欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2020, Vol. 29 ›› Issue (2): 82-91.DOI: 10.11686/cyxb2019199

• 研究论文 • 上一篇    下一篇

不同播量和行距对‘青燕1号’燕麦种子产量的影响

刘凯强, 刘文辉*, 魏小星, 贾志锋, 石正海   

  1. 青海省青藏高原优良牧草种质资源利用重点实验室,青海大学畜牧兽医科学院,青海 西宁 810016
  • 收稿日期:2019-03-21 修回日期:2019-05-19 出版日期:2020-02-20 发布日期:2020-02-20
  • 通讯作者: E-mail: qhliuwenhui@163.com
  • 作者简介:刘凯强(1992-),男,甘肃宁县人,在读硕士。E-mail: lkqgsqy@126.com
  • 基金资助:
    青海省科技厅重点实验室发展专项“青海省青藏高原优良牧草种质资源利用重点实验室”(2017-ZJ-Y12),现代农业产业技术体系建设专项资金(CARS-34),青海省“高端创新人才千人计划”,农业农村部“牧草种质资源保护项目”(2130135)和青海省饲草产业科技创新平台资助

Effect of different sowing rates and row spacings on seed yield of Avena sativa cv. Qingyan No.1

LIU Kai-qiang, LIU Wen-hui*, WEI Xiao-xing, JIA Zhi-feng, SHI Zheng-hai   

  1. Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
  • Received:2019-03-21 Revised:2019-05-19 Online:2020-02-20 Published:2020-02-20
  • Contact: E-mail: qhliuwenhui@163.com

摘要: 为探究青海省本地燕麦推广品种‘青燕1号’种子田的适宜播量、行距及播种方式,采用双因素试验设计,分别设4个播量水平和5个行距水平(含1个人工撒播),研究不同播量和行距对种子及秸秆产量的影响,完善该品种在实际生产中的栽培技术,提供科学的理论指导。结果显示,不同播量和行距处理下燕麦种子和秸秆产量差异显著(P<0.05),种子产量以播量S3 (225 kg·hm-2)行距R2 (20 cm)最高,秸秆产量以播量S4(270 kg·hm-2)行距R1(15 cm)最佳,分别达7937.30和11872.60 kg·hm-2。不同播种方式对种子产量影响差异显著(P<0.05),撒播下种子产量随播量呈先增加后降低趋势,以播量S3(225 kg·hm-2)水平最佳,较最低产量的处理高1.51倍;与撒播相比,条播种植增产效应明显,最高种子产量(S3R2)显著(P<0.05)高于撒播最高产量(S3R0)。从各产量性状与种子产量相关性分析来看,主穗小穗数、主穗小花数、花序长、叶面积、有效分蘖数、小穗粒数、单序籽粒数、单序籽粒重及千粒重与产量相关性显著(P<0.05),而通过建立多元回归及通径分析关系模型发现,主穗小穗数、千粒重、单序籽粒重对种子产量增益作用明显,三者对产量的直接作用和间接作用均处较高水平,因此在生产实践中可通过适当的调整栽培措施,增加主穗小穗数、千粒重和单序籽粒重从而提高燕麦种子产量。

关键词: 播量, 行距, 种子产量, 通径分析

Abstract: In order to clarify the optimal seeding rate, and row spacing or sowing method for Avena sativa grown as a grain crop in Qinghai Province, a two-factor field experiment was set up, comprising four sowing rates (S1, 135; S2, 180; S3, 225; and S4, 270 kg·ha-1), and five row spacing or planting method treatments (R1, 15 cm drilled; R2, 20 cm drilled; R3, 25 cm drilled; R4, 30 cm drilled; R0, broadcast), of cultivar Qingyan No.1. The experiment therefore had 20 treatment combinations, and there were three replicates. The research focused on seed yield and its contributing traits, and stalk yield. The research aim was to identify scientific principles and cultivation techniques to achieve a high-yield of this variety. It was found that seed yield and stalk yield differed significantly (P<0.05) between sowing rates and row spacing or planting patterns. The highest seed yield (7937 kg·ha-1) was achieved using the sowing rate S3 and row spacing R2, while the highest stalk yield (11873 kg·ha-1) was achieved using the sowing rate S4 and row spacing R1. With broadcast sowing rates higher or lower than S3, the seed yield was decreased, and the seed yield at S3 (averaged over row spacings) was 1.51 times higher than the lowest yield, which occurred at S1. The effect of drilling compared with broadcast sowing was obvious. The highest seed yield among the drilling treatments (S3R2) was significantly (P<0.05) higher than that of the comparable broadcast sowing (S3R0). According to the correlation analysis between yield and yield traits, the number of spikelets, number of florets, inflorescence length, leaf area, number of effective tillers, seed number per spikelet, seed number per inflorescence, thousand seed weight and seed weight per inflorescence were significantly (P<0.05) correlated with yield. Further, using multiple regression and a path analysis approach, it was found that number of spikelets, thousand seed weight and seed weight per inflorescence had a major influence on seed yield, with both direct and indirect effects. Therefore, seed number per inflorescence, thousand seed weight and seed weight per inflorescence are the traits most amenable to manipulation by appropriate cultivation measures to improve oat seed yield.

Key words: sowing rate, row spacing, seed yield, path analysis