[1] Dai A G.Drought under global warming: a review. Wires Climate Change, 2011, 2: 45-65. [2] Abd E H, Evelyn R F, Dirk D V, et al.Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Science, 2015, 231: 1-10. [3] Liu G S, Li X X, Qi D M, et al.Evaluation and utilization of Leymus chinensis germplasm resources. Chinese Science Bulletin, 2016, 61(2): 271-281. 刘公社, 李晓霞, 齐冬梅, 等. 羊草种质资源的评价与利用. 科学通报, 2016, 61(2): 271-281. [4] Li X, Liu Z, Wang Z, et al.Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: a study at the plant functional trait scale. PLoS ONE, 2015, 10(5): e0124443. [5] Liu M R, Li J H, Niu J H, et al.Interaction of drought and 5-aminolevulinic acid on growth and drought resistance of Leymus chinensis seedlings. Acta Ecologica Sinica, 2016, 36(3): 180-188. [6] Zong W, Zhong X C, You J, et al.Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Molecular Biology, 2013, 81(1): 175-180. [7] Liu X, Chan Z.Application of potassium polyacrylate increases soil water status and improves growth of Bermuda grass (Cynodon dactylon) under drought stress condition. Scientia Horticulturae, 2015, 197: 705-711. [8] Tanaka R, Tanaka A.Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 2007, 58(1): 321-346. [9] Akram N A, Ashraf M, Qurainy A F.Aminolevulinic acid-induced changes in yield and seed-oil characteristics of sunflower (Helianthus Annuus L.) plants under salt stress. Pakistan Journal of Botany, 2011, 43: 2845-2852. [10] Guo X Q, Li C H, Li Q Z, et al.Effects of foliar spraying 5-aminolevulinic acid on growth, photosynthesis and yield of tomato under shade conditions. Shandong Agricultural Sciences, 2011, 9: 30-34. 郭晓青, 李超汉, 李青竹, 等. 叶面喷施5-氨基乙酰丙酸对遮阴条件下番茄生长, 光合特性和产量的影响. 山东农业科学, 2011, 9: 30-34. [11] Korkmaz A, Korkmaz Y, Demirkiran A R.Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental & Experimental Botany, 2010, 67(3): 495-501. [12] Kosar F, Akram N A, Ashraf M.Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South African Journal of Botany, 2015, 96: 71-77. [13] Shakeel A A, Li J H, Lü J, et al.Regulation mechanism of exogenous ALA on growth and physiology of Leymus chinensis (Trin.) under salt stress. Chilean Journal of Agricultural Research, 2016, 76(3): 314-320. [14] Anjum S A, Wang R, Niu J H, et al.Exogenous application of ALA regulates growth and physiological characters of Leymus chinensis (Trin.) tzvel. under low temperature stress. The Journal of Animal and Plant Sciences, 2016, 26(5):1354-1360. [15] Costa V, Angelini C, Feis I, et al.Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, 2010, 2010: 853916. (http://dx.doi.org/10.1155/2010/853916. [16] Thi L N, Chi B B.Fine mapping for drought tolerance in rice (Oryza sativa L.). Omonrice, 2008, 16: 9-15. [17] Deyholos M K.Making the most of drought and salinity transcriptomics. Plant, Cell & Environment, 2010, 33: 648-654. [18] Sun Y P.Transcriptome sequencing and analysis of Leymus chinensis under saline-alkaline treatment. Changchun: Jilin Agricultural University,2012 孙业鹏. 盐碱胁迫下羊草转录组测序及分析. 长春:吉林农业大学, 2012. [19] Dong Y Y, Li X W, Yao N, et al. Transcription factor identification and analysis in Leymus chinensis transcriptome under salt stress. Northern Horticulture, 2017(7): 115-120. 董圆圆, 李晓薇, 姚娜, 等. 盐碱胁迫下羊草转录因子的转录组分析. 北方园艺, 2017(7): 115-120. [20] Jeong J S, Kim Y S, Redillas M C F, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 2013, 11(1): 101-114. [21] Song J X, Li J H, Liu M R, et al.Effects of drought stress and BR application on osmotic adjustment and antioxidant enzymes of Leymus chinensis. Acta Prataculturae Sinica, 2015, 24(8): 93-102. 宋吉轩, 李金还, 刘美茹, 等. 油菜素内酯对干旱胁迫下羊草渗透调节及抗氧化酶的影响研究. 草业学报, 2015, 24(8): 93-102. [22] Hsiao T C.Plant responses to water stress. Annual Review of Plant Physiology, 1973, 24: 519-570. [23] Liu H F, Gao Y B, Zhang Q, et al.Physio-Ecological responses and their adaptation of different geographic Leymus chinensis populations to soil drought stress. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2004, 37(4): 105-110. 刘惠芬, 高玉葆, 张强, 等. 不同种群羊草幼苗对土壤干旱胁迫的生理生态响应. 南开大学学报(自然科学版), 2004, 37(4): 105-110. [24] Xu Z Z, Zhou G S.Effects of soil moisture on growth characteristics of Leymus chinensis seedlings under different temperature conditions. Chinese Journal of Ecology, 2005, 24(3): 256-260. 许振柱, 周广胜. 不同温度条件下土壤水分对羊草幼苗生长特性的影响. 生态学杂志, 2005, 24(3): 256-260. [25] Li L Z, Zhang D G, Xin X P, et al.Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica, 2009, 29(10): 5271-5279. 李林芝, 张德罡, 辛晓平, 等. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光和合特性. 生态学报, 2009, 29(10): 5271-5279. [26] Zhu W Z, Cao M, Wang S G, et al.Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit. PloS One, 2012, 7(3): e34213. [27] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 1976, 72: 248-254. [28] Higa A, Mori Y, Kitamura Y.Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus. Journal of Plant Physiology, 2010, 167(11): 870-878. [29] Du Y C, Wang Y B, Fan W T, et al.Effect of nitrogen fertilization on nitrate reductase and nitrite reductase activities of sugar beet. Plant Nutrition and Fertilizer Science, 2012, 18(3): 717-723. 杜永成, 王玉波, 范文婷, 等. 不同氮素水平对甜菜硝酸还原酶和亚硝酸还原酶活性的影响.植物营养与肥料学报, 2012, 18(3): 717-723. [30] Tian J, Liao H, Wang X R, et al.Phosphorus starvation induced expression of leaf acid phosphatase isoforms in soybean. Acta Botanica Sinica, 2003, 45: 1037-1042. [31] Sayre R T, Kennedy R A, Pringnitz D J.Photosynthetic enzyme activitives and localization in Mollugo verticillata populations in the levels of C3 and C4 cycle operations. Journal of Plant Physiology, 1979, 64: 293-299. [32] Huang C B, Zeng F J, Lei J Q, et al.Effects of irrigation on plant growth and nitrogen use characteristics of Calligonum caput-medusae Schrenk seedlings Acta Ecologica Sinica, 2014, 34(3): 572-580. 黄彩变, 曾凡江, 雷加强, 等. 灌溉对沙拐枣幼苗生长及氮素利用的影响. 生态学报, 2014, 34(3): 572-580. [33] Wu D T, Zhang X X, Gong Z P, et al.Effects of phosphorus nutrition on P absorption and yields of soybean. Plant Nutrition and Fertilizer Science, 2012, 18(3): 670-677. 吴冬婷, 张晓雪, 龚振平, 等. 磷素营养对大豆磷素吸收及产量的影响. 植物营养与肥料学报, 2012, 18(3): 670-677. [34] Yan H K, Liu X, Wang H G, et al.Changes and relation of soluble protein, soluble sugar and potassium in low-potassium tolerant maize under low-potassium condition. Journal of Maize Sciences, 2012, 20(6): 81-84. 闫洪奎, 刘祥, 王会广, 等. 低钾胁迫下耐低钾玉米可溶性蛋白、 可溶性糖和钾含量的变化及其关系. 玉米科学, 2012, 20(6): 81-84. [35] Teng Z H, Zhi L, Lü J, et al.Effects of high temperature on photosynthesis characteristics, phytohormones and grain quality during filling-periods in rice. Acta Ecologica Sinica, 2010, 30: 6504-6511. 滕中华, 智丽, 吕俊, 等. 灌浆期高温对水稻光合特性、内源激素和稻米品质的影响.生态学报, 2010, 30(23): 6504-6511. [36] Li B, Dewey C N.RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323. [37] Trapnell C, Williams B A, Pertea G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28: 511-515. [38] Young M D, Wakefield M J, Smyth G K, et al.Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11(2): 1-12. [39] Todaka D K, Shinozaki, Shinozaki K Y. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science, 2015, 6: 1-20. [40] Vurukonda S S K, Vardharajula S, Shrivastava M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizo-bacteria. Microbiological Research, 2016, 184: 13-24. [41] Wei P X, He P, Zhang C P, et al.Effect of exogenous ALA and nitric oxide donor sodium nitroprusside (SNP) to F. dibotrys seedling under drought stress. Journal of Southwest China Normal University (Natural Science Edition), 2012, 37(10): 52-58. 韦品祥, 何平, 张春平, 等. 外源氨基乙酰丙酸(ALA)及一氧化氮供体硝普钠(SNP)对干旱胁迫下金荞麦幼苗生理特性的影响. 西南师范大学学报(自然科学版), 2012, 37(10): 52-58. [42] Wang J C, Yu B, Wang R, et al.Evolution and genetic analysis of yield characters of wheat varieties in Shandong Province. Shandong Agricultural Sciences, 2007, (2): 77-79. 王江春, 于波, 王荣, 等. 山东省小麦品种演变及产量性状的遗传分析. 山东农业科学, 2007, (2): 77-79. [43] Gan H Y, Jiao J, Jia X, et al.Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. Tree Physiology, 2015, 36: 22-38. [44] Zhao X Q, Du Y, Zhao H, et al.Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize (Zea Mays L.) at seedling stage. Agricultural Sciences, 2016, 7: 44-53. [45] Chu S, Zhang D, Wang D, et al.Heterologous expression and biochemical characterization of assimilatory nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil. International Journal of Biological Macromolecules, 2017, 101: 1019-1028. [46] Liu S, Meng J, Jiang L L, et al.Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 2017, 116: 12-22. [47] Yin Q, Tong Z, He T Q, et al.Cloning and expression Analysis of malate dehydrogenase gene from cassava. Chinese Journal of Tropical Crops, 2013, 34(6): 1082-1089. 尹奇, 仝征, 贺庭琪, 等. 木薯苹果酸脱氢酶基因克隆和表达分析. 热带作物学报, 2013, 34(6): 1082-1089. [48] Hu W, Taylor D C, Dimitra A L, et al.Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiology & Biochemistry, 2017, 115: 408-417. [49] Mohammadi M H S, Etemadi N, Arab M M, et al. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology & Biochemistry, 2017, 111: 129-143. [50] Ostrowski M, Ciarkowska A, Jakubowska A.The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. Journal of Plant Physiology, 2016, 191: 63-72. [51] Aroca R, Vernieri P, Irigoyen J J, et al.Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Science, 2003, 165: 671-679. [52] Tong H Y, Xiao D, Liu S, et al.Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 2014, 26: 4376-4393. [53] Gupta S, Rashotte A M.Expression patterns and regulation of SlCRF3 and SlCRF5 in response to cytokinin and abiotic stresses in tomato (Solanum lycopersicum). Journal of Plant Physiology, 2014, 171: 349-358. [54] Yang W B, Wang Z L, Yin Y P, et al.Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Scientia Agricultura Sinica, 2011, 44(13): 2673-2682. 杨卫兵, 王振林, 尹燕秤, 等. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44(13): 2673-2682. [55] Leitao A L, Enguita F J.Gibberellins in penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiological Research, 2016, 183: 8-18. [56] Zhou F, Liu E S, Zhao P J, et al.Impacts of drought stress on content of endogenous phytohormones at seedling stage of cassava. Agricultural Research in the Arid Areas, 2013, 31(5): 238-244. 周芳, 刘恩世, 赵平娟, 等. 干旱胁迫对苗期木薯内源激素含量的影响. 干旱地区农业研究, 2013, 31(5): 238-244. [57] Radhakrishnan R, Park J M, Lee I J.Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth. Microbiological Research, 2016, 193: 132-139. [58] Balestrasse K B, Tomaro M L, Batlle A, et al.The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010, 71: 2038-2045. [59] Ali B, R A, Yang S. Regulation of cadmium-Induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PloS One, 2015, 10: 1-23. |