[1] Cropp R, Kerr G, Bengtsonnash S, et al. A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs. Environmental Chemistry, 2011, 8(3): 263-280. [2] Alagiĉ S Ĉ, Maluckov B S, Radojiĉiĉ V B.How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technologies & Environmental Policy, 2015, 17(3): 597-614. [3] Yang Q, Chen H, Li B.Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, southwest of China: Status, sources and potential human health risk. PloS One, 2015, 10(2): e0118141. [4] Ke C L, Gu Y G, Liu Q.Polycyclic aromatic hydrocarbons (PAHs) in exposed-lawn soils from 28 urban parks in the megacity Guangzhou: occurrence, sources, and human health implications. Archives of Environmental Contamination & Toxicology, 2017, 72(4): 1-9. [5] Wang H C, Hu L L, Li M, et al. Growth effects and accumulations of polycyclic aromatic hydrocarbons (PAHs) in rape. Chinese Journal of Plant Ecology, 2013, 37(12): 1123-1131. 王海翠, 胡林林, 李敏, 等. 多环芳烃(PAHs)对油菜生长的影响及其积累效应. 植物生态学报, 2013, 37(12): 1123-1131. [6] Dupuy J, Ouvrard S, Leglize P, et al. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere, 2015, 124(1): 110-115. [7] Zhang X Q, Xu L, Qi Y, et al. Remediation efficiency of Echinacea purpurea for heavy PAHs contaminated soils. Chinese Journal of Ecology, 2018, 37(2): 492-497. 张晓庆, 徐丽, 齐悦, 等. 紫松果菊对多环芳烃重污染土壤修复效能. 生态学杂志, 2018, 37(2): 492-497. [8] Sebastiana M, Martins J, Figueiredo A, et al. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza, 2017, 27(2): 109-128. [9] Zhang Y, Hu J, Bai J, ,et al. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 2018, 628-629, 282-290. [10] Chaturvedi R, Favas P, Pratas J, et al. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena, L. grown under heavy metal(loid) contaminated soil. Ecotoxicology & Environmental Safety, 2018, 148: 318-326. [11] Sangeetha J, Solomon E K, Natarajan K, et al. Efficacy of AM fungi and PGPR in oculants on maize (Zea mays) plant growth and their rhizosphere soil properties. Microbiological Research in Agroecsystem Management, Springer India, 2013, 155-173. [12] Dong R, Gu L, Guo C, et al. Effect of PGPR Serratia marcescens BC-3 and AM fungi Glomus intraradices on phytoremediation of petroleum contaminated soil. Ecotoxicology, 2014, 23(4): 674-680. [13] Wang L L, Yang Q.Inoculation of Bacillus subtilis and effect of arbuscular mycorrhizal fungi on red clover remediation of petroleum contaminated soil. Jiangsu Agricultural Sciences, 2016, 44(5): 526-529. 王丽丽, 杨谦. 接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤. 江苏农业科学, 2016, 45(5): 526-529. [14] Xu L J, Zhang J Z, Yuan Y Q, et al. Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on remediation of soil polluted with methamidophos. Acta Pedologica Sinica, 2016, 53(4): 919-929. 徐丽娟, 张金政, 袁玉清, 等. AMF和PGPR修复甲胺磷污染土壤的效应. 土壤学报, 2016, 53(4): 919-929. [15] Zhai Y, Yin Z, Zhao X, et al. Polycyclic aromatic hydrocarbons (PAHs) in the environment of Beijing, China: Levels, distribution, trends and sources. Human & Ecological Risk Assessment, 2017, 24(11): 13-19. [16] Ghosal D, Ghosh S, Dutta T K, ,et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Frontiers in Microbiology, 2016, 7: doi: 10.3389/fmicb.2016.01369. [17] Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances, 2015, 33(6): 745-755. [18] Yu J J, Fan N L, Li R, et al. Effects of elevated carbon dioxide concentration on the growth and antioxidant system in tall fescue under heat stress. Acta Prataculturae Sinica, 2017, 26(8): 113-122. 于景金, 范宁丽, 李冉, 等. 高浓度CO2对热胁迫条件下高羊茅生长和抗氧化系统的影响. 草业学报, 2017, 26(8): 113-122. [19] Li J, Lei X, Zhong L, et al. Physiological response of new strains of Festuca arundinacea mutated in space under high temperature stress and comprehensively evaluated. Acta Prataculturae Sinica, 2017, 26(3): 121-131. 李娟, 雷霞, 钟理, 等. 高温胁迫对高羊茅航天诱变新品系生理特性研究及综合评价. 草业学报, 2017, 26(3): 121-131. [20] Yang H X, Liu R J, Guo S X.Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203. 杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. 草业学报, 2014, 23(4): 195-203. [21] Xu M, Guo S X.Effect of arbuscular mycorrhizal fungi on the physiology of Festuca arundinacea under soil compaction stress. Pratacultural Science, 2018, 35(6): 1378-1384. 徐孟, 郭绍霞. AMF对土壤压实胁迫下高羊茅生理的影响. 草业科学, 2018, 35(6): 1378-1384. [22] Liu R J, Chen Y L.Mycorrhizology. Beijing: Science Press, 2007. 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. [23] Wang X K.The principles and techniques of physiological and biochemical experiment of plants. Beijing: Higher Education Press, 2006. 王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006. [24] Sun Y T, Ling W T, Liu J, et al. Effects of arbuscular mycorrhizal fungi on the uptake of phenanthrene and pyrene by Alfalfa. Journal of Agro-Environment Science, 2012, (10): 1920-1926. 孙艳娣, 凌婉婷, 刘娟, 等. 丛枝菌根真菌对紫花苜蓿吸收菲和芘的影响. 农业环境科学学报, 2012, (10): 1920-1926. [25] Liu H, David W, Ye Y, et al. An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 2009, 176(3): 375-382. [26] Xu S, Wang H, Chen W, et al. Effects of soil PAHs pollution on plant ecophysiology. Chinese Journal of Applied Ecology, 2013, 24(5): 1284-1290. 徐胜, 王慧, 陈玮, 等. 土壤中多环芳烃污染对植物生理生态的影响. 应用生态学报, 2013, 24(5): 1284-1290. [27] Zou Y N, Srivastava A K, Ni Q D, et al. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Frontiers in Microbiology, 2015, 6: 203. [28] Saia S, Ruisi P, Fileccia V, et al. Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One, 2015, 10(6): e0129591. [29] Horton P, Ruban A V, Walters R G.Regulation of light harvesting in green plant: Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiology, 1994, 106: 415-420. [30] Abuja P M, Lohner K, Prassl R.Modification of the lipid-protein interaction in human low-density lipoprotein destabilizes ApoB-100 and decreases oxidizability. Biochemistry, 1999, 38(11): 3401-3408. [31] Shi G, Guo X, Bao M.Correlation analysis of lipid peroxidation metabolism during florescence and flower senescence of peony. Journal of Northwest A & F University, 2008, 282(1): 201-207. [32] Liu J, Zhou M L, Zhang N, et al. Effects of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) on the growth and physiological cheracteristics of Spartina atterniflora. Acta Scientiarum Naturalium University Nankaiensis, 2015, (1): 14-20. 刘静, 周美利, 张楠, 等. 多环芳烃菲和芘对互花米草生长和生理特征的影响. 南开大学学报(自然科学版), 2015, (1): 14-20. |