草业学报 ›› 2025, Vol. 34 ›› Issue (5): 89-104.DOI: 10.11686/cyxb2024247
周昕越1(
), 王丽萍2, 蒋庆雪1, 马晓冉1, 仪登霞1, 王学敏1(
)
收稿日期:2024-06-24
修回日期:2024-07-22
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
王学敏
作者简介:E-mail: wangxuemin@caas.cn基金资助:
Xin-yue ZHOU1(
), Li-ping WANG2, Qing-xue JIANG1, Xiao-ran MA1, Deng-xia YI1, Xue-min WANG1(
)
Received:2024-06-24
Revised:2024-07-22
Online:2025-05-20
Published:2025-03-20
Contact:
Xue-min WANG
摘要:
LTI是植物中一类低温诱导蛋白,在植物响应非生物胁迫中发挥着重要的作用。为明确紫花苜蓿LTI蛋白的结构特征及在不同非生物胁迫下的响应,通过RT-PCR和3′/5′ RACE PCR技术,成功从“中苜1号”紫花苜蓿中克隆得到MsLTI65基因cDNA序列。利用生物信息学软件对基因序列和结构进行分析,并与其他植物的LTI蛋白进行系统进化树构建,分析它们之间的进化关系。采用实时荧光定量PCR(qRT-PCR)和蛋白免疫印迹(western-blot,WB)技术分析MsLTI65在不同非生物胁迫条件下的表达模式。序列分析表明,MsLTI65基因编码区序列长2016 bp,编码671个氨基酸,分子量74 kDa,理论等电点为4.55,MsLTI65蛋白与蒺藜苜蓿的MtLTI65蛋白具有较高的同源性。qRT-PCR检测结果表明,MsLTI65基因在冷、盐、干旱、Cu2+、Zn2+和脱落酸(ABA)胁迫下表达量均受到诱导上调表达。抗体制备结果表明,已成功制备MsLTI65多克隆抗体,该多克隆抗体特异性高,能够识别天然LTI65样本。Western-blot验证结果表明,MsLTI65蛋白受冷、干旱、盐、ABA胁迫诱导表达。以上结果表明,MsLTI65基因可能作为一个正向调控因子在冷、干旱、Cu2+、Zn2+、盐等多种非生物胁迫信号和ABA激素信号转导过程中发挥重要作用。
周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104.
Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses[J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104.
| 引物名称Primer name | 引物序列Primer sequence (5′→3′) | 用途Function |
|---|---|---|
| MsLTI-3′-RACE | TGATGAGTCAAAACCTGCCACAGAACCA | 基因克隆 Gene cloning |
| MsLTI-5′-RACE | CCAACAGCATCCTTAACCTTGTCAACCA | |
| MsLTI65-F | ATGGATTCAAGAGTTGTTCATAGTC | |
| MsLTI65-R | TTACTCCTGTTTTCCTCCTTCA | |
| Actin-F | CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Reference genes |
| Actin-R | CATGACACCAGTATGACGAGGTCG | |
| qlTI65-F | AGCTGATAAAGCTTCTAAGCTCGG | 表达分析 Expression analysis |
| qlTI65-R | GTTTCAGTTCCGTCATTAGTTCCA | |
| LTI65-F | TCAGGGATCCGTGCATGATGAGCCAAAACC | 抗体制备 Antibody preparation |
| LTI65-R | CGTAGTCGACTTACTCCTGTTTTCCTCCTT |
表1 所用引物信息
Table 1 Primer information used in the experiment
| 引物名称Primer name | 引物序列Primer sequence (5′→3′) | 用途Function |
|---|---|---|
| MsLTI-3′-RACE | TGATGAGTCAAAACCTGCCACAGAACCA | 基因克隆 Gene cloning |
| MsLTI-5′-RACE | CCAACAGCATCCTTAACCTTGTCAACCA | |
| MsLTI65-F | ATGGATTCAAGAGTTGTTCATAGTC | |
| MsLTI65-R | TTACTCCTGTTTTCCTCCTTCA | |
| Actin-F | CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Reference genes |
| Actin-R | CATGACACCAGTATGACGAGGTCG | |
| qlTI65-F | AGCTGATAAAGCTTCTAAGCTCGG | 表达分析 Expression analysis |
| qlTI65-R | GTTTCAGTTCCGTCATTAGTTCCA | |
| LTI65-F | TCAGGGATCCGTGCATGATGAGCCAAAACC | 抗体制备 Antibody preparation |
| LTI65-R | CGTAGTCGACTTACTCCTGTTTTCCTCCTT |
生物信息学工具 Bioinformatics tools | 网址 Website | 用途 Purpose |
|---|---|---|
| Open Reading Frame Finder | https://www.ncbi.nlm.nih.gov/orffinder/ | 开放阅读框分析Open reading frame analysis |
| SMART | https://smart.embl.de/ | 蛋白质保守结构域分析Protein conserved domain analysis |
| Expasy-ProtParam tool | https://web.expasy.org/protparam/ | 蛋白质理化性质分析Analysis of physical and chemical properties of proteins |
| PRABI | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html | 蛋白质二级结构分析Protein secondary structure analysis |
| AlphaFold | https://alphafoldserver.com/ | 蛋白质三级结构分析Protein tertiary structure analysis |
| BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 同源蛋白序列分析Homologous protein sequence analysis |
| DNAMAN | https://www.lynnon.com/qa.html | 多序列比对Multiple sequence alignment |
| Plant CARE | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件分析Cis-acting element analysis |
| MEGA | https://www.megasoftware.net/ | 系统进化树构建Phylogenetic tree construction |
| NetPhos-3.1 | https://services.healthtech.dtu.dk/ services/NetPhos-3.1/ | 蛋白磷酸化位点分析Protein phosphorylation site analysis |
| SignaL.P-5.0 | http://www.cbs.dtu.dk/services/SignalP/ | 蛋白质信号肽分析Protein signal peptide analysis |
| TMHMM-2.0 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ | 蛋白跨膜结构分析Protein transmembrane structure analysis |
表2 所用生物信息学工具
Table 2 Bioinformatics tools used
生物信息学工具 Bioinformatics tools | 网址 Website | 用途 Purpose |
|---|---|---|
| Open Reading Frame Finder | https://www.ncbi.nlm.nih.gov/orffinder/ | 开放阅读框分析Open reading frame analysis |
| SMART | https://smart.embl.de/ | 蛋白质保守结构域分析Protein conserved domain analysis |
| Expasy-ProtParam tool | https://web.expasy.org/protparam/ | 蛋白质理化性质分析Analysis of physical and chemical properties of proteins |
| PRABI | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html | 蛋白质二级结构分析Protein secondary structure analysis |
| AlphaFold | https://alphafoldserver.com/ | 蛋白质三级结构分析Protein tertiary structure analysis |
| BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 同源蛋白序列分析Homologous protein sequence analysis |
| DNAMAN | https://www.lynnon.com/qa.html | 多序列比对Multiple sequence alignment |
| Plant CARE | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件分析Cis-acting element analysis |
| MEGA | https://www.megasoftware.net/ | 系统进化树构建Phylogenetic tree construction |
| NetPhos-3.1 | https://services.healthtech.dtu.dk/ services/NetPhos-3.1/ | 蛋白磷酸化位点分析Protein phosphorylation site analysis |
| SignaL.P-5.0 | http://www.cbs.dtu.dk/services/SignalP/ | 蛋白质信号肽分析Protein signal peptide analysis |
| TMHMM-2.0 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ | 蛋白跨膜结构分析Protein transmembrane structure analysis |
图1 MsLTI65基因的克隆M: DL2000 DNA分子量标准DL2000 marker; 1: 5′RACE产物5′RACE product; 2: 3′RACE产物3′RACE product; 3: ORF扩增产物ORF amplification product.
Fig.1 Cloning of MsLTI65 gene
图3 紫花苜蓿MsLTI65蛋白理化性质分析A: 亲疏水性及保守性分析Hydrophilicity and conservation analysis; B: 磷酸化位点分析Phosphorylation site analysis; C: 跨膜结构预测 Transmembrane structure prediction; D: 信号肽预测Signal peptide prediction.
Fig.3 Analysis of physicochemical properties of alfalfa MsLTI65 protein
图4 MsLTI65蛋白的二级结构和三级结构预测A:MsLTI65蛋白的二级结构;红色为延伸链结构;紫色为无规则卷曲结构;绿色为β-折叠结构;蓝色为α-螺旋结构。The secondary structure of MsLTI65 protein; Red: Extended chain structure; Purple: Irregular coiled structure; Green: β-sheet structure; Blue: α-helix structure;B: MsLTI65蛋白的三级结构The tertiary structure of MsLTI65 protein.
Fig.4 Prediction of the secondary and tertiary structures of MsLTI65 protein
图5 MsLTI65与不同物种同类基因的蛋白序列系统进化树分析Ms: 紫花苜蓿M. sativa; Mt: 蒺藜苜蓿M. truncatula; Ca: 鹰嘴豆C. arietinum; Gm: 大豆G. max; Gs: 野大豆G. soja; Va: 赤豆Vigna angularis; At: 拟南芥A. thaliana; Ps: 豌豆P. sativum; Tp: 红三叶T. pratense; Vu: 豇豆Vigna unguiculata; Vr: 绿豆Vigna radiata; Ss: 密花豆Spatholobus suberectus; Mp: 刺毛黧豆Mucuna pruriens; Ap: 相思子Abrus precatorius; La: 狭叶羽扇豆Lupinus angustifolius; Ah: 落花生Arachis hypogaea; Ai: 花生二倍体野生种Arachis ipaensis; Tr: 白三叶T. repens; Os: 水稻O. sativa; Cc: 木豆C. cajan. 下同The same below.
Fig.5 Phylogenetic tree analysis of protein sequences of MsLTI65 and similar genes in different species
| 元件名称Element name | 序列Sequence | 数量Amount | 功能Function |
|---|---|---|---|
| TCT-motif | TCTTAC | 1 | 光响应模块的一部分Part of a module for light response |
| MYC | CATTTG | 5 | MYC结合位点MYC binding site |
| Box 4 | ATTAAT | 1 | 光响应元件Light responsive element |
| Chs-CMA1a | TTACTTAA | 1 | 光响应元件Light responsive element |
| GT1-motif | GGTTAA | 1 | 光响应元件Light responsive element |
| LTR | CCGAAA | 2 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
| ARE | AAACCA | 4 | 无氧诱导调节元件Anaerobic induction regulating element |
| TC-rich repeats | GTTTTCTTAC | 2 | 参与防御和胁迫反应的顺式作用元件Cis-acting element involved in defense and stress responsiveness |
| ABRE | CACGTG/ACGTG | 4 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| DRE | GCCGAC | 1 | 参与脱水反应的顺式作用元件Cis-acting elements involved in dehydration reactions |
表3 MsLTI65基因启动子部分顺式作用元件分析
Table 3 Analysis of cis-acting elements in the promoter region of the MsLTI65 gene
| 元件名称Element name | 序列Sequence | 数量Amount | 功能Function |
|---|---|---|---|
| TCT-motif | TCTTAC | 1 | 光响应模块的一部分Part of a module for light response |
| MYC | CATTTG | 5 | MYC结合位点MYC binding site |
| Box 4 | ATTAAT | 1 | 光响应元件Light responsive element |
| Chs-CMA1a | TTACTTAA | 1 | 光响应元件Light responsive element |
| GT1-motif | GGTTAA | 1 | 光响应元件Light responsive element |
| LTR | CCGAAA | 2 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
| ARE | AAACCA | 4 | 无氧诱导调节元件Anaerobic induction regulating element |
| TC-rich repeats | GTTTTCTTAC | 2 | 参与防御和胁迫反应的顺式作用元件Cis-acting element involved in defense and stress responsiveness |
| ABRE | CACGTG/ACGTG | 4 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| DRE | GCCGAC | 1 | 参与脱水反应的顺式作用元件Cis-acting elements involved in dehydration reactions |
图7 MsLTI65在不同非生物胁迫处理下的相对表达量不同小写字母表示不同处理时间间差异显著(P<0.05)。Different lowercase letters indicate significant differences among different treatment times (P<0.05).
Fig.7 Relative expression levels of MsLTI65 under different abiotic stresses
图8 MsLTI65的多克隆抗体制备及Western-blot检测A:小量诱导表达MsLTI65融合蛋白检测;M:非预染蛋白Marker (0.1 mg·mL-1);1:未进行IPTG处理的菌液(对照组);2:IPTG处理的菌液(试验组)。A: Small amount of induced expression of MsLTI65 fusion protein detection; M: non-prestained protein Marker (0.1 mg·mL-1); 1: Bacterial solution without IPTG treatment (control group); 2: IPTG treated bacterial solution (experimental group). B:大量诱导表达MsLTI65融合蛋白检测。1:转化pGEX-3X-MsLTI65的菌种沉淀;2:转化pGEX-3X-MsLTI65的菌种上清。B: Large amounts of induced expression of MsLTI65 fusion protein detection. 1: Transformed pGEX-3X-MsLTI65 strain precipitation; 2: Transformed of pGEX-3X-MsLTI65 strain supernatant. C:MsLTI65融合蛋白的纯化。1:纯化的MsLTI65融合蛋白。C: Purification of MsLTI65 fusion protein. 1: Purified MsLTI65 fusion protein. D:MsLTI65多克隆抗体的纯化。1:MsLTI65纯化抗体。D: Purification of MsLTI65 polyclonal antibody. 1: MsLTI65 purified antibody. E:抗血清中MsLTI65抗体效价检测。E: Titer detection of MsLTI65 antibody in antiserum. F:MsLTI65多克隆抗体Western-blot检测。Lane1:NaCl胁迫6 h的天然样本;Lane2:NaCl胁迫12 h的天然样本。F: Western-blot analysis of MsLTI65 polyclonal antibody. Lane1: Natural samples subjected to NaCl stress for 6 h; Lane2: Natural sample subjected to NaCl stress for 12 h.
Fig.8 Polyclonal antibody preparation and Western-blot detection of MsLTI65
图9 MsLTI65蛋白在不同非生物胁迫条件下的相对表达量CK: 0 h; M: 蛋白质分子量标准Protein marker.
Fig.9 Relative expression of MsLTI65 protein under different abiotic stress conditions
| 1 | Yang Q C, Kang J M, Zhang T J, et al. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. |
| 杨青川, 康俊梅, 张铁军, 等. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270. | |
| 2 | Li X L, Shen Y Y, Wan L Q. Potential analysis and policy recommendations for restructuring the crop farming and developing forage industry in China. Strategic Study of CAE, 2016, 18(1): 94-105. |
| 李向林, 沈禹颖, 万里强. 种植业结构调整和草牧业发展潜力分析及政策建议. 中国工程科学, 2016, 18(1): 94-105. | |
| 3 | Sun R, Liu Z D, Gao H J, et al. A brief analysis of the protection and restoration of China’s grassland ecological environment. Animal Husbandry Industry, 2024(3): 55-58. |
| 孙蕊, 刘泽东, 高海娟, 等. 简析我国草原生态环境的保护与修复. 畜牧产业, 2024(3): 55-58. | |
| 4 | Chen C J, Wang X M, Liu W H, et al. Research advances on genetic diversity of grass germplasm. Acta Agrestia Sinica, 2024, 32(2): 349-357. |
| 陈彩锦, 王学敏, 刘文辉, 等. 草种质资源遗传多样性研究进展. 草地学报, 2024, 32(2): 349-357. | |
| 5 | Sun P B, Wang Z J, Ge G T, et al. Research progress of alfalfa salt and alkali stress tolerance and mitigation measures. Northern Horticulture, 2023(21): 131-137. |
| 孙鹏波, 王志军, 格根图, 等. 紫花苜蓿耐盐碱胁迫与缓减措施的研究进展. 北方园艺, 2023(21): 131-137. | |
| 6 | Mao P S, Hou L Y, Wang M Y. Limited factors and key technologies of forage seed production in the northern of China. Science Bulletin, 2016, 61(2): 250-260. |
| 毛培胜, 侯龙鱼, 王明亚. 中国北方牧草种子生产的限制因素和关键技术. 科学通报, 2016, 61(2): 250-260. | |
| 7 | Wang X, Li Z P, Sun J J, et al. Progress of alfalfa breeding in China. Pratacultural Science, 2014, 31(3): 512-518. |
| 王雪, 李志萍, 孙建军, 等. 中国苜蓿品种的选育与研究. 草业科学, 2014, 31(3): 512-518. | |
| 8 | Ma B, Sun J W, Li S F. Research advances about low temperature induced proteins in plants. Journal of Anhui Agricultural Sciences, 2010, 38(12): 6085-6086, 6094. |
| 马斌, 孙骏威, 李素芳. 植物低温诱导蛋白的研究进展. 安徽农业科学, 2010, 38(12): 6085-6086, 6094. | |
| 9 | Briggs D R, Siminovitch D. The chemistry of the living bark of the black locust tree in relation to frost hardiness. Ⅱ. Seasonal variations in the electrophoresis pattern of the water-soluble proteins of the bark. Archives of Biochemistry and Biophysics, 1949, 23(1): 8-11. |
| 10 | Houde M, Danyluk J, Laliberte J F, et al. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiology, 1992, 99(4): 1381-1387. |
| 11 | Yonca S, Bekir C, Betül B. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L.) Heynh. Genetika, 2016, 48(2): 547-563. |
| 12 | Vigeland M D, Manuel S, Torben A, et al. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. The New Phytologist, 2013, 199(4): 1060-1068. |
| 13 | Joaquín M, Marta F R, Andrés P, et al. Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. The Plant Journal, 2005, 42(4): 586-597. |
| 14 | Li J H, Sun H Y, Zhao P J, et al. Cloning and sequence analysis of low-temperature inducible gene (MeLTI6A) of Manihot esculenta. Chinese Agricultural Science Bulletin, 2012, 28(27): 72-77. |
| 黎娟华, 孙海彦, 赵平娟, 等. 木薯低温诱导基因MeLTI6A的克隆与序列分析. 中国农学通报, 2012, 28(27): 72-77. | |
| 15 | Shi H, Chen Y, Qian Y, et al. Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: Effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Frontiers in Plant Science, 2015, 6: 893. |
| 16 | Jia H, Zhang S, Ruan M, et al. Analysis and application of RD29 genes in abiotic stress response. Acta Physiologiae Plantarum, 2012, 34: 1239-1250. |
| 17 | Yang Y Z, Lei Z H, Peng F R. Research advances about low-temperature-induced proteins and the cold tolerance in plants. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 421-428. |
| 杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展. 西北植物学报, 2007, 27(2): 421-428. | |
| 18 | Jia H L, Shi Y H, Wang X M, et al. Cloning and expression analysis of MsLEA4 promoter from Medicago sativa. Acta Agrestia Sinica, 2019, 27(4): 789-796. |
| 贾会丽, 石永红, 王学敏, 等. 紫花苜蓿MsLEA4启动子的克隆及表达分析. 草地学报, 2019, 27(4): 789-796. | |
| 19 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| 20 | Li T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis. Yangling: Northwest A & F University, 2017. |
| 李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究. 杨凌: 西北农林科技大学, 2017. | |
| 21 | Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| 王少鹏, 刘佳, 洪军, 等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. | |
| 22 | Zhang L S, Sun Y G, Ji J Q, et al. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa. The Crop Journal, 2023, 11(4): 1218-1229. |
| 23 | Cen H F, Huang J Q, Shen W H, et al. Cloning of MsUGT87A1 gene in alfalfa and analysis of its expression in the response to abiotic stress. Acta Agrestia Sinica, 2023, 31(6): 1682-1692. |
| 岑慧芳, 黄洁琼, 申王晖, 等. 紫花苜蓿MsUGT87A1基因克隆及其对非生物胁迫的响应分析. 草地学报, 2023, 31(6): 1682-1692. | |
| 24 | Ma L, Wen H Y, Wang X M, et al. Cloning and function analysis of MsMAX2 gene in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2021, 54(19): 4061-4069. |
| 马琳, 温红雨, 王学敏, 等. 紫花苜蓿MsMAX2的克隆及功能研究. 中国农业科学, 2021, 54(19): 4061-4069. | |
| 25 | Sun X, Lei T, Yuan S, et al. Progress in research of dehydrins. Journal of Wuhan Botanical Research, 2005, 23(3): 299-304. |
| 孙歆, 雷韬, 袁澍, 等. 脱水素研究进展. 武汉植物学研究, 2005, 23(3): 299-304. | |
| 26 | Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1993, 21: 641-653. |
| 27 | Wang J, Li B, Liu C C, et al. Advances of the studies on structure and function of promoter. Bulletin of Biotechnology, 2014(8): 40-45. |
| 王婧, 李冰, 刘翠翠, 等. 启动子结构和功能研究进展. 生物技术通报, 2014(8): 40-45. | |
| 28 | Yang P F, Duan G Q, Hu X W, et al. Overview of higher plant promoters research. Molecular Plant Breeding, 2018, 16(5): 1482-1493. |
| 杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述. 分子植物育种, 2018, 16(5): 1482-1493. | |
| 29 | Zhao L, Wang P, Wu Q, et al. Research progress in histone modification of plant involved in the regulation of gene expression response to abiotic stress. Bulletin of Biotechnology, 2020, 36(7): 182-189. |
| 赵琳, 王璞, 吴琦, 等. 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展. 生物技术通报, 2020, 36(7): 182-189. | |
| 30 | Li J X, Zhou L Y, Yuan F, et al. Cloning and expression analysis of MsHB1 gene from Medicago sativa. Acta Agrestia Sinica, 2023, 31(12): 3617-3625. |
| 李家兴, 周丽莹, 苑峰, 等. 紫花苜蓿MsHB1基因的克隆及表达分析. 草地学报, 2023, 31(12): 3617-3625. | |
| 31 | Liu Y M, Zhou H Y, Wang K, et al. Research on response mechanism of plants to abiotic stress. Journal of Anhui Agricultural Sciences, 2018, 46(16): 35-37, 62. |
| 刘燕敏, 周海燕, 王康, 等. 植物对非生物胁迫的响应机制研究. 安徽农业科学, 2018, 46(16): 35-37, 62. | |
| 32 | Wang P L, Nie X, Ye Y L, et al. Forskolin improves salt tolerance of Gossypium hirsutum L. by upregulation of GhLTI65. Industrial Crops Products, 2023, 201: 116900. |
| 33 | Kim S H, Kim J Y, Kim S H, et al. Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Reports, 2007, 26(7): 1097-1110. |
| 34 | Yu C H, Zhu C Y, Duan S F, et al. Comparative transcriptome analysis of response to low temperature during flowering of Coptis teeta Wall. Molecular Plant Breeding, 2022, 20(14): 4642-4653. |
| 余成华, 朱春艳, 段绍凤, 等. 比较转录组分析云南黄连开花过程对低温的应答. 分子植物育种, 2022, 20(14): 4642-4653. | |
| 35 | Puhakainen T, Hess M W, Mäkelä P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 2004, 54(5): 743-753. |
| 36 | Zhang Y J, Sang H T, Wang H Q, et al. Research progress in signal transduction in systemic responses of plants to abiotic stress. Acta Botanica Sinica, 2024, 59(1): 122-133. |
| 张悦婧, 桑鹤天, 王涵琦, 等. 植物对非生物胁迫系统性反应中信号传递的研究进展. 植物学报, 2024, 59(1): 122-133. | |
| 37 | Shi W J, Wang X J, Liu H, et al. A novel ABA-insensitive mutant in Arabidopsis reveals molecular network of ABA-induced anthocyanin accumulation and abiotic stress tolerance. Journal of Plant Physiology, 2022, 278: 153810. |
| 38 | Shinozaki K Y, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular Genetics and Genomics, 1993, 236: 331-340. |
| 39 | Zhang L, Shi J N, Liu G Z. The concept of an advanced version of western blot (WB 2.0) and its perspectives. Progress in Biochemistry and Biophysics, 2019, 46(9): 917-924. |
| 张柳, 史佳楠, 刘国振. 蛋白质印迹技术升级版(WB 2.0)的概念与设想. 生物化学与生物物理进展, 2019, 46(9): 917-924. | |
| 40 | Shu X T, Ouyang N, Jiang C J, et al. Expression patterns of dehydrin-like proteins in tea plant (Camellia sinensis) by Western-blot analysis. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2448-2454. |
| 舒锡婷, 欧阳娜, 江昌俊, 等. 茶树叶片类脱水素蛋白的Western-blot分析. 西北植物学报, 2015, 35(12): 2448-2454. |
| [1] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [2] | 左志芳, 李永龙, 魏雨佳, 周生辉, 李岩, 杨国锋. 结缕草DREB基因家族的鉴定及非生物胁迫下的表达模式分析[J]. 草业学报, 2025, 34(5): 74-88. |
| [3] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [4] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [5] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| [6] | 陈彩锦, 包明芳, 王文虎, 尚继红, 曾燕霞, 沙晓弟, 朱新忠, 王学敏, 刘文辉. 紫花苜蓿抗旱育种研究现状及展望[J]. 草业学报, 2025, 34(3): 204-223. |
| [7] | 胡鹏飞, 叶雨浓, 王通锐, 王晶, 王星, 伏兵哲, 高雪芹. 紫花苜蓿半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2025, 34(3): 85-96. |
| [8] | 汪欣瑶, 彭亚萍, 姚立蓉, 汪军成, 司二静, 张宏, 杨轲, 马小乐, 孟亚雄, 王化俊, 李葆春. 盐生草HgS5基因的克隆与抗旱性鉴定[J]. 草业学报, 2025, 34(2): 184-195. |
| [9] | 马超, 孙熙婧, 冯雅岚, 周爽, 琚吉浩, 吴毅, 王添宁, 郭彬彬, 张均. 紫花苜蓿GLK基因家族鉴定及渗透胁迫下的表达分析[J]. 草业学报, 2025, 34(1): 174-190. |
| [10] | 蔡文祺, 李淑霞, 王晓彤, 宋文学, 麻旭霞, 马小梅, 李小红, 代昕瑶. 外源褪黑素与乙烯交互对盐胁迫下紫花苜蓿幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(1): 80-93. |
| [11] | 崔红丽, 孙明哲, 贾博为, 孙晓丽. 蒺藜苜蓿OSCA基因家族鉴定及低温逆境表达分析[J]. 草业学报, 2024, 33(9): 111-125. |
| [12] | 王晓彤, 李小红, 麻旭霞, 蔡文祺, 冯学丽, 李淑霞. 紫花苜蓿FBA基因家族成员的鉴定与分析[J]. 草业学报, 2024, 33(9): 81-93. |
| [13] | 张盈盈, 胡丹丹, 马春晖, 张前兵. 苜蓿叶片结构和光合特性对菌磷添加的响应[J]. 草业学报, 2024, 33(8): 133-144. |
| [14] | 马圆, 刘欢, 赵桂琴, 王敬龙, 张然, 姚瑞瑞. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 2024, 33(8): 145-158. |
| [15] | 王峥, 常伟, 李俊诚, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿还田对饲料玉米产量和氮素吸收转运的影响[J]. 草业学报, 2024, 33(8): 63-73. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||