草业学报 ›› 2021, Vol. 30 ›› Issue (12): 202-211.DOI: 10.11686/cyxb2020435
• 研究简报 • 上一篇
收稿日期:
2020-09-27
修回日期:
2020-12-14
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
李飞
作者简介:
Corresponding author. E-mail: lfei@lzu.edu.cn基金资助:
Xiao-wen MA1(), Fa-di LI1,2, Fei LI1(), Long GUO1
Received:
2020-09-27
Revised:
2020-12-14
Online:
2021-11-11
Published:
2021-11-11
Contact:
Fei LI
摘要:
将大麦进行不同粒度粉碎处理改变瘤胃可降解淀粉的含量,研究其对湖羊血常规、瘤胃微生物组成及肌肉脂肪酸的影响。试验选取54只健康3月龄湖羊公羔,随机分为3个处理,分别为大麦经2、3和4 mm的筛片粉碎,每个处理18个重复,每个重复1只羊。整个试验期包括预饲期7 d,正试期63 d和采样期1 d。试验结果表明:1)大麦粉碎处理对湖羊血液的红细胞总数、血红蛋白浓度、红细胞压积、血小板总数、淋巴细胞计数、单核细胞计数、嗜酸性粒细胞计数、嗜中性粒细胞计数和嗜碱性粒细胞计数等血常规指标均无显著影响(P>0.05)。2)大麦4 mm粉碎组总菌和溶纤维丁酸弧菌数量显著高于3 mm粉碎组(P<0.05),反刍兽新月形单胞菌数量显著低于2和3 mm粉碎组(P<0.05),产琥珀酸丝状杆菌数量显著高于2 mm粉碎组(P<0.05)。普雷沃氏菌、白色瘤胃球菌和黄色瘤胃球菌等微生物的数量各组间差异不显著(P>0.05)。3)大麦4 mm粉碎组湖羊肌肉中的C10:0、C12:0、C14:0和C14:1含量均显著高于2 mm粉碎组(P<0.05),C18:2n-9t11t和共轭亚油酸(conjugated linoleic acid, CLA)含量显著高于3 mm粉碎组(P<0.05),肌肉中anteiso C15:0、C16:1、C18:2n6t和C18:2n-9c11t的含量随着粉碎粒度的增加有增加的趋势(0.05≤P<0.10)。综上,当饲喂湖羊4 mm粉碎大麦的饲粮时,湖羊瘤胃内容物中纤维分解菌数量增加,反刍兽新月形单胞菌数量减少,肌肉脂肪酸中CLA含量增加,因此,4 mm粉碎处理对湖羊瘤胃微生物区系和肌肉脂肪酸CLA合成的影响效果最佳。
马晓文, 李发弟, 李飞, 郭龙. 饲粮大麦粉碎粒度对湖羊瘤胃微生物组成及肌肉脂肪酸的影响[J]. 草业学报, 2021, 30(12): 202-211.
Xiao-wen MA, Fa-di LI, Fei LI, Long GUO. Effect of dietary barley particle size on rumen microflora and muscle fatty acids in Hu sheep[J]. Acta Prataculturae Sinica, 2021, 30(12): 202-211.
项目 Item | 大麦粉碎粒度Barley particle size | ||
---|---|---|---|
2 mm | 3 mm | 4 mm | |
原料Ingredient (风干基础Air-dry basis, %) | |||
大麦秸秆Barley straw | 15 | 15 | 15 |
大麦Barley | 48 | 48 | 48 |
玉米皮Corn bran | 15 | 15 | 15 |
棉籽粕Cottonseed meal | 6 | 6 | 6 |
豆粕Soybean meal | 8 | 8 | 8 |
石粉Limestone | 1.2 | 1.2 | 1.2 |
食盐NaCl | 0.8 | 0.8 | 0.8 |
糖蜜Molasses | 4 | 4 | 4 |
预混料Premix1) | 2.0 | 2.0 | 2.0 |
合计Total | 100.00 | 100.00 | 100.00 |
营养水平Nutrient levels (干物质基础DM basis) | |||
代谢能Metabolic energy (ME, MJ·kg-1)2) | 8.42 | 8.42 | 8.42 |
干物质Dry matter (DM, %) | 91.85 | 91.81 | 91.92 |
有机物质Organic matter (OM, %) | 85.41 | 85.51 | 85.50 |
粗蛋白质Crude protein (CP, %) | 14.58 | 14.44 | 14.30 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 34.07 | 35.07 | 34.95 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 10.87 | 11.80 | 12.35 |
表 1 试验饲粮组成及营养成分
Table 1 Composition and nutrient levels of experimental diets
项目 Item | 大麦粉碎粒度Barley particle size | ||
---|---|---|---|
2 mm | 3 mm | 4 mm | |
原料Ingredient (风干基础Air-dry basis, %) | |||
大麦秸秆Barley straw | 15 | 15 | 15 |
大麦Barley | 48 | 48 | 48 |
玉米皮Corn bran | 15 | 15 | 15 |
棉籽粕Cottonseed meal | 6 | 6 | 6 |
豆粕Soybean meal | 8 | 8 | 8 |
石粉Limestone | 1.2 | 1.2 | 1.2 |
食盐NaCl | 0.8 | 0.8 | 0.8 |
糖蜜Molasses | 4 | 4 | 4 |
预混料Premix1) | 2.0 | 2.0 | 2.0 |
合计Total | 100.00 | 100.00 | 100.00 |
营养水平Nutrient levels (干物质基础DM basis) | |||
代谢能Metabolic energy (ME, MJ·kg-1)2) | 8.42 | 8.42 | 8.42 |
干物质Dry matter (DM, %) | 91.85 | 91.81 | 91.92 |
有机物质Organic matter (OM, %) | 85.41 | 85.51 | 85.50 |
粗蛋白质Crude protein (CP, %) | 14.58 | 14.44 | 14.30 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 34.07 | 35.07 | 34.95 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 10.87 | 11.80 | 12.35 |
细菌Species | 引物序列Primer sequences (5′-3′) |
---|---|
普雷沃氏菌Prevotella brevis[ | F: GGTTCTGAGAGGAAGGTCCCC; R: TCCTGCACGCTACTTGGCTG |
反刍兽新月形单胞菌Succinimonasamylolytica[ | F: CAATAAGCATTCCGCCTGGG; R: TTCACTCAATGTCAAGCCCTGG |
白色瘤胃球菌Ruminococcus albus[ | F: CCCTAAAAGCAGTCTTAGTTGG; R: CCTCCTTGCGGTTAGAAC |
黄色瘤胃球菌Ruminococcus flavefaciens[ | F: CGAACGGAGATAATTTGAGTTTACTTAGG; R: CGGTCTCTGTATGTTATGAGGTATTACC |
产琥珀酸丝状杆菌Fibrobacter succinogenes[ | F: GGTATGGGATGAGCTTGC; R: GCCTGCCCCTGAACTATC |
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F: TAACATGAGAGTTTGATCCTGGCTC; R: CGTTACTCACCCGTCCCGC |
总菌Total bacterias[ | F: TCCTACGGGAGGCAGCAGT; R: GGACTACCAGGGTATCTAATCCTGTT |
表 2 瘤胃微生物实时荧光定量PCR扩增引物
Table 2 Rumen microorganisms quantitative real time-PCR amplification primer
细菌Species | 引物序列Primer sequences (5′-3′) |
---|---|
普雷沃氏菌Prevotella brevis[ | F: GGTTCTGAGAGGAAGGTCCCC; R: TCCTGCACGCTACTTGGCTG |
反刍兽新月形单胞菌Succinimonasamylolytica[ | F: CAATAAGCATTCCGCCTGGG; R: TTCACTCAATGTCAAGCCCTGG |
白色瘤胃球菌Ruminococcus albus[ | F: CCCTAAAAGCAGTCTTAGTTGG; R: CCTCCTTGCGGTTAGAAC |
黄色瘤胃球菌Ruminococcus flavefaciens[ | F: CGAACGGAGATAATTTGAGTTTACTTAGG; R: CGGTCTCTGTATGTTATGAGGTATTACC |
产琥珀酸丝状杆菌Fibrobacter succinogenes[ | F: GGTATGGGATGAGCTTGC; R: GCCTGCCCCTGAACTATC |
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F: TAACATGAGAGTTTGATCCTGGCTC; R: CGTTACTCACCCGTCCCGC |
总菌Total bacterias[ | F: TCCTACGGGAGGCAGCAGT; R: GGACTACCAGGGTATCTAATCCTGTT |
组成Composition | 含量Content |
---|---|
C16:0 | 4.74 |
C18:0 | 0.98 |
C18:1n-9t | 0.17 |
C18:1n-9c | 4.92 |
C18:2n-6c | 6.42 |
C20:0 | 0.10 |
C18:3n-3 | 0.43 |
表 3 试验饲粮的脂肪酸组成
Table 3 Fatty acid composition of the experiment diets (g·kg-1)
组成Composition | 含量Content |
---|---|
C16:0 | 4.74 |
C18:0 | 0.98 |
C18:1n-9t | 0.17 |
C18:1n-9c | 4.92 |
C18:2n-6c | 6.42 |
C20:0 | 0.10 |
C18:3n-3 | 0.43 |
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
红细胞总数RBC (×106·μL-1) | 16.34a | 16.23a | 15.46a | 0.225 | 0.222 |
血红蛋白浓度HGB (g·dL-1) | 13.71a | 13.54a | 13.13a | 0.132 | 0.186 |
红细胞压积HCT (%) | 43.37a | 43.00a | 43.04a | 0.647 | 0.970 |
平均血小板体积MPV (fL) | 8.50a | 8.68a | 8.52a | 0.099 | 0.733 |
血小板总数PLT (×103·μL-1) | 615.80a | 641.90a | 677.30a | 18.814 | 0.422 |
白细胞总数WBC (×106·μL-1) | 10.96a | 10.18a | 11.19a | 0.311 | 0.395 |
淋巴细胞计数LYMPH (×106·μL-1) | 5.27a | 4.51a | 5.25a | 0.187 | 0.172 |
单核细胞计数MONO (×106·μL-1) | 1.66a | 1.57a | 1.36a | 0.109 | 0.536 |
嗜酸性粒细胞计数EO (×106·μL-1) | 0.14a | 0.13a | 0.12a | 0.014 | 0.868 |
嗜中性粒细胞计数NEUT (×106·μL-1) | 3.83a | 3.90a | 4.41a | 0.160 | 0.289 |
嗜碱性粒细胞计数BASO (×106·μL-1) | 0.07a | 0.06a | 0.05a | 0.010 | 0.676 |
平均红细胞血红蛋白浓度MCHC (g·dL-1) | 31.66a | 31.63a | 30.71a | 0.390 | 0.545 |
平均红细胞体积MCV (fL) | 26.69a | 26.59a | 27.98a | 0.533 | 0.511 |
平均红细胞血红蛋白含量MCH (pg) | 8.43a | 8.36a | 8.53a | 0.098 | 0.789 |
红细胞分布宽度标准差RDW-SD (fL) | 26.24a | 25.52a | 26.80a | 0.483 | 0.572 |
红细胞分布宽度变异系数RDW-CV (%) | 44.33a | 44.54a | 43.55a | 0.357 | 0.508 |
表 4 饲粮大麦粉碎粒度对湖羊血液指标的影响
Table 4 Effects of barely particle size in diets on blood indexes of fattening Hu sheep
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
红细胞总数RBC (×106·μL-1) | 16.34a | 16.23a | 15.46a | 0.225 | 0.222 |
血红蛋白浓度HGB (g·dL-1) | 13.71a | 13.54a | 13.13a | 0.132 | 0.186 |
红细胞压积HCT (%) | 43.37a | 43.00a | 43.04a | 0.647 | 0.970 |
平均血小板体积MPV (fL) | 8.50a | 8.68a | 8.52a | 0.099 | 0.733 |
血小板总数PLT (×103·μL-1) | 615.80a | 641.90a | 677.30a | 18.814 | 0.422 |
白细胞总数WBC (×106·μL-1) | 10.96a | 10.18a | 11.19a | 0.311 | 0.395 |
淋巴细胞计数LYMPH (×106·μL-1) | 5.27a | 4.51a | 5.25a | 0.187 | 0.172 |
单核细胞计数MONO (×106·μL-1) | 1.66a | 1.57a | 1.36a | 0.109 | 0.536 |
嗜酸性粒细胞计数EO (×106·μL-1) | 0.14a | 0.13a | 0.12a | 0.014 | 0.868 |
嗜中性粒细胞计数NEUT (×106·μL-1) | 3.83a | 3.90a | 4.41a | 0.160 | 0.289 |
嗜碱性粒细胞计数BASO (×106·μL-1) | 0.07a | 0.06a | 0.05a | 0.010 | 0.676 |
平均红细胞血红蛋白浓度MCHC (g·dL-1) | 31.66a | 31.63a | 30.71a | 0.390 | 0.545 |
平均红细胞体积MCV (fL) | 26.69a | 26.59a | 27.98a | 0.533 | 0.511 |
平均红细胞血红蛋白含量MCH (pg) | 8.43a | 8.36a | 8.53a | 0.098 | 0.789 |
红细胞分布宽度标准差RDW-SD (fL) | 26.24a | 25.52a | 26.80a | 0.483 | 0.572 |
红细胞分布宽度变异系数RDW-CV (%) | 44.33a | 44.54a | 43.55a | 0.357 | 0.508 |
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
普雷沃氏菌P. brevis | 11.09a | 11.19a | 10.97a | 0.074 | 0.557 |
反刍兽新月形单胞菌S. amylolytica | 10.19a | 10.22a | 9.65b | 0.096 | 0.043 |
白色瘤胃球菌R. albus | 9.74a | 9.13a | 9.80a | 0.171 | 0.329 |
黄色瘤胃球菌R. flavefaciens | 10.30a | 9.71a | 9.93a | 0.188 | 0.479 |
产琥珀酸丝状杆菌F. succinogenes | 9.91b | 9.26ab | 10.14a | 0.154 | 0.043 |
溶纤维丁酸弧菌B. fibrisolvens | 9.46a | 8.85b | 9.90a | 0.190 | 0.004 |
总菌Total bacteria | 17.39a | 15.30b | 16.95a | 0.214 | <0.001 |
表 5 饲粮大麦粉碎粒度对瘤胃微生物组成的影响
Table 5 Effect of barely particle size in diets on rumen microorganisms composition (lg 16S rRNA copy number·g-1 rumen microbial)
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
普雷沃氏菌P. brevis | 11.09a | 11.19a | 10.97a | 0.074 | 0.557 |
反刍兽新月形单胞菌S. amylolytica | 10.19a | 10.22a | 9.65b | 0.096 | 0.043 |
白色瘤胃球菌R. albus | 9.74a | 9.13a | 9.80a | 0.171 | 0.329 |
黄色瘤胃球菌R. flavefaciens | 10.30a | 9.71a | 9.93a | 0.188 | 0.479 |
产琥珀酸丝状杆菌F. succinogenes | 9.91b | 9.26ab | 10.14a | 0.154 | 0.043 |
溶纤维丁酸弧菌B. fibrisolvens | 9.46a | 8.85b | 9.90a | 0.190 | 0.004 |
总菌Total bacteria | 17.39a | 15.30b | 16.95a | 0.214 | <0.001 |
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
TFA (mg·g-1) | 135.89a | 145.27a | 137.49a | 7.635 | 0.874 |
C8:0 (%) | 0.04a | 0.04a | 0.04a | 0.002 | 0.476 |
C10:0 (%) | 0.13b | 0.15ab | 0.16a | 0.005 | 0.045 |
C12:0 (%) | 0.08b | 0.11a | 0.11a | 0.004 | 0.017 |
C13:0 (%) | 0.02a | 0.03a | 0.03a | 0.003 | 0.118 |
iso C14:0 (%) | 0.41a | 0.38a | 0.40a | 0.020 | 0.805 |
C14:0 (%) | 2.37b | 2.94a | 2.81a | 0.082 | 0.008 |
anteiso C15:0 (%) | 0.10a | 0.13a | 0.13a | 0.007 | 0.061 |
C15:0 (%) | 0.49a | 0.69a | 0.59a | 0.051 | 0.278 |
iso C16:0 (%) | 0.29a | 0.29a | 0.31a | 0.010 | 0.727 |
C16:0 (%) | 24.84a | 25.50a | 25.46a | 0.250 | 0.505 |
C17:0 (%) | 2.09a | 2.43a | 2.19a | 0.147 | 0.642 |
C18:0 (%) | 12.44a | 11.50a | 12.69a | 0.251 | 0.120 |
C20:0 (%) | 0.07a | 0.07a | 0.08a | 0.002 | 0.295 |
C22:0 (%) | 0.03a | 0.03a | 0.03a | 0.002 | 0.544 |
C24:0 (%) | 0.08a | 0.09a | 0.08a | 0.005 | 0.918 |
C14:1 c9 (%) | 0.19a | 0.17a | 0.18a | 0.011 | 0.670 |
C14:1 (%) | 0.09b | 0.13a | 0.12a | 0.007 | 0.014 |
C16:1 (%) | 1.64a | 1.93a | 1.79a | 0.053 | 0.085 |
C17:1 (%) | 0.78a | 0.91a | 0.87a | 0.061 | 0.683 |
4t-C18:1 (%) | 0.22a | 0.19a | 0.18a | 0.016 | 0.618 |
C18:1n9t (%) | 4.47a | 5.01a | 4.45a | 0.213 | 0.493 |
C18:1n9c (%) | 37.68a | 36.28a | 35.99a | 0.382 | 0.156 |
C18:1-10c15t (%) | 1.35a | 1.31a | 1.28a | 0.021 | 0.426 |
C18:1 c11 (%) | 0.28a | 0.27a | 0.33a | 0.012 | 0.119 |
C18:1 c12 (%) | 0.33a | 0.34a | 0.35a | 0.007 | 0.499 |
C18:1 c13 (%) | 0.19a | 0.19a | 0.21a | 0.004 | 0.307 |
C20:1 (%) | 0.10a | 0.09a | 0.09a | 0.004 | 0.843 |
C18:2n6t (%) | 0.19a | 0.17a | 0.20a | 0.006 | 0.061 |
C18:2n6c (%) | 4.44a | 4.43a | 4.32a | 0.146 | 0.944 |
C20:3n6 (%) | 0.23a | 0.21a | 0.22a | 0.012 | 0.868 |
C18:3n-6 (%) | 0.06a | 0.05a | 0.06a | 0.003 | 0.608 |
C18:2n-9c11t (%) | 0.39a | 0.35a | 0.46a | 0.018 | 0.059 |
C18:2n-9t11t (%) | 0.11ab | 0.09b | 0.13a | 0.006 | 0.015 |
C20:4n6 (%) | 2.64a | 2.32a | 2.47a | 0.154 | 0.724 |
C18:3n3 (%) | 0.49a | 0.51a | 0.49a | 0.015 | 0.828 |
C20:2 (%) | 0.07a | 0.07a | 0.08a | 0.004 | 0.372 |
C20:3n9 (%) | 0.17a | 0.14a | 0.15a | 0.010 | 0.474 |
CLA (%) | 0.50ab | 0.45b | 0.59a | 0.022 | 0.019 |
SFA (%) | 43.50a | 44.37a | 45.10a | 0.381 | 0.236 |
MUFA (%) | 47.32a | 46.84a | 45.84a | 0.356 | 0.229 |
PUFA (%) | 5.46a | 5.44a | 5.38a | 0.171 | 0.979 |
BCFA (%) | 0.80a | 0.81a | 0.84a | 0.027 | 0.828 |
OCFA (%) | 2.59a | 3.14a | 2.81a | 0.199 | 0.531 |
OBCFA (%) | 3.40a | 3.95a | 3.65a | 0.191 | 0.510 |
Σn-6 (%) | 4.91a | 4.86a | 4.81a | 0.158 | 0.967 |
Σn-3 (%) | 0.49a | 0.51a | 0.49a | 0.015 | 0.828 |
n-6/n-3 | 10.13a | 9.52a | 9.82a | 0.219 | 0.542 |
表 6 饲粮大麦粉碎粒度对育肥湖羊肌肉脂肪酸的影响
Table 6 Effect of barely particle size in diets on muscle fatty acid composition of fattening Hu sheep
项目 Item | 大麦粉碎粒度Barley particle size | 标准误 SEM | P值 P value | ||
---|---|---|---|---|---|
2 mm | 3 mm | 4 mm | |||
TFA (mg·g-1) | 135.89a | 145.27a | 137.49a | 7.635 | 0.874 |
C8:0 (%) | 0.04a | 0.04a | 0.04a | 0.002 | 0.476 |
C10:0 (%) | 0.13b | 0.15ab | 0.16a | 0.005 | 0.045 |
C12:0 (%) | 0.08b | 0.11a | 0.11a | 0.004 | 0.017 |
C13:0 (%) | 0.02a | 0.03a | 0.03a | 0.003 | 0.118 |
iso C14:0 (%) | 0.41a | 0.38a | 0.40a | 0.020 | 0.805 |
C14:0 (%) | 2.37b | 2.94a | 2.81a | 0.082 | 0.008 |
anteiso C15:0 (%) | 0.10a | 0.13a | 0.13a | 0.007 | 0.061 |
C15:0 (%) | 0.49a | 0.69a | 0.59a | 0.051 | 0.278 |
iso C16:0 (%) | 0.29a | 0.29a | 0.31a | 0.010 | 0.727 |
C16:0 (%) | 24.84a | 25.50a | 25.46a | 0.250 | 0.505 |
C17:0 (%) | 2.09a | 2.43a | 2.19a | 0.147 | 0.642 |
C18:0 (%) | 12.44a | 11.50a | 12.69a | 0.251 | 0.120 |
C20:0 (%) | 0.07a | 0.07a | 0.08a | 0.002 | 0.295 |
C22:0 (%) | 0.03a | 0.03a | 0.03a | 0.002 | 0.544 |
C24:0 (%) | 0.08a | 0.09a | 0.08a | 0.005 | 0.918 |
C14:1 c9 (%) | 0.19a | 0.17a | 0.18a | 0.011 | 0.670 |
C14:1 (%) | 0.09b | 0.13a | 0.12a | 0.007 | 0.014 |
C16:1 (%) | 1.64a | 1.93a | 1.79a | 0.053 | 0.085 |
C17:1 (%) | 0.78a | 0.91a | 0.87a | 0.061 | 0.683 |
4t-C18:1 (%) | 0.22a | 0.19a | 0.18a | 0.016 | 0.618 |
C18:1n9t (%) | 4.47a | 5.01a | 4.45a | 0.213 | 0.493 |
C18:1n9c (%) | 37.68a | 36.28a | 35.99a | 0.382 | 0.156 |
C18:1-10c15t (%) | 1.35a | 1.31a | 1.28a | 0.021 | 0.426 |
C18:1 c11 (%) | 0.28a | 0.27a | 0.33a | 0.012 | 0.119 |
C18:1 c12 (%) | 0.33a | 0.34a | 0.35a | 0.007 | 0.499 |
C18:1 c13 (%) | 0.19a | 0.19a | 0.21a | 0.004 | 0.307 |
C20:1 (%) | 0.10a | 0.09a | 0.09a | 0.004 | 0.843 |
C18:2n6t (%) | 0.19a | 0.17a | 0.20a | 0.006 | 0.061 |
C18:2n6c (%) | 4.44a | 4.43a | 4.32a | 0.146 | 0.944 |
C20:3n6 (%) | 0.23a | 0.21a | 0.22a | 0.012 | 0.868 |
C18:3n-6 (%) | 0.06a | 0.05a | 0.06a | 0.003 | 0.608 |
C18:2n-9c11t (%) | 0.39a | 0.35a | 0.46a | 0.018 | 0.059 |
C18:2n-9t11t (%) | 0.11ab | 0.09b | 0.13a | 0.006 | 0.015 |
C20:4n6 (%) | 2.64a | 2.32a | 2.47a | 0.154 | 0.724 |
C18:3n3 (%) | 0.49a | 0.51a | 0.49a | 0.015 | 0.828 |
C20:2 (%) | 0.07a | 0.07a | 0.08a | 0.004 | 0.372 |
C20:3n9 (%) | 0.17a | 0.14a | 0.15a | 0.010 | 0.474 |
CLA (%) | 0.50ab | 0.45b | 0.59a | 0.022 | 0.019 |
SFA (%) | 43.50a | 44.37a | 45.10a | 0.381 | 0.236 |
MUFA (%) | 47.32a | 46.84a | 45.84a | 0.356 | 0.229 |
PUFA (%) | 5.46a | 5.44a | 5.38a | 0.171 | 0.979 |
BCFA (%) | 0.80a | 0.81a | 0.84a | 0.027 | 0.828 |
OCFA (%) | 2.59a | 3.14a | 2.81a | 0.199 | 0.531 |
OBCFA (%) | 3.40a | 3.95a | 3.65a | 0.191 | 0.510 |
Σn-6 (%) | 4.91a | 4.86a | 4.81a | 0.158 | 0.967 |
Σn-3 (%) | 0.49a | 0.51a | 0.49a | 0.015 | 0.828 |
n-6/n-3 | 10.13a | 9.52a | 9.82a | 0.219 | 0.542 |
1 | Yang B, Gao H, Stanton C, et al. Bacterial conjugated linoleic acid production and their applications. Progress in Lipid Research, 2017, 68(9): 26-36. |
2 | Kim K J, Lee J, Park Y, et al. ATF3 mediates anti-cancer activity of trans-10, cis-12- conjugated linoleic acid in human colon cancer cells. Biomolecules and Therapeutics, 2015, 23(2): 134-140. |
3 | Song K, Song I B, Gu H J, et al. Anti-diabetic effect of fermented milk containing conjugated linoleic acid on type Ⅱ diabetes mellitus. Korean Journal for Food Science of Animal Resources, 2016, 36(2): 170-177. |
4 | Lee J H, Kim B, Hwang C E, et al. Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks using Lactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. Journal of Functional Foods, 2018, 43(4): 17-28. |
5 | Bruen R, Fitzsimons S, Belton O. Atheroprotective effects of conjugated linoleic acid. British Journal of Clinical Pharmacology, 2017, 83(1): 46-53. |
6 | Kuhnt K, Degen C, Jahreis G. Evaluation of the impact of ruminant trans fatty acids on human health: Important aspects to consider. Critical Reviews in Food Science and Nutrition, 2016, 56(12): 1964-1980. |
7 | Honkanen A M, Griinari J M, Vanhatalo A, et al. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. Journal of Dairy Science, 2012, 95(3): 1096-1105. |
8 | Martin S A, Jenkins T C. Factors affecting conjugated linoleic acid andtrans-C18:1 fatty acid production by mixed ruminal bacteria. Journal of Animal Science, 2002, 80(3): 3347-3352. |
9 | Kalscheur K F, Teter B B, Piperova L S, et al. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy Science, 1997, 80(9): 2104-2114. |
10 | Plaizier J C, Li S, Tun H M, et al. Nutritional models of experimentally-induced subacute ruminal acidosis (sara) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Frontiers in Microbiology, 2017, 7(2): 21-28. |
11 | Gimeno A, Alami A A, Abecia L, et al. Effect of type (barley vs. maize) and processing (grinding vs. dry rolling) of cereal on ruminal fermentation and microbiota of beef calves during the early fattening period. Animal Feed Science and Technology, 2015, 199(1): 67-78. |
12 | Beauchemin K A, Mcallister T A. Digestive disturbances: Acidosis, laminitis and bloat: 221-231 in cattle grain processing symposium november 15-17. Tulsa: Oklahoma State University, 2006. |
13 | Ministry of Agriculture of the People’s Republic of China. Meat sheep feeding support standard NY/T 816-2004. Beijing: China Agriculture Press, 2004: 228-236. |
中华人民共和国农业部. 肉羊饲养标准NY/T 816-2004. 北京: 中国农业出版社, 2004: 228-236. | |
14 | NRC. Nutrient requirements of dairy cattle. Washington, DC: The National Academies Press, 2001. |
15 | Zhou W J. Study of nutrition dynamics and silage quality of different corn varieties and fattening Hu sheep with maize silage. Lanzhou: Lanzhou University, 2020. |
周文静. 不同品种玉米营养动态及青贮品质和含玉米青贮饲粮育肥湖羊的研究. 兰州: 兰州大学, 2020. | |
16 | Zhang Z A, Li S Y, Wu G, et al. Effect of honeybee peptide on growth performance and rumen microflora of fattening Hu sheep. Chinese Journal of Animal Nutrition, 2020, 32(2): 756-764. |
张智安, 李世易, 武刚, 等. 蜜蜂肽对育肥湖羊生长性能和瘤胃微生物区系的影响. 动物营养学报, 2020, 32(2): 756-764. | |
17 | Jin D. Bacterial community in the rumen of dairy cows fed diets differing in forage and protein sources. Beijing: Chinese Academy of Agricultural Sciences, 2013. |
金迪. 不同粗饲料及蛋白质来源日粮条件下奶牛瘤胃细菌群落多样性变化. 北京: 中国农业科学院, 2013. | |
18 | Stevenson D M, Wermer P J. Dominance of prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2009, 83(5): 987-988. |
19 | Ding G Z, Chang Y, Zhao L P, et al. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. Journal of Animal Science and Biotechnology, 2014, 5(1): 24-32. |
20 | Duarte A C, Durmic Z, Vercoe P E, et al. Dose-response effects of dietary pequi oil on fermentation characteristics and microbial population using a rumen simulation technique (Rusitec). Anaerobe, 2017, 48(12): 59-65. |
21 | Khafipour E, Li S, Plaizier J C, et al. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22): 7115-7124. |
22 | Eva K, Daniel B, Luděk B, et al. The Effect of barley and lysine supplementation of pasture-based diet on growth, carcass composition and physical quality attributes of meat from farmed fallow deer (Dama dama). Animals, 2019, 9(2): 33. |
23 | Liang Y S. Study on the difference of growth performance and rumen function of fattening lake sheep with different remaining feed intake. Lanzhou: Lanzhou University, 2017. |
梁玉生. 不同剩余采食量育肥湖羊的生长性能与瘤胃功能差异研究. 兰州: 兰州大学, 2017. | |
24 | Lan G S. Effects of FNDF source and level on performance and rumen function of fattening lake lambs. Lanzhou: Lanzhou University, 2019. |
兰贵生. FNDF来源与水平对育肥湖羊羔羊生产性能和瘤胃功能的影响. 兰州: 兰州大学, 2019. | |
25 | Xiong G Y. Determination and discussion of blood routine and biochemical indexes of domestic dogs in Nanchang area. Nanchang: Jiangxi Agricultural University, 2012. |
熊关越. 南昌地区家养犬血液常规及其生化指标的测定与探讨. 南昌: 江西农业大学, 2012. | |
26 | Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070. |
27 | Kleen J L, Hooljer G A, Rehage J, et al. Subacute ruminal acidosis (SARA): A review. Journal of Veterinary Medicine Series, 2003, 50(8): 406-414. |
28 | Guo J F. Inflammatory injury in the liver of ruminants by subacute ruminal acidosis (SARA) and manipulation of SARA. Nanjing: Nanjing Agricultural University, 2017. |
郭峻菲. 亚急性瘤胃酸中毒(SARA)对反刍动物肝脏的炎性损伤与SARA的调控研究. 南京: 南京农业大学, 2017. | |
29 | Khorasani G, Okine E, Kennelly J. Effects of substituting barley grain with corn on ruminal fermentation characteristics,milk yield, and milk composition of Holstein cows. Journal of Dairy Science, 2001, 84(12): 2760-2769. |
30 | Liu X, Huang J. Comparative study on blood biochemical indexes of Mesocricetus auratus between hibernation and non hibernation. Beijing Medical Journal, 2016, 38(8): 841-843. |
刘霄, 黄江. 金色中仓鼠冬眠期与非冬眠期血液生化指标的对比研究. 北京医学, 2016, 38(8): 841-843. | |
31 | Yang H F. Quality research and clinical application evaluation of praziquantel injection. Yangzhou: Yangzhou University, 2014. |
杨海峰. 吡喹酮注射液的质量研究与临床应用评价. 扬州: 扬州大学, 2014. | |
32 | Peng X, Bai C M, Chen T. Effects of low selenium on red blood cell immune function, total number of red blood cells and hemoglobin content in chickens. China Veterinary Science, 2010, 40(9): 945-948. |
彭西, 柏才敏, 陈涛. 低硒对雏鸡红细胞免疫功能和红细胞总数及血红蛋白含量的影响. 中国兽医科学, 2010, 40(9): 945-948. | |
33 | Zhang X. Research on nutrition value assessment of various forage silage and their effects on fattening beef cattle. Lanzhou: Lanzhou University, 2017. |
张霞. 青贮饲草营养价值评定及其育肥肉牛研究. 兰州: 兰州大学, 2017. | |
34 | Feng Y J. Effect of heat stress on intestinal structure and function and its repairing mechanism in pig and rat. Beijing: Chinese Academy of Agricultural Sciences, 2014. |
冯跃进. 热应激对猪和大鼠肠道结构和功能的影响及其修复机制. 北京: 中国农业科学院, 2014. | |
35 | Kazemi-Bonchenari M, Salem A, López S. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves. Animal, 2017, 11(8): 1101-1123. |
36 | Li F, Cao Y C, Liu N N, et al. Subacute ruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats. Journal of Dairy Science, 2014, 97(8): 5101-5109. |
37 | Andrés S, Jaramillo E, Bodas R, et al. Grain grinding size of cereals in complete pelleted diets for growing lambs: Effects on ruminal microbiota and fermentation. Small Ruminant Research, 2018, 15(9): 38-44. |
38 | Carlson J C, Stahl R S, Deliberto S T, et al. Nutritional depletion of total mixed rations by European starlings: Projected effects on dairy cow performance and potential intervention strategies to mitigate damage. Journal of Dairy Science, 2018, 10(2): 1777-1784. |
39 | Ma X W, Zhou W J, Liu X, et al. Effects of particle size of barley in diets on growth performance,nutrient digestion, rumen fluid volatile fatty acids and meat quality of fattening Hu sheep. Pratacultural Science, 2020, 37(12): 2531-2540. |
马晓文, 周文静, 刘鑫, 等. 大麦粉碎粒度对育肥湖羊生长育肥性能、养分消化和肉品质的影响. 草业科学, 2020, 37(12): 2531-2540. | |
40 | Shuang J, Ao L R, Ao C J. Study on composition of sunite sheep body fatty acid. Journal of Animal Husbandry and Veterinary Medicine, 2015, 46(8): 1363-1374. |
双金, 敖力格日玛, 敖长金. 苏尼特羊体脂脂肪酸组成的研究. 畜牧兽医学报, 2015, 46(8): 1363-1374. | |
41 | Vlaeminck B, Fievez V, Cabrita A R J, et al. Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 2006, 131(3/4): 389-417. |
42 | Vlaeminck B, Fievez V, Tamminga S, et al. Milk odd and branched-chain fatty acids in relation to the rumen fermentation pattern. Journal of Dairy Science, 2006, 89(10): 3954-3964. |
43 | Zeng B, Tan Z L, Zeng J Y, et al. Effects of dietary non-ionic surfactant and forage to concentrate ratio on bacterial population and fatty acid composition of rumen bacteria and plasma of goats. Animal Feed Science and Technology, 2012, 173(3/4): 167-176. |
44 | Li F, Zhang Z Z, Li X Y, et al. Effect of duration of linseed diet supplementation before slaughter on the performances,meat fatty acid composition and rumen bacterial community of fattening lambs. Animal Feed Science and Technology, 2020, 263(11): 44-57. |
45 | Richter E K, Spangenberg J E, Klevenhusen F, et al. Stable carbon isotope composition of c9, t11-conjugated linoleic acid in cow’s milk as related to dietary fatty acids. Lipids, 2012, 47(2): 161-169. |
[1] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
[2] | 郑娟善, 丁考仁青, 李新圃, 梁泽毅, 张剑搏, 杜梅, 丁学智. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192. |
[3] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[4] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
[5] | 张剑搏, 丁考仁青, 梁泽毅, Anum-aliAhmad, 杜梅, 郑娟善, 丁学智. 早期营养干预对幼龄反刍动物瘤胃微生物区系发育的影响[J]. 草业学报, 2021, 30(2): 199-211. |
[6] | 占今舜, 杨群, 胡耀, 武艳平, 霍俊宏. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响[J]. 草业学报, 2020, 29(7): 122-130. |
[7] | 韩秉成, 申琴, 韩阳阳, 朱浦嘉, 李万宏, 翁秀秀, 李发弟, 王超, 任芳. 日粮添加葡萄渣提取物对湖羊外周血液LH、T、E2浓度的影响[J]. 草业学报, 2020, 29(2): 193-198. |
[8] | 董春晓, 吕佳颖, 张智安, 李飞, 李发弟. 饲料来源对育肥湖羊生产性能、养分消化及瘤胃微生物组成的影响[J]. 草业学报, 2019, 28(4): 106-115. |
[9] | 金媛媛, BOWATTESaman, 贾倩民, 侯扶江, 李春杰. 内生真菌侵染对野大麦根际土壤化学特性和微生物群落的影响[J]. 草业学报, 2019, 28(10): 66-77. |
[10] | 靳继鹏, 郭武君, 张筱艳, 张昌吉, 张勇, 王春辉, 张利平. 冷季放牧补饲对甘肃高山细毛后备母羊瘤胃代谢参数及瘤胃微生物数量的影响[J]. 草业学报, 2018, 27(7): 93-103. |
[11] | 谢云龙, 梁新亮, 杨永桂, 李发弟, 乐祥鹏. 湖羊在西北高寒地区的生理和生化指标的测定研究[J]. 草业学报, 2017, 26(9): 221-227. |
[12] | 邓凯平, 王锋, 马铁伟, 王震, 于晓青, 丁立人, 陶晓强, 樊懿萱. 日粮中添加不同水平紫苏籽对湖羊生长性能、瘤胃发酵及养分表观消化率的影响[J]. 草业学报, 2017, 26(5): 205-212. |
[13] | 樊懿萱, 王锋, 王强, 聂海涛, 王子玉, 陶晓强. 发酵木薯渣替代部分玉米对湖羊生长性能、血清生化指标、屠宰性能和肉品质的影响[J]. 草业学报, 2017, 26(3): 91-99. |
[14] | 莫负涛, 李发弟, 王维民, 喇永富, 张小雪, 刘婷, 唐德富, 乐祥鹏, 李飞, 李冲, 李万宏, 肖金玉, 谭建华, 武得虎. 西北寒旱地区舍饲湖羊生长发育特征研究[J]. 草业学报, 2017, 26(1): 168-177. |
[15] | 喇永富, 席锐, 李发弟, 王维民, 张小雪, 李冲, 刘婷, 唐德富, 李宝胜. 西北寒旱地区湖羊及其杂交后代生长发育模型分析[J]. 草业学报, 2016, 25(9): 182-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||