草业学报 ›› 2021, Vol. 30 ›› Issue (11): 212-220.DOI: 10.11686/cyxb2020417
• 研究论文 • 上一篇
收稿日期:
2020-09-14
修回日期:
2020-10-29
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
杜文华
作者简介:
Corresponding author. E-mail: duwh@gsau.edu.cn基金资助:
Dan-dan CHANG(), Xu WANG, Xin-hui TIAN, Wen-hua DU()
Received:
2020-09-14
Revised:
2020-10-29
Online:
2021-10-19
Published:
2021-10-19
Contact:
Wen-hua DU
摘要:
为探索适宜于甘肃省中部地区的秋播小黑麦复种甜高粱技术,于2017-2018年在甘肃省兰州市开展了以前茬作物秋播小黑麦(甘农2号小黑麦)的种植方式为主区,小黑麦→甜高粱跨年复种方式为副区,甜高粱品种(大奖1000、大奖505)为副副区的3因素裂区试验。试验中测定秋播小黑麦株高、枝条数、草产量及营养指标,甜高粱的株高、叶片数、叶长、叶宽、茎粗、草产量及营养等相关指标,并进行分析。结果表明:甘肃中部地区小黑麦复种甜高粱最佳复种方式为秋季甘农2号小黑麦种植3行留30 cm,翌年夏季空行间套作式复种1行甜高粱大奖1000,小黑麦和甜高粱分别于开花期和抽穗期收获,全年总鲜、干草产量分别可达136.52、38.52 t·hm-2。
常丹丹, 王旭, 田新会, 杜文华. 甘肃中部地区秋播小黑麦套作式复种甜高粱的效应及品质研究[J]. 草业学报, 2021, 30(11): 212-220.
Dan-dan CHANG, Xu WANG, Xin-hui TIAN, Wen-hua DU. Studies on multiple intercropping effects and quality of autumn sown triticale and sweet sorghum in central Gansu Province[J]. Acta Prataculturae Sinica, 2021, 30(11): 212-220.
因素水平 Factor level | 变异来源 Variation source | F 值F value | |||||||
---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 枝条数 Number of branches | 鲜草 产量 Fresh yield | 干草 产量 Hay yield | 粗蛋白 Crude protein (CP) | 中性洗涤纤维Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) | 干物质消化率 Dry matter digestibility (DMD) | ||
单因素 Single factor | 主区间Within the main plot | 17.860** | 0.651 | 31.236** | 31.271** | 1.233 | 0.235 | 0.457 | 0.897 |
副区间Within the sub-plot | 0.290 | - | 2.925 | 3.043 | 0.135 | 1.916 | 7.772 | 1.896 | |
副副区间Within the sub-sub plots | 5.710 | - | 23.621** | 33.356** | 12.290* | 0.032 | 0.112 | 0.032 | |
两因素 Interaction of two factors | 主区×副区Main plot×sub-plot | - | - | 46.178** | 53.183** | - | - | - | - |
主区×副副区Main plot×sub-sub plots | - | - | 20.704** | 22.501** | - | - | - | - | |
副区×副副区Sub-plot×sub-sub plots | 1.545 | - | 4.638* | 6.427** | 0.934 | 4.531 | 1.782 | 1.324 | |
三因素Interaction of three factors | 主区×副区×副副区 Main plot×sub-plot×sub-sub plots | - | - | 22.005** | 25.307** | - | - | - | - |
表1 单因素间、两因素交互作用间和三因素交互作用间株高、枝条数、鲜草产量、干草产量、CP、NDF、ADF及DMD的方差分析
Table 1 Variance analysis on the plant height, number of branches, fresh weight, hay yield, CP content, NDF content, ADF content and DMD values among the single factors, interaction of two factors, and interaction of three factors
因素水平 Factor level | 变异来源 Variation source | F 值F value | |||||||
---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 枝条数 Number of branches | 鲜草 产量 Fresh yield | 干草 产量 Hay yield | 粗蛋白 Crude protein (CP) | 中性洗涤纤维Neutral detergent fiber (NDF) | 酸性洗涤纤维 Acid detergent fiber (ADF) | 干物质消化率 Dry matter digestibility (DMD) | ||
单因素 Single factor | 主区间Within the main plot | 17.860** | 0.651 | 31.236** | 31.271** | 1.233 | 0.235 | 0.457 | 0.897 |
副区间Within the sub-plot | 0.290 | - | 2.925 | 3.043 | 0.135 | 1.916 | 7.772 | 1.896 | |
副副区间Within the sub-sub plots | 5.710 | - | 23.621** | 33.356** | 12.290* | 0.032 | 0.112 | 0.032 | |
两因素 Interaction of two factors | 主区×副区Main plot×sub-plot | - | - | 46.178** | 53.183** | - | - | - | - |
主区×副副区Main plot×sub-sub plots | - | - | 20.704** | 22.501** | - | - | - | - | |
副区×副副区Sub-plot×sub-sub plots | 1.545 | - | 4.638* | 6.427** | 0.934 | 4.531 | 1.782 | 1.324 | |
三因素Interaction of three factors | 主区×副区×副副区 Main plot×sub-plot×sub-sub plots | - | - | 22.005** | 25.307** | - | - | - | - |
主区 Main plot | 株高 Plant height (cm) | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|---|
A1 | 109.0±1.00a | 77.94±0.77a | 22.27±0.22a |
A2 | 113.7±2.33a | 55.00±2.73b | 15.71±0.78b |
A3 | 97.3±2.33b | 45.60±4.31b | 13.03±1.23b |
表2 主区间株高、鲜草产量和干草产量的差异
Table 2 Differences of the plant height, fresh weight and hay yield among the main plot
主区 Main plot | 株高 Plant height (cm) | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|---|
A1 | 109.0±1.00a | 77.94±0.77a | 22.27±0.22a |
A2 | 113.7±2.33a | 55.00±2.73b | 15.71±0.78b |
A3 | 97.3±2.33b | 45.60±4.31b | 13.03±1.23b |
副副区 Sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) | 粗蛋白 Crude protein (CP, %) |
---|---|---|---|
C1 | 53.58±1.75a | 15.37±0.49a | 7.9±0.29b |
C2 | 42.11±1.58b | 11.74±0.40b | 8.7±0.19a |
表3 副副区间鲜草产量、干草产量和CP含量的差异
Table 3 Differences of fresh yield, hay yield and CP content among the sub-sub plots
副副区 Sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) | 粗蛋白 Crude protein (CP, %) |
---|---|---|---|
C1 | 53.58±1.75a | 15.37±0.49a | 7.9±0.29b |
C2 | 42.11±1.58b | 11.74±0.40b | 8.7±0.19a |
主区×副区 Main plot×sub-plot | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1B1 | 129.16±0.76a | 36.85±0.25a |
A2B2 | 98.91±3.95b | 28.27±1.07b |
A3B3 | 94.01±2.71b | 26.56±0.71b |
表4 主区×副区交互作用间鲜草产量和干草产量的差异
Table 4 Differences of the fresh yield and hay yield for the interaction of the main plot and sub-plot
主区×副区 Main plot×sub-plot | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1B1 | 129.16±0.76a | 36.85±0.25a |
A2B2 | 98.91±3.95b | 28.27±1.07b |
A3B3 | 94.01±2.71b | 26.56±0.71b |
主区×副副区 Main plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1C1 | 131.53±1.97a | 37.64±0.56a |
A1C2 | 120.06±2.25b | 34.01±0.60b |
A2C1 | 108.58±4.39c | 31.08±1.25bc |
A2C2 | 97.11±4.21de | 27.45±1.14de |
A3C1 | 99.18±4.45cd | 28.40±1.24cd |
A3C2 | 87.71±3.14e | 24.77±0.90e |
表5 主区×副副区交互作用间鲜草产量和干草产量的差异
Table 5 Differences of fresh yield and hay yield among the interaction of the main plot and sub-sub plots
主区×副副区 Main plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1C1 | 131.53±1.97a | 37.64±0.56a |
A1C2 | 120.06±2.25b | 34.01±0.60b |
A2C1 | 108.58±4.39c | 31.08±1.25bc |
A2C2 | 97.11±4.21de | 27.45±1.14de |
A3C1 | 99.18±4.45cd | 28.40±1.24cd |
A3C2 | 87.71±3.14e | 24.77±0.90e |
副区×副副区 Sub-plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
B1C1 | 58.57±2.93a | 16.63±0.81a |
B1C2 | 43.86±2.31c | 12.91±0.69b |
B2C1 | 46.67±3.97bc | 13.24±1.13b |
B2C2 | 41.17±1.09c | 11.87±0.36b |
B3C1 | 55.50±3.89ab | 16.25±1.16a |
B3C2 | 41.31±5.10c | 10.44±1.29b |
表6 副区×副副区间鲜草产量、干草产量的差异
Table 6 Differences of fresh yield and hay yield among the interaction of the sub plot and sub-sub plots
副区×副副区 Sub-plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
B1C1 | 58.57±2.93a | 16.63±0.81a |
B1C2 | 43.86±2.31c | 12.91±0.69b |
B2C1 | 46.67±3.97bc | 13.24±1.13b |
B2C2 | 41.17±1.09c | 11.87±0.36b |
B3C1 | 55.50±3.89ab | 16.25±1.16a |
B3C2 | 41.31±5.10c | 10.44±1.29b |
主区×副区×副副区 Main plot×sub-plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1B1C1 | 136.52±2.39a | 38.52±0.66a |
A1B1C2 | 121.80±3.00b | 35.18±0.90b |
A2B2C1 | 101.66±6.21c | 28.96±1.77b |
A2B2C2 | 96.16±2.33cd | 27.59±0.55c |
A3B3C1 | 101.10±0.76c | 29.66±0.20b |
A3B3C2 | 86.91±5.66d | 23.47±1.51d |
表7 主区×副区×副副区三因素交互作用间鲜、干草产量的差异
Table 7 Differences of fresh and hay yield among the interaction of the main plot×sub-plot×sub-sub plots
主区×副区×副副区 Main plot×sub-plot×sub-sub plots | 鲜草产量 Fresh yield (t·hm-2) | 干草产量 Hay yield (t·hm-2) |
---|---|---|
A1B1C1 | 136.52±2.39a | 38.52±0.66a |
A1B1C2 | 121.80±3.00b | 35.18±0.90b |
A2B2C1 | 101.66±6.21c | 28.96±1.77b |
A2B2C2 | 96.16±2.33cd | 27.59±0.55c |
A3B3C1 | 101.10±0.76c | 29.66±0.20b |
A3B3C2 | 86.91±5.66d | 23.47±1.51d |
1 | Bai Y B, Pan F G, Zhao Y F, et al. Analysis of yield and benefit for three crops per year multiple cropping mode of sweet corn. Hubei Agricultural Sciences, 2019, 58(6): 20-23. |
白豫博, 潘发光, 赵羽凡, 等. 甜玉米一年三熟复种模式产量及效益分析. 湖北农业科学, 2019, 58(6): 20-23. | |
2 | Wu X M. Study on the benefit of wheat intercropping maize double cropping silage maize planting mode. Modern Agricultural Science and Technology, 2016(19): 37, 39. |
吴秀梅. 小麦套种玉米复种青贮玉米种植模式的效益研究. 现代农业科技, 2016(19): 37, 39. | |
3 | Sui S X, Zhu Q Z, Zhao L F, et al. Cultivation technique regulations of early maturity cotton and forage triticale multiple cropping. Journal of Hebei Agricultural Sciences, 2017, 21(2): 21-22. |
眭书祥, 朱青竹, 赵丽芬, 等. 早熟棉花与饲草小黑麦复种栽培技术规程. 河北农业科学, 2017, 21(2): 21-22. | |
4 | Li Y L, Jia H Y, Jia S Q, et al. Research about cattle and sheep forage grass production model of “triticale+silage-corn”. Journal of Shanxi Agricultural Sciences, 2009, 37(11): 11-12, 32. |
李彦良, 贾海瑜, 贾苏卿, 等. “小黑麦+青贮玉米”牛羊饲草生产模式研究. 山西农业科学, 2009, 37(11): 11-12, 32. | |
5 | Li C X, Feng H S, Guo W C, et al. The yield of sweet sorghum and soil nutrient after planting with multiple cropping completely mulched and double furrow in Qinghai dryland. Pratacultural Science, 2015, 32(9): 1530-1535. |
李春喜, 冯海生, 郭万春, 等.青海旱作全膜双垄沟播甜高粱和复种产量及土壤养分含量. 草业科学, 2015, 32(9): 1530-1535. | |
6 | Zhang C Q, Wang H T, Yan X B, et al. Study on the effect of multi-cropping silage maize of wheat stubble in winter. Journal of Animal Science and Veterinary Medicine, 2018, 37(6): 8-10, 13. |
张长庆, 王虎堂, 闫晓波, 等.冬小麦茬复种饲用玉米效果研究. 畜牧兽医杂志, 2018, 37(6): 8-10, 13. | |
7 | Yang X, Song Q, Yu X L, et al. Multiple cropping effects of autumn-sown triticale and silage maize on the drought area of the eastern Gansu Province. Pratacultural Science, 2019, 36(8): 2127-2134. |
杨晓, 宋谦, 余小亮, 等. 陇东旱塬区秋播小黑麦与青贮玉米的复种效果. 草业科学, 2019, 36(8): 2127-2134. | |
8 | Dry Land Farming Research Institute of Hebei Academy of Agricultural and Forestry Sciences. The water-saving planting model of Multi-cropping triticale and corn. Modern Rural Science and Technology, 2015(22): 77, 82. |
河北省农林科学院旱作农业研究所.饲用小黑麦与玉米复种节水种植模式. 现代农村科技, 2015(22): 77, 82. | |
9 | Zhao Y J, Tian X H, Du W H. Studies on the optimal cutting period of forage triticale in Dingxi area. Pratacultural Science, 2015, 32(7): 1143-1149. |
赵雅姣, 田新会, 杜文华. 饲草型小黑麦在定西地区的最佳刈割期. 草业科学, 2015, 32(7): 1143-1149. | |
10 | Dai H L, Tian X H, Du W H, et al. Study on grass yield and nutrient quality of forage type triticale in Gannan area. Grassland and Turf, 2019, 39(2): 66-72. |
代寒凌, 田新会, 杜文华, 等. 甘南地区饲用型小黑麦草产量及营养品质研究. 草原与草坪, 2019, 39(2): 66-72. | |
11 | Li C H, Su Y J, Zhang P T, et al. Effects of different mowing times on yield and quality of sweet sorghum. Journal of Southern Agriculture, 2018, 49(2): 239-245. |
李春宏, 苏衍菁, 张培通, 等. 不同刈割时期对甜高粱产量和品质的影响. 南方农业学报, 2018, 49(2): 239-245. | |
12 | Guo Y, Yang F P, Zhang D Z. Key technology of high-yield cultivation of triticale. Gansu Agricultural Science and Technology, 2018(5): 91-93. |
郭莹, 杨芳萍, 张大志. 小黑麦丰产栽培关键技术. 甘肃农业科技, 2018(5): 91-93. | |
13 | Pei Y B. Coupling effect and mechanism of autumn seeding triticale and double crops in Gannan alpine pastoral area. Lanzhou:Gansu Agricultural University, 2020. |
裴亚斌. 甘南高寒牧区秋播小黑麦与复种作物的耦合效应及耦合机制. 兰州: 甘肃农业大学, 2020. | |
14 | Song Q, Tian X H, Du W H. Studies on production performance of new triticale lines in alpine pastoral areas of Gansu. Pratacultural Science, 2016, 33(7): 1367-1374. |
宋谦, 田新会, 杜文华. 甘肃省高寒牧区小黑麦新品系的生产性能. 草业科学, 2016, 33(7): 1367-1374. | |
15 | Chen D Y, Li F Y, Yin Q W, et al. Effects on different planting densities in production performance of feeding sweet sorghum. Journal of Grassland and Forage Science, 2019(3): 36-40, 68. |
陈东颖, 李发玉, 尹权为, 等. 不同种植密度对饲用甜高粱生产性能的影响. 草学, 2019(3): 36-40, 68. | |
16 | Ren Y X, Liu H C, Tian X H, et al. Response of the autumn sown triticale to the nitrogen fertilizing rate and seeding density in the alpine grazing area of Gannan. Acta Agrestia Sinica, 2019, 27(4): 1044-1051. |
任昱鑫, 刘汉成, 田新会, 等.甘南高寒牧区秋播小黑麦对氮肥施用量和播种密度的响应. 草地学报, 2019, 27(4): 1044-1051. | |
17 | Yan H Y, Li C X, Ye P L, et al. Effects of different planting densities and fertilization levels on yield and quality of sweet sorghum grown under covering film cultivation in the dry land of Qinghai. Pratacultural Science, 2017, 34(12): 2512-2520. |
闫慧颖, 李春喜, 叶培麟, 等. 种植密度和施肥水平对青海旱地覆膜种植甜高粱草产量及品质的影响. 草业科学, 2017, 34(12): 2512-2520. | |
18 | Ren Y X, Liu H C, Tian X H, et al. Effects of the nitrogen application rate and sowing density on the productivity and nutritional value of ×Triticosecale Wittmack in the Gannan area. Pratacultural Science, 2019, 36(10): 2601-2611. |
任昱鑫, 刘汉成, 田新会, 等. 氮肥施用量和播种密度对甘南高寒牧区小黑麦生产性能和营养价值的影响. 草业科学, 2019, 36(10): 2601-2611. | |
19 | Yang S. Feed analysis and feed quality monitoring technology. Beijing: China Agricultural University Press, 1998: 330-338. |
杨胜. 饲料分析及饲料质量监测技术. 北京: 中国农业大学出版社, 1998: 330-338. | |
20 | Wang B Q, Zuo F Y, Zeng B, et al. Effect of different raw spacing sowing modes on production performance of Hercules sweet sorghum. Journal of Anhui Agricultural Sciences, 2010, 38(30): 16814-16816. |
王保全, 左福元, 曾兵, 等. 不同行距播种方式对大力士甜高粱生产性能的影响-以三峡库区石漠化地区为例. 安徽农业科学, 2010, 38(30): 16814-16816. | |
21 | Wang S L, Qi H, Wang Y, et al. Effect of sowing rate on marginal superiority and yield of wheat in wheat-cotton intercropping system. Journal of Henan Agricultural Sciences, 2015, 44(7): 22-24, 28. |
王树林, 祁虹, 王燕, 等. 麦棉套作模式下播量对小麦边行优势与产量的影响. 河南农业科学, 2015, 44(7): 22-24, 28. | |
22 | Chen Y H, Li Y G, Yu S L, et al. Border effect and standardization of cropping patterns of wheat. Journal of Triticeae Crops, 2003(2): 68-71. |
陈雨海, 李永庚, 余松烈, 等. 小麦边际效应与种植方式规范化的研究. 麦类作物学报, 2003(2): 68-71. | |
23 | Yang X W, Chang L L, He D X. Marginal effect of root and yield in wheat (Triticum aestivum L.). Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(7): 28-36. |
杨习文, 常丽丽, 贺德先. 小麦产量与根系的边际效应. 西北农业学报, 2015, 24(7): 28-36. | |
24 | Liu J, Song Q, Tian X H, et al. Evaluation of the adaptability of triticale genotypes using membership function and GGE-Biplot analysis. Acta Prataculturae Sinica, 2018, 27(5): 85-96. |
刘晶, 宋谦, 田新会, 等. 基于隶属函数法和GGE双标图的饲草型小黑麦种质适应性评价. 草业学报, 2018, 27(5): 85-96. | |
25 | Wang T C, Guo H Y, Li X M, et al. Present situation and prospect of comprehensive development and utilization of sweet sorghum. Journal of Henan Agricultural Sciences, 2004(8): 29-32. |
王同朝, 郭红艳, 李新美, 等.甜高粱综合开发利用现状与前景. 河南农业科学, 2004(8): 29-32. | |
26 | Guo X Q, Cui F Z, Du T Q, et al. Response of 4 sweet straw forage sorghum for different density and mowing times. Journal of Shanxi Agricultural University (Natural Science Edition), 2015, 35(6): 597-602. |
郭秀卿, 崔福柱, 杜天庆, 等. 4种甜秆饲草高粱对密度与刈割次数的响应. 山西农业大学学报(自然科学版), 2015, 35(6): 597-602. | |
27 | Zheng T, Fan G Q, Chen Y, et al. Effect of number and interspace of planting rows on population and individual quality of strip-drilling wheat. Acta Agronomica Sinica, 2013, 39(5): 885-895. |
郑亭, 樊高琼, 陈溢, 等. 行数与行距配置对带状条播小麦群体及个体质量的影响. 作物学报, 2013, 39(5): 885-895. | |
28 | Liu X H, Yang M, Wen S Z, et al. Dynamic study on material accumulation of sweet sorghum. China Seed Industry, 2011(9): 53-56. |
刘晓辉, 杨明, 文素珍, 等. 甜高粱物质积累的动态研究. 中国种业, 2011(9): 53-56. | |
29 | Wang R H, Li H X, Zhang W B, et al. Research progress of relative characteristics of sweet sorghum biofuels. Chinese Agricultural Science Bulletin, 2017, 33(15): 91-98. |
王荣华, 李红侠, 张文彬, 等. 甜高粱生物燃料相关特性研究进展. 中国农学通报, 2017, 33(15): 91-98. |
[1] | 再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 涂振东, 王卉, 山其米克, 艾克拜尔·伊拉洪. 长期不同施肥处理对连作高粱生长规律及产量的影响研究[J]. 草业学报, 2020, 29(8): 81-92. |
[2] | 周恩光, 王虎成, 尚占环. 甜高粱的饲用价值及其绵羊体外瘤胃发酵产气性能研究[J]. 草业学报, 2020, 29(5): 43-49. |
[3] | 高丽敏, 田倩, 苏晶, 沈益新. 施氮水平对甜高粱干物质产量及氮肥利用率的影响[J]. 草业学报, 2020, 29(4): 192-198. |
[4] | 游永亮, 李源, 赵海明, 武瑞鑫, 刘贵波. 海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响[J]. 草业学报, 2020, 29(3): 137-146. |
[5] | 任昱鑫, 代寒凌, 田新会, 杜文华. 添加剂对甘肃省高寒牧区不同刈割期小黑麦青贮饲料营养品质和青贮品质的影响[J]. 草业学报, 2020, 29(3): 197-206. |
[6] | 赵方媛, 刘晶, 杜文华, 田新会. 不同饲草型小黑麦基因型的光合生理差异[J]. 草业学报, 2020, 29(1): 63-73. |
[7] | 王婷, 王虎成, 苟娜娜, 冯强, 贺春贵, 尚占环. 甜高粱饲草及葡萄籽对小尾寒羊生产性能及血液生理参数的影响[J]. 草业学报, 2019, 28(9): 155-163. |
[8] | 代寒凌, 田新会, 杜文华, 吴建平. 不同添加剂处理对小黑麦和黑麦青贮营养品质和发酵品质的影响[J]. 草业学报, 2019, 28(12): 211-219. |
[9] | 王亚麒, 袁玲. 甜高粱、高丹草和拉巴豆对难溶性磷的活化与吸收[J]. 草业学报, 2019, 28(10): 33-43. |
[10] | 刘晶, 曲广鹏, 田新会, 杜文华. 基于响应面设计的饲草型小黑麦新品系C31栽培条件优化筛选[J]. 草业学报, 2019, 28(1): 37-49. |
[11] | 刘汉成, 田新会, 杜文华. 小黑麦与黑麦花序结构和籽粒特性比较[J]. 草业学报, 2018, 27(7): 120-132. |
[12] | 刘晶, 宋谦, 田新会, 杜文华, 刘汉成. 基于隶属函数法和GGE双标图的饲草型小黑麦种质适应性评价[J]. 草业学报, 2018, 27(5): 85-96. |
[13] | 周斐然, 张苏江, 王明, 肖丹, 郭雪峰. 甜高粱青贮有氧暴露的稳定性及微生物变化的研究[J]. 草业学报, 2017, 26(4): 106-112. |
[14] | 许能祥, 董臣飞, 张文洁, 程云辉, 顾洪如, 丁成龙. 甜高粱凋萎青贮料在肉兔全混日粮中适宜添加量的研究[J]. 草业学报, 2017, 26(12): 194-202. |
[15] | 渠晖, 陈俊峰, 程亮, 陆晓燕, 沈益新. 施氮水平对甜高粱硝酸盐含量和氮素利用特性的影[J]. 草业学报, 2016, 25(7): 168-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||