Pi)分别为0.665和0.00480,说明西藏牦牛具有丰富的遗传多样性。西藏7个牦牛群体可分为2大类,类乌齐牦牛单独聚为一类,其余牦牛群体为一类。此外,11种单倍型可分为 2 个聚类簇,说明西藏牦牛可能存在两个母系起源。西藏7个牦牛群体可划分到家牦牛、原牛和普通牛三大单倍型群体中,其中Hap_2、Hap_3、Hap_4、Hap_6、Hap_7、Hap_8、Hap_10、Hap_11这8个单倍型属于家牦牛支系,Hap_5和Hap_9属于原牛和普通牛支系,Hap_1属于野牦牛支系,说明家牦牛、原牛和普通牛是西藏牦牛的混合母系起源,但受家牦牛影响较大。研究结果旨在为西藏牦牛的演化、遗传多样性以及遗传资源保护和利用提供理论依据。
者玉琦, 武志娟, 王吉坤, 钟金城, 柴志欣, 信金伟. 基于mtDNA COX3基因对西藏特色牦牛群体遗传结构的分析[J]. 草业学报, 2023, 32(9): 231-240.
Yu-qi ZHE, Zhi-juan WU, Ji-kun WANG, Jin-cheng ZHONG, Zhi-xin CHAI, Jin-wei XIN. Analysis of the genetic structure of Tibetan yak populations based on mtDNA COX3[J]. Acta Prataculturae Sinica, 2023, 32(9): 231-240.
牦牛类群Groups | 代号Code | 采样地点Sampling locations | 样本数Sample size |
---|---|---|---|
帕里牦牛Pali yak | PL | 亚东县帕里镇Pagri Town, Yadong County | 20 |
嘉黎牦牛Jiali yak | JL | 那曲市嘉黎县Lhari County, Naqu City | 20 |
类乌齐牦牛Leiwuqi yak | LWQ | 昌都市类乌齐县Riwoqê County, Changdu City | 20 |
工布江达牦牛Gongbujiangda yak | GB | 林芝市工布江达县Gongbo’gyamda County, Linzhi City | 20 |
斯布牦牛Sibu yak | SB | 拉萨市墨竹工卡县Maizhokunggar County, Lasa City | 20 |
桑日牦牛Sangri yak | SR | 山南市桑日县Sangri County, Shannan City | 20 |
江达牦牛Jiangda yak | JD | 昌都市江达县Jomda County, Changdu City | 20 |
合计 Total | 140 |
表1 样本信息
Table 1 Sample information
牦牛类群Groups | 代号Code | 采样地点Sampling locations | 样本数Sample size |
---|---|---|---|
帕里牦牛Pali yak | PL | 亚东县帕里镇Pagri Town, Yadong County | 20 |
嘉黎牦牛Jiali yak | JL | 那曲市嘉黎县Lhari County, Naqu City | 20 |
类乌齐牦牛Leiwuqi yak | LWQ | 昌都市类乌齐县Riwoqê County, Changdu City | 20 |
工布江达牦牛Gongbujiangda yak | GB | 林芝市工布江达县Gongbo’gyamda County, Linzhi City | 20 |
斯布牦牛Sibu yak | SB | 拉萨市墨竹工卡县Maizhokunggar County, Lasa City | 20 |
桑日牦牛Sangri yak | SR | 山南市桑日县Sangri County, Shannan City | 20 |
江达牦牛Jiangda yak | JD | 昌都市江达县Jomda County, Changdu City | 20 |
合计 Total | 140 |
牦牛类群多态性位点The polymorphic sites of yak groups | 位点Sites |
---|---|
被选区域Selected region | 1~781 |
不变(单态)位点Invariable (monomorphic) sites | 726 |
可变(多态)位点Variable (polymorphic) sites | 55 |
单一多态位点Singleton variable sites | 144、217、757、765、769 |
简约信息位点Parsimony informative sites | 27、36、51、64、66、69、91、94、97、102、108、119、120、121、123、127、150、177、181、186、198、252、255、273、300、309、327、330、366、375、417、451、453、462、471、510、519、540、549、555、574、576、582、594、621、633、657、667、681、744 |
同义突变位点Synonymous changes sites | 27、36、51、64、66、69、91、108、120、123、127、144、150、177、186、198、252、255、273、300、309、 327、330、366、375、417、451、453、462、510、519、 540、549、555、576、582、594、621、633、657、667、681、744、765 |
碱基替换位点Base replacement sites | 94、97、102、119、121、181、217、471、574、757、769 |
碱基缺失/插入Sites with alignment gaps or missing data | 0 |
表2 西藏牦牛遗传多样性
Table 2 Genetic diversity of Tibetan yak
牦牛类群多态性位点The polymorphic sites of yak groups | 位点Sites |
---|---|
被选区域Selected region | 1~781 |
不变(单态)位点Invariable (monomorphic) sites | 726 |
可变(多态)位点Variable (polymorphic) sites | 55 |
单一多态位点Singleton variable sites | 144、217、757、765、769 |
简约信息位点Parsimony informative sites | 27、36、51、64、66、69、91、94、97、102、108、119、120、121、123、127、150、177、181、186、198、252、255、273、300、309、327、330、366、375、417、451、453、462、471、510、519、540、549、555、574、576、582、594、621、633、657、667、681、744 |
同义突变位点Synonymous changes sites | 27、36、51、64、66、69、91、108、120、123、127、144、150、177、186、198、252、255、273、300、309、 327、330、366、375、417、451、453、462、510、519、 540、549、555、576、582、594、621、633、657、667、681、744、765 |
碱基替换位点Base replacement sites | 94、97、102、119、121、181、217、471、574、757、769 |
碱基缺失/插入Sites with alignment gaps or missing data | 0 |
氨基酸Amino acid | 含量Content | 氨基酸Amino acid | 含量Content |
---|---|---|---|
丙氨酸Alanine | 6.8548 | 蛋氨酸Methionine | 0.8065 |
半胱甘酸Cysteine | 0.8065 | 天冬酰胺Asparagine | 2.8226 |
天冬氨酸Aspartic acid | 1.6129 | 脯氨酸Proline | 4.8387 |
谷氨酸Glutamic acid | 3.2258 | 谷氨酰胺Glutamine | 2.8226 |
苯丙氨酸Phenylalanine | 9.6774 | 精氨酸Arginine | 2.0161 |
甘氨酸Glycine | 7.6613 | 丝氨酸Serine | 7.2581 |
组氨酸Histidine | 6.8548 | 苏氨酸Threonine | 9.2742 |
异亮氨酸Isoleucine | 9.2742 | 缬氨酸Valine | 15.0000 |
赖氨酸Lysine | 0.8065 | 色氨酸Tryptophan | 0.4032 |
亮氨酸Leucine | 12.5000 | 酪氨酸Tyrosine | 4.4355 |
表3 西藏牦牛COX3基因的氨基酸组成
Table 3 Amino acid composition of COX3 gene of Tibetan yak (%)
氨基酸Amino acid | 含量Content | 氨基酸Amino acid | 含量Content |
---|---|---|---|
丙氨酸Alanine | 6.8548 | 蛋氨酸Methionine | 0.8065 |
半胱甘酸Cysteine | 0.8065 | 天冬酰胺Asparagine | 2.8226 |
天冬氨酸Aspartic acid | 1.6129 | 脯氨酸Proline | 4.8387 |
谷氨酸Glutamic acid | 3.2258 | 谷氨酰胺Glutamine | 2.8226 |
苯丙氨酸Phenylalanine | 9.6774 | 精氨酸Arginine | 2.0161 |
甘氨酸Glycine | 7.6613 | 丝氨酸Serine | 7.2581 |
组氨酸Histidine | 6.8548 | 苏氨酸Threonine | 9.2742 |
异亮氨酸Isoleucine | 9.2742 | 缬氨酸Valine | 15.0000 |
赖氨酸Lysine | 0.8065 | 色氨酸Tryptophan | 0.4032 |
亮氨酸Leucine | 12.5000 | 酪氨酸Tyrosine | 4.4355 |
类群 Groups | 核苷酸多样性 Nucleotide diversity | 群体基因检验统计数据 Tajima’s D | 群体基因检验统计数据P值 P-value of Tajima’s D |
---|---|---|---|
帕里牦牛Pali yak | 0.00811 | -2.32255 | P<0.01 |
嘉黎牦牛Jiali yak | 0.00013 | -1.16439 | P>0.10 |
类乌齐牦牛Leiwuqi yak | 0.01802 | -0.16046 | P>0.10 |
工布江达牦牛Gongbujiangda yak | 0.00176 | 0.63216 | P>0.10 |
斯布牦牛Sibu yak | 0.00076 | -0.79238 | P>0.10 |
桑日牦牛Sangri yak | 0.00152 | 1.06948 | P>0.10 |
江达牦牛Jiangda yak | 0.00148 | -0.55736 | P>0.10 |
表4 西藏牦牛COX3基因CDS区核苷酸多样性
Table 4 Nucleotide diversity in CDS region of COX3 of Tibetan yak
类群 Groups | 核苷酸多样性 Nucleotide diversity | 群体基因检验统计数据 Tajima’s D | 群体基因检验统计数据P值 P-value of Tajima’s D |
---|---|---|---|
帕里牦牛Pali yak | 0.00811 | -2.32255 | P<0.01 |
嘉黎牦牛Jiali yak | 0.00013 | -1.16439 | P>0.10 |
类乌齐牦牛Leiwuqi yak | 0.01802 | -0.16046 | P>0.10 |
工布江达牦牛Gongbujiangda yak | 0.00176 | 0.63216 | P>0.10 |
斯布牦牛Sibu yak | 0.00076 | -0.79238 | P>0.10 |
桑日牦牛Sangri yak | 0.00152 | 1.06948 | P>0.10 |
江达牦牛Jiangda yak | 0.00148 | -0.55736 | P>0.10 |
类群Groups | 样本数Sample number | 单倍型数Haplotype number | 单倍型多样性Haplotype diversity |
---|---|---|---|
帕里牦牛Pali yak | 20 | 6 | 0.768±0.062 |
嘉黎牦牛Jiali yak | 20 | 2 | 0.100±0.088 |
类乌齐牦牛Leiwuqi yak | 20 | 8 | 0.858±0.045 |
工布江达牦牛Gongbujiangda yak | 20 | 4 | 0.689±0.078 |
斯布牦牛Sibu yak | 20 | 3 | 0.468±0.104 |
桑日牦牛Sangri yak | 20 | 3 | 0.658±0.065 |
江达牦牛Jiangda yak | 20 | 5 | 0.668±0.097 |
表5 西藏牦牛群体的单倍型多样性
Table 5 Haplotype diversity of Tibetan yak groups
类群Groups | 样本数Sample number | 单倍型数Haplotype number | 单倍型多样性Haplotype diversity |
---|---|---|---|
帕里牦牛Pali yak | 20 | 6 | 0.768±0.062 |
嘉黎牦牛Jiali yak | 20 | 2 | 0.100±0.088 |
类乌齐牦牛Leiwuqi yak | 20 | 8 | 0.858±0.045 |
工布江达牦牛Gongbujiangda yak | 20 | 4 | 0.689±0.078 |
斯布牦牛Sibu yak | 20 | 3 | 0.468±0.104 |
桑日牦牛Sangri yak | 20 | 3 | 0.658±0.065 |
江达牦牛Jiangda yak | 20 | 5 | 0.668±0.097 |
单倍型种类Haplotype species | 个数Number | 所含个体Contains of individual |
---|---|---|
Hap_1 | 30 | PL(8)、LWQ(5)、GB(5)、SB(5)、SR(5)、JD(2) |
Hap_2 | 72 | PL(4)、JL(19)、LWQ(4)、GB(10)、SB(14)、SR(10)、JD(11) |
Hap_3 | 1 | PL(1) |
Hap_4 | 23 | PL(5)、LWQ(5)、GB(3)、SB(1)、SR(5)、JD(4) |
Hap_5 | 3 | PL(1)、LWQ(2) |
Hap_6 | 1 | PL(1) |
Hap_7 | 4 | JL(1)、LWQ(1)、JD(2) |
Hap_8 | 1 | LWQ(1) |
Hap_9 | 1 | LWQ(1) |
Hap_10 | 3 | LWQ(1)、GB(2) |
Hap_11 | 1 | JD(1) |
表6 西藏牦牛群体的单倍型数量分布
Table 6 Haplotype distribution of Tibetan yak groups
单倍型种类Haplotype species | 个数Number | 所含个体Contains of individual |
---|---|---|
Hap_1 | 30 | PL(8)、LWQ(5)、GB(5)、SB(5)、SR(5)、JD(2) |
Hap_2 | 72 | PL(4)、JL(19)、LWQ(4)、GB(10)、SB(14)、SR(10)、JD(11) |
Hap_3 | 1 | PL(1) |
Hap_4 | 23 | PL(5)、LWQ(5)、GB(3)、SB(1)、SR(5)、JD(4) |
Hap_5 | 3 | PL(1)、LWQ(2) |
Hap_6 | 1 | PL(1) |
Hap_7 | 4 | JL(1)、LWQ(1)、JD(2) |
Hap_8 | 1 | LWQ(1) |
Hap_9 | 1 | LWQ(1) |
Hap_10 | 3 | LWQ(1)、GB(2) |
Hap_11 | 1 | JD(1) |
类群Groups | 帕里牦牛PL | 嘉黎牦牛JL | 类乌齐牦牛LWQ | 工布江达牦牛GB | 斯布牦牛SB | 桑日牦牛SR |
---|---|---|---|---|---|---|
嘉黎牦牛JL | 0.005 | |||||
类乌齐牦牛LWQ | 0.014 | 0.011 | ||||
工布江达牦牛GB | 0.005 | 0.001 | 0.011 | |||
斯布牦牛SB | 0.005 | 0.001 | 0.011 | 0.001 | ||
桑日牦牛SR | 0.005 | 0.001 | 0.011 | 0.002 | 0.001 | |
江达牦牛JD | 0.005 | 0.001 | 0.011 | 0.002 | 0.001 | 0.001 |
表7 西藏牦牛群体间Kimura双参数遗传距离
Table 7 Kimura two-parameter genetic distance among Tibetan yak groups
类群Groups | 帕里牦牛PL | 嘉黎牦牛JL | 类乌齐牦牛LWQ | 工布江达牦牛GB | 斯布牦牛SB | 桑日牦牛SR |
---|---|---|---|---|---|---|
嘉黎牦牛JL | 0.005 | |||||
类乌齐牦牛LWQ | 0.014 | 0.011 | ||||
工布江达牦牛GB | 0.005 | 0.001 | 0.011 | |||
斯布牦牛SB | 0.005 | 0.001 | 0.011 | 0.001 | ||
桑日牦牛SR | 0.005 | 0.001 | 0.011 | 0.002 | 0.001 | |
江达牦牛JD | 0.005 | 0.001 | 0.011 | 0.002 | 0.001 | 0.001 |
1 | Ji Q M, Tang Y T, Zhang C F, et al. Genetic diversity and evolution relationship of Tibet yaks inferred from mtDNA cytb. Acta Veterinaria et Zootechnica Sinica, 2012, 46(11): 1723-1732. |
姬秋梅, 唐懿挺, 张成福, 等. 西藏牦牛mtDNA cytb基因的序列多态性及其系统进化分析. 畜牧兽医学报, 2012, 46(11): 1723-1732. | |
2 | Zhao S J, Chen Z H, Ji Q M, et al. Sequence analysis of mtDNA COⅢ of Tibetan yaks. Scientia Agricultura Sinica, 2011, 44(23): 4902-4910. |
赵上娟, 陈智华, 姬秋梅, 等. 西藏牦牛mtDNA COⅢ全序列测定及系统进化关系. 中国农业科学, 2011, 44(23): 4902-4910. | |
3 | Barazzoni R, Short K R, Nair K S. Effects of aging on mitochondrial DNA copy number and cytochrome c-oxidase gene expression in rat skeletal muscle, liver, and heart. Journal of Biological Chemistry, 2000, 275(5): 3343-3347. |
4 | Hamanaka S, Ohtsu K, Kadowaki K, et al. Identification of cDNA encoding cytochrome C oxidase subunit 5c (COX5c) from rice: comparison of its expression with nuclear-encoded and mitochondrial-encoded COX genes. Genes & Genetic Systems, 1999, 74(3): 71-75. |
5 | Wei Z J, Zhao Q L, Zhang Z F, et al. Characterization of the cytochrome oxidase subunit Ⅲ gene of mitochondrial DNA from the eri silkworm, Samia cynthia ricini. Acta Entomologica Sinica, 2002(2): 193-197. |
魏兆军, 赵巧玲, 张志芳, 等. 蓖麻蚕线粒体基因组细胞色素氧化酶亚基Ⅲ的序列及其分子进化分析. 昆虫学报, 2002(2): 193-197. | |
6 | Song H T, Li B, Shen W D. Sequences and its molecular evolution of mitochondrial cox3 gene of Laos Bombyx mori. Jiangsu Sericulture, 2006(4): 14-17. |
宋宏图, 李兵, 沈卫德. 老挝家蚕线粒体cox3基因序列分析及分子进化研究初探. 江苏蚕业, 2006(4): 14-17. | |
7 | Du Y J, Li Y X, Wu X, et al. Cloning and preliminary analysis of mitochondrial cytochrome C oxidase subunit Ⅲ gene from Sichuan subspecies of Asiatic black bear (Ursus thibetanus mupinensis). Journal of Sichuan University (Natural Science Edition), 2007, 44(6): 1363-1368. |
杜玉杰, 黎云祥, 吴夏, 等. 亚洲黑熊四川亚种Ursus thibetanus mupinensis线粒体细胞色素C氧化酶亚基Ⅲ基因的克隆与初步分析. 四川大学学报(自然科学版), 2007, 44(6): 1363-1368. | |
8 | Li Y, Yang X D, Wang J, et al. Association of mtDNA COX3 gene polymorphism with growth and slaughter traits in piao chicken. China Poultry, 2015, 37(8): 12-15. |
李杨, 杨向东, 王静, 等. 线粒体DNA COX3基因多态性与瓢鸡生长和屠体性状的相关性分析. 中国家禽, 2015, 37(8): 12-15. | |
9 | Li C L, Ke X F, Lu L Q, et al. Determination and analysis of ATPase8, ATPase6, COX3 gene complete sequence of Mongolian gerbil (Meriones unguiculatus). Chinese Journal of Comparative Medicine, 2011, 21(7): 6-12. |
李长龙, 柯贤福, 卢领群, 等. 长爪沙鼠ATPase8, ATPase6, COX3基因的克隆及序列分析. 中国比较医学杂志, 2011, 21(7): 6-12. | |
10 | Zhou W, Yang Y B, Wang Y Y, et al. Amplification and phylogenetic analysis of mitochondrial COX1 gene in Yuxi black pig. Modern Agricultural Science and Technology, 2020(7): 211-212. |
周武, 杨又兵, 王阳阳, 等. 豫西黑猪线粒体COX1基因的扩增和系统发生分析. 现代农业科技, 2020(7): 211-212. | |
11 | Xie W Q, Tang W, Hu D, et al. Phylogenetic analysis of mitochondrial cox3 gene of snake sparganum in Hunan province. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(6): 622-624. |
谢雯琴, 唐伟, 胡丹, 等. 基于cox3基因分析蛇源裂头蚴种系发育关系. 中国预防兽医学报, 2020, 42(6): 622-624. | |
12 | Sambrook J, Russell D W. Molecular cloning: laboratory manual (3rd Edition). New York: Cold Spring Harbor-Laboratory Press, 2001. |
13 | Chen J Q, Zhang Z H, Xing Y H, et al. The complete mitochondrial genome of Heteropanope glabra and implications in phylogenetic research. Journal of Nanjing Normal University (Natural Science Edition), 2018, 41(4): 108-114. |
陈建琴, 张振华, 邢雨辉, 等. 光滑异装蟹(Heteropanope glabra)线粒体基因组测定及其在系统发生研究中的意义. 南京师大学报(自然科学版), 2018, 41(4): 108-114. | |
14 | Wang H R. Recent advances in amino acid nutritional balance theory for ruminants and its application. Chinese Journal of Animal Nutrition, 2013, 25(4): 669-676. |
王洪荣. 反刍动物氨基酸营养平衡理论及其应用. 动物营养学报, 2013, 25(4): 669-676. | |
15 | Li W H, Gao Y Q, Yang X L, et al. Analysis on amino acid of different yak meat. Hubei Agricultural Sciences, 2018, 57(12): 89-90, 105. |
李维红, 高雅琴, 杨晓玲, 等. 不同牦牛肉氨基酸质量分析. 湖北农业科学, 2018, 57(12): 89-90, 105. | |
16 | Jin S Y, Zheng Y C. Composition of amino acids and fatty acids in the milk of whole and half milk yak. Livestock and Poultry Industry, 2018, 29(7): 5-6. |
金素钰, 郑玉才. 全奶牦牛与半奶牦牛乳中氨基酸和脂肪酸组成的比较. 畜禽业, 2018, 29(7): 5-6. | |
17 | Luo Y H, Liu S J. Study on the nutrient and flavor of Datong yak meat. Food Science and Technology, 2010, 35(2): 106-113. |
罗毅皓, 刘书杰. 青海大通牦牛肉氨基酸及风味分析. 食品科技, 2010, 35(2): 106-113. | |
18 | Gao Q X, Yang W K, Meng Y G, et al. Genetic diversity of Xinjiang Kizilsu Kirghiz region Pamir yaks based on mitochondrial COⅠ gene. Current Biotechnology, 2022, 12(4): 568-576. |
高勤学, 杨文科, 蒙永刚, 等. 新疆克孜勒苏柯尔克孜地区帕米尔牦牛mtDNA COⅠ的遗传多样性分析. 生物技术进展, 2022, 12(4): 568-576. | |
19 | Li S, Xia X T, Li F Q, et al. Growth performance and nutritional value of wild bamao grass in Anhui province. China Cattle Science, 2022, 48(2): 28-32. |
李双, 夏小婷, 李付强, 等. 温岭高峰牛线粒体DNA全基因组遗传多样性分析. 中国牛业科学, 2022, 48(2): 28-32. | |
20 | Smith M A, Woodley N E, Janzen D H, et al. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies. Proceedings of the National Academy of Sciences of the USA, 2006, 103(10): 3657-3662. |
21 | Zhang X M. Tibetan stories. Beijing: China Intercontinental Press, 2002. |
张晓明. 西藏历史. 北京: 五洲传播出版社, 2002. | |
22 | Zheng S. History of Tibetan development. Kunming: Yunnan Nationalities Publishing House, 1992. |
郑汕. 西藏发展史. 昆明: 云南民族出版社, 1992. | |
23 | Chai Z X, Xin J W, Zhang C F, et al. Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai-Tibet Plateau. BMC Evolutionary Biology, 2020, 20: 137. |
24 | Zhang C F, Xu L J, Ji Q M, et al. Genetic diversity and evolution relationship on mtDNA D-loop in Tibetan yaks. Acta Ecologica Sinica, 2012, 32(5):1387-1395. |
张成福, 徐丽娟, 姬秋梅, 等.西藏牦牛mtDNA D-loop区的遗传多样性及其遗传分化. 生态学报, 2012, 32(5): 1387-1395. | |
25 | Guo J, Xin J W, Ji Q M, et al. Evolution relationship and genetic diversity of Tibetan yaks inferred from mtDNA CO I. Journal of Southwest University for Nationalities (Natural Science Edition), 2014, 40(3): 336-343. |
郭娇, 信金伟, 姬秋梅, 等. 基于mtDNA CO I基因的西藏牦牛遗传多样性及系统进化研究. 西南民族大学学报(自然科学版), 2014, 40(3): 336-343. | |
26 | Wang X D, Guo X, Wu X Y, et al. Genetic diversity and phylogenetic analysis of mtDNA Cytb gene and D-loop region in yak of Qinghai plateau. Genomics and Applied Biology, 2021, 40(1): 9-17. |
王兴东, 郭宪, 吴晓云, 等. 青海高原牦牛mtDNA Cytb基因和D-loop区遗传多样性. 基因组学与应用生物学, 2021, 40(1): 9-17. |
[1] | 吉轶楠, 任雪锋, 苟甜甜, 臧国长, 郑轶琦. 基于SSR标记的河南省假俭草群体遗传多样性研究[J]. 草业学报, 2023, 32(9): 198-212. |
[2] | 马士龙, 李小伟, 李响, 谢书琼, 刘益丽, 唐娇, 江明锋. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究[J]. 草业学报, 2022, 31(9): 183-194. |
[3] | 任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70. |
[4] | 刘志鹏, 任广朋. 苜蓿属物种分类研究进展[J]. 草业学报, 2022, 31(11): 191-203. |
[5] | 潘静, 张俊超, 陈有军, 周青平. 基于SCoT标记的披碱草属种质遗传多样性分析及指纹图谱构建[J]. 草业学报, 2022, 31(11): 48-60. |
[6] | 常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价[J]. 草业学报, 2022, 31(11): 61-74. |
[7] | 尹晓凡, 魏娜, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿反转录转座子IRAP分子标记开发及应用[J]. 草业学报, 2022, 31(1): 131-144. |
[8] | 段珍, 吴凡, 闫启, 张吉宇. 植物香豆素生物合成途径及关键酶基因研究进展[J]. 草业学报, 2022, 31(1): 217-228. |
[9] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[10] | 杨正禹, 陆忠杰, 张茂, 董瑞. 利用数字图像分析132份胡枝子种子表型性状遗传多样性[J]. 草业学报, 2021, 30(11): 87-97. |
[11] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[12] | 丁永福, 王纪良, 陈奋奇, 庄泽龙, 白明兴, 陆晏天, 金兵兵, 彭云玲. 玉米自交系SSR多样性与穗部性状的关联分析[J]. 草业学报, 2020, 29(7): 143-153. |
[13] | 鲍根生, 俞永飞, 李春杰. 高寒草甸优势禾草-异针茅内生真菌的分离与鉴定[J]. 草业学报, 2019, 28(8): 150-160. |
[14] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[15] | 张彦军, 苟作旺, 王兴荣, 李玥, 祁旭升. 西北地区和尚头小麦遗传多样性及农艺性状的关联分析[J]. 草业学报, 2019, 28(2): 142-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||