草业学报 ›› 2021, Vol. 30 ›› Issue (9): 38-50.DOI: 10.11686/cyxb2021123
收稿日期:
2021-03-29
修回日期:
2021-04-22
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
李少伟
作者简介:
Corresponding author. E-mail: leesw@igsnrr.ac.cn基金资助:
Gang FU1(), Jun-hao WANG1,2, Shao-wei LI1(), Ping HE3
Received:
2021-03-29
Revised:
2021-04-22
Online:
2021-08-30
Published:
2021-08-30
Contact:
Shao-wei LI
摘要:
基于藏北高原的3个围栏与自由放牧试验样地,探讨了高寒草地牧草营养品质对放牧的响应机制。结果表明:在一个高寒草原化草甸冷季牧场,冷季放牧分别减少了24.29%和18.98%的杂草酸性洗涤纤维和中性洗涤纤维含量,并增加了41.05%的杂草粗灰分含量,从而增加了杂草营养品质;而没有改变群落和优势牧草营养品质。在一个高寒草原化草甸暖季牧场,暖季放牧分别减少了31.82%和27.45%的群落酸性洗涤纤维和中性洗涤纤维含量,并分别增加了137.35%和24.73%的群落粗灰分和粗脂肪含量,从而增加了群落营养品质;暖季放牧分别减少了22.04%和22.50%的优势牧草酸性洗涤纤维和中性洗涤纤维含量,并增加了202.19%的优势牧草粗灰分含量,从而增加了优势牧草营养品质;而没有改变杂草营养品质。在一个高寒草甸暖季牧场,暖季放牧分别减少了37.18%和25.10%的杂草酸性洗涤纤维和中性洗涤纤维含量,从而增加了杂草营养品质;增加了26.55%的优势牧草粗蛋白含量,从而趋于增加了优势牧草营养品质;而对群落营养品质无影响。植物群落营养品质与植物群落α和β多样性相关,优势牧草营养品质主要与土壤变量相关,杂草营养品质与土壤变量和杂草α多样性有关。因此,藏北高寒草地牧草营养品质对放牧的响应因草地类型和放牧季节的不同而不同,高寒草地应该采取分类放牧管理。
付刚, 王俊皓, 李少伟, 何萍. 藏北高寒草地牧草营养品质对放牧的响应机制[J]. 草业学报, 2021, 30(9): 38-50.
Gang FU, Jun-hao WANG, Shao-wei LI, Ping HE. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet[J]. Acta Prataculturae Sinica, 2021, 30(9): 38-50.
图1 放牧对藏北高寒草地样地A、B和C土壤变量的影响*和**分别表示在P<0.05和P<0.01差异显著。下同。* and ** indicated significant differences at P<0.05 and P<0.01, respectively. The same below.
Fig.1 Effects of grazing on soil variables in three alpine grasslands (A, B and C), Northern Tibetan Plateau
图2 放牧对藏北高寒草地样地A、B和C的群落α多样性的影响
Fig.2 Effects of grazing on α-diversity of plant community in three alpine grasslands (A, B and C), Northern Tibetan Plateau
图3 放牧对藏北高寒草地样地A、B和C的优势牧草α多样性的影响
Fig.3 Effects of grazing on α-diversity of dominant forage in three alpine grasslands (A, B and C), Northern Tibetan Plateau
样地 Sample plot | β bray距离 β bray distance (βBray) | β 系统发育距离 β mean nearest taxon distance (βMNTD) | ||||
---|---|---|---|---|---|---|
群落Community | 优势牧草Dominant forage | 杂草Forbs | 群落Community | 优势牧草Dominant forage | 杂草Forbs | |
A | 7.08* | 0.66 | 9.24* | 59.51* | 10.64 | 58.30* |
B | 1.87 | 0.80 | 1.21 | -0.37 | -2.78 | 0.65 |
C | 3.57* | 4.63 | 2.86+ | 12.12* | 9.00 | 4.33 |
表1 放牧对植物群落、优势牧草和杂草的物种和系统发育β多样性的影响
Table 1 Effects of grazing on species and phylogenetic β-diversity of plant community, dominant forage and forbs
样地 Sample plot | β bray距离 β bray distance (βBray) | β 系统发育距离 β mean nearest taxon distance (βMNTD) | ||||
---|---|---|---|---|---|---|
群落Community | 优势牧草Dominant forage | 杂草Forbs | 群落Community | 优势牧草Dominant forage | 杂草Forbs | |
A | 7.08* | 0.66 | 9.24* | 59.51* | 10.64 | 58.30* |
B | 1.87 | 0.80 | 1.21 | -0.37 | -2.78 | 0.65 |
C | 3.57* | 4.63 | 2.86+ | 12.12* | 9.00 | 4.33 |
样地 Sample plot | 群落 Community | Dominant forage优势牧草 | Forbs杂草 | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
A | 0.46 | 0.567 | 3.38 | 0.107 | 12.56* | 0.026 |
B | 20.75* | 0.028 | 15.17* | 0.028 | 1.05 | 0.398 |
C | 2.01 | 0.142 | 5.02+ | 0.059 | 4.47* | 0.032 |
表2 放牧对藏北高寒草地样地A、B和C的植物群落、优势牧草和杂草的营养品质指标的Adonis 2统计分析结果
Table 2 Effects of grazing on nutritional quality of plant community, dominant forage and forbs based on the Adonis 2 analysis in three alpine grasslands (A, B and C), Northern Tibetan Plateau
样地 Sample plot | 群落 Community | Dominant forage优势牧草 | Forbs杂草 | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
A | 0.46 | 0.567 | 3.38 | 0.107 | 12.56* | 0.026 |
B | 20.75* | 0.028 | 15.17* | 0.028 | 1.05 | 0.398 |
C | 2.01 | 0.142 | 5.02+ | 0.059 | 4.47* | 0.032 |
分组 Group | 变量 Variables | SOC | TN | TP | NH4+-N | NO3--N | AP | pH | C∶N | C∶P | N∶P | N∶P | NH4+-N∶NO3--N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
群落 Community | CP | 0.66*** | 0.71*** | 0.14 | 0.41* | 0.00 | 0.25 | -0.64** | 0.60** | 0.63** | 0.66*** | 0.12 | 0.46* |
ADF | 0.10 | 0.07 | -0.03 | 0.25 | 0.12 | -0.04 | -0.02 | 0.10 | 0.12 | 0.09 | 0.37+ | -0.11 | |
NDF | 0.07 | 0.08 | 0.06 | 0.15 | 0.09 | -0.12 | 0.00 | 0.04 | 0.06 | 0.06 | 0.38+ | -0.05 | |
EE | -0.12 | -0.13 | -0.19 | -0.19 | -0.16 | -0.13 | -0.02 | -0.11 | -0.09 | -0.07 | -0.20 | -0.04 | |
Ash | -0.31 | -0.33 | -0.21 | -0.24 | 0.05 | -0.07 | 0.23 | -0.27 | -0.28 | -0.28 | -0.16 | -0.22 | |
WSC | 0.79*** | 0.82*** | 0.06 | 0.44* | -0.50* | 0.40+ | -0.68*** | 0.73*** | 0.78*** | 0.79*** | -0.24 | 0.72*** | |
营养品质 Nutrition quality | -0.02 | 0.01 | -0.06 | -0.12 | -0.04 | -0.08 | -0.07 | -0.07 | -0.04 | -0.05 | -0.06 | -0.09 | |
优势牧草 Dominant forage | CP | -0.22 | -0.17 | -0.05 | -0.40+ | -0.35+ | -0.23 | -0.02 | -0.26 | -0.23 | -0.17 | -0.35+ | -0.13 |
ADF | 0.34 | 0.31 | 0.09 | 0.10 | -0.55** | 0.40+ | -0.21 | 0.34 | 0.33 | 0.29 | -0.47* | 0.17 | |
NDF | 0.12 | 0.13 | -0.07 | -0.07 | -0.67*** | 0.20 | -0.07 | 0.09 | 0.14 | 0.15 | -0.52** | 0.17 | |
EE | 0.25 | 0.25 | 0.28 | 0.38+ | 0.30 | 0.30 | -0.09 | 0.23 | 0.20 | 0.18 | 0.27 | 0.23 | |
Ash) | -0.22 | -0.26 | 0.09 | 0.03 | 0.72*** | -0.11 | 0.29 | -0.18 | -0.23 | -0.28 | 0.43* | -0.27 | |
WSC | 0.15 | 0.20 | -0.01 | -0.17 | -0.11 | -0.20 | -0.44* | 0.14 | 0.14 | 0.19 | -0.13 | 0.07 | |
营养品质 Nutrition quality | -0.04 | 0.00 | -0.13 | -0.06 | 0.31* | 0.05 | 0.16+ | -0.08 | -0.02 | 0.03 | 0.15 | -0.05 | |
杂草 Forbs | CP | 0.23 | 0.26 | -0.04 | 0.11 | -0.05 | -0.09 | -0.38+ | 0.20 | 0.24 | 0.27 | 0.05 | 0.23 |
ADF | 0.16 | 0.23 | 0.05 | -0.04 | -0.13 | -0.05 | -0.22 | 0.08 | 0.13 | 0.20 | -0.05 | 0.23 | |
NDF | 0.45* | 0.46* | 0.19 | 0.26 | -0.03 | 0.09 | -0.48* | 0.44* | 0.42* | 0.41* | 0.09 | 0.35+ | |
EE | -0.43* | -0.45* | -0.19 | -0.33 | -0.07 | -0.37+ | 0.42* | -0.37+ | -0.42* | -0.42* | 0.03 | -0.13 | |
Ash | -0.45* | -0.47* | -0.06 | -0.31 | 0.16 | -0.04 | 0.61** | -0.43* | -0.42* | -0.44* | -0.05 | -0.32 | |
WSC | 0.34 | 0.40+ | 0.02 | 0.14 | -0.18 | -0.01 | -0.47* | 0.29 | 0.30 | 0.36+ | -0.07 | 0.28 | |
营养品质 Nutrition quality | 0.15* | 0.15* | -0.07 | -0.04 | -0.02 | -0.03 | 0.20* | 0.14* | 0.14* | 0.13+ | -0.11 | 0.05 |
表3 植物群落、优势牧草和杂草的营养品质与土壤变量的相关分析
Table 3 Correlation analysis between nutritional quality of plant community, dominant forage and forbs and soil variables
分组 Group | 变量 Variables | SOC | TN | TP | NH4+-N | NO3--N | AP | pH | C∶N | C∶P | N∶P | N∶P | NH4+-N∶NO3--N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
群落 Community | CP | 0.66*** | 0.71*** | 0.14 | 0.41* | 0.00 | 0.25 | -0.64** | 0.60** | 0.63** | 0.66*** | 0.12 | 0.46* |
ADF | 0.10 | 0.07 | -0.03 | 0.25 | 0.12 | -0.04 | -0.02 | 0.10 | 0.12 | 0.09 | 0.37+ | -0.11 | |
NDF | 0.07 | 0.08 | 0.06 | 0.15 | 0.09 | -0.12 | 0.00 | 0.04 | 0.06 | 0.06 | 0.38+ | -0.05 | |
EE | -0.12 | -0.13 | -0.19 | -0.19 | -0.16 | -0.13 | -0.02 | -0.11 | -0.09 | -0.07 | -0.20 | -0.04 | |
Ash | -0.31 | -0.33 | -0.21 | -0.24 | 0.05 | -0.07 | 0.23 | -0.27 | -0.28 | -0.28 | -0.16 | -0.22 | |
WSC | 0.79*** | 0.82*** | 0.06 | 0.44* | -0.50* | 0.40+ | -0.68*** | 0.73*** | 0.78*** | 0.79*** | -0.24 | 0.72*** | |
营养品质 Nutrition quality | -0.02 | 0.01 | -0.06 | -0.12 | -0.04 | -0.08 | -0.07 | -0.07 | -0.04 | -0.05 | -0.06 | -0.09 | |
优势牧草 Dominant forage | CP | -0.22 | -0.17 | -0.05 | -0.40+ | -0.35+ | -0.23 | -0.02 | -0.26 | -0.23 | -0.17 | -0.35+ | -0.13 |
ADF | 0.34 | 0.31 | 0.09 | 0.10 | -0.55** | 0.40+ | -0.21 | 0.34 | 0.33 | 0.29 | -0.47* | 0.17 | |
NDF | 0.12 | 0.13 | -0.07 | -0.07 | -0.67*** | 0.20 | -0.07 | 0.09 | 0.14 | 0.15 | -0.52** | 0.17 | |
EE | 0.25 | 0.25 | 0.28 | 0.38+ | 0.30 | 0.30 | -0.09 | 0.23 | 0.20 | 0.18 | 0.27 | 0.23 | |
Ash) | -0.22 | -0.26 | 0.09 | 0.03 | 0.72*** | -0.11 | 0.29 | -0.18 | -0.23 | -0.28 | 0.43* | -0.27 | |
WSC | 0.15 | 0.20 | -0.01 | -0.17 | -0.11 | -0.20 | -0.44* | 0.14 | 0.14 | 0.19 | -0.13 | 0.07 | |
营养品质 Nutrition quality | -0.04 | 0.00 | -0.13 | -0.06 | 0.31* | 0.05 | 0.16+ | -0.08 | -0.02 | 0.03 | 0.15 | -0.05 | |
杂草 Forbs | CP | 0.23 | 0.26 | -0.04 | 0.11 | -0.05 | -0.09 | -0.38+ | 0.20 | 0.24 | 0.27 | 0.05 | 0.23 |
ADF | 0.16 | 0.23 | 0.05 | -0.04 | -0.13 | -0.05 | -0.22 | 0.08 | 0.13 | 0.20 | -0.05 | 0.23 | |
NDF | 0.45* | 0.46* | 0.19 | 0.26 | -0.03 | 0.09 | -0.48* | 0.44* | 0.42* | 0.41* | 0.09 | 0.35+ | |
EE | -0.43* | -0.45* | -0.19 | -0.33 | -0.07 | -0.37+ | 0.42* | -0.37+ | -0.42* | -0.42* | 0.03 | -0.13 | |
Ash | -0.45* | -0.47* | -0.06 | -0.31 | 0.16 | -0.04 | 0.61** | -0.43* | -0.42* | -0.44* | -0.05 | -0.32 | |
WSC | 0.34 | 0.40+ | 0.02 | 0.14 | -0.18 | -0.01 | -0.47* | 0.29 | 0.30 | 0.36+ | -0.07 | 0.28 | |
营养品质 Nutrition quality | 0.15* | 0.15* | -0.07 | -0.04 | -0.02 | -0.03 | 0.20* | 0.14* | 0.14* | 0.13+ | -0.11 | 0.05 |
分组 Group | 变量 Variables | 物种数 Species richness (SR) | 香农多样性指数 Shannon diversity index | 辛普森多样性指数Simpson diversity index | 均匀度 指数 Pielou index | 系统发育多样性 Phylogenetic diversity (PD) | 系统发育距离 Mean nearest taxon distance (MNTD) | β bray距离 β bray distance (βBray) | β系统发育距离 β mean nearest taxon distance (βMNTD) |
---|---|---|---|---|---|---|---|---|---|
群落 Community | 粗蛋白Crude protein (CP) | -0.11 | -0.68*** | -0.73*** | -0.60** | -0.11 | -0.63** | 0.45*** | 0.45*** |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.38+ | -0.16 | -0.26 | -0.43* | 0.40+ | -0.32 | -0.04 | -0.11 | |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.19 | -0.25 | -0.31 | -0.40+ | 0.21 | -0.32 | -0.05 | -0.07 | |
粗脂肪Ether extract (EE) | 0.09 | 0.34 | 0.30 | 0.36+ | 0.12 | 0.36+ | 0.04 | 0.11+ | |
粗灰分Crude ash (Ash) | -0.10 | 0.34 | 0.39+ | 0.40+ | -0.10 | 0.41* | 0.07 | 0.01 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.13 | -0.40+ | -0.47* | -0.43* | 0.15 | -0.61** | 0.49*** | 0.40*** | |
营养品质 Nutrition quality | -0.02 | 0.07 | 0.07 | 0.08 | -0.01 | 0.07 | 0.09 | 0.04 | |
优势牧草 Dominant forage | 粗蛋白Crude protein (CP) | 0.00 | 0.34+ | 0.40+ | 0.34 | 0.01 | 0.01 | -0.12 | -0.15 |
酸性洗涤纤维Acid detergent fiber (ADF) | -0.12 | -0.11 | -0.11 | -0.04 | -0.04 | -0.18 | -0.04 | -0.10 | |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.01 | 0.10 | 0.09 | 0.09 | 0.07 | -0.15 | -0.01 | -0.04 | |
粗脂肪Ether extract (EE) | -0.09 | -0.39+ | -0.41* | -0.37+ | -0.16 | -0.08 | 0.00 | -0.09 | |
粗灰分Crude ash (Ash) | 0.12 | -0.08 | -0.10 | -0.10 | 0.10 | 0.32 | -0.06 | -0.05 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | -0.16 | 0.21 | 0.27 | 0.27 | -0.21 | -0.28 | 0.09 | 0.03 | |
营养品质 Nutrition quality | -0.15 | -0.11 | -0.08 | -0.05 | -0.16 | -0.01 | -0.03 | -0.07 | |
杂草 Forbs | 粗蛋白Crude protein (CP) | -0.25 | -0.16 | -0.17 | 0.02 | -0.25 | -0.02 | 0.03 | 0.01 |
酸性洗涤纤维Acid detergent fiber (ADF) | -0.40+ | -0.25 | -0.19 | 0.04 | -0.36+ | -0.03 | -0.03 | 0.01 | |
中性洗涤纤维Neutral detergent fiber (NDF) | -0.13 | 0.00 | 0.05 | 0.09 | -0.14 | -0.38+ | 0.08 | 0.15* | |
粗脂肪Ether extract (EE) | -0.28 | -0.34 | -0.37+ | -0.42* | -0.25 | 0.00 | 0.06 | 0.12+ | |
粗灰分Crude ash (Ash) | 0.00 | -0.14 | -0.17 | -0.29 | 0.02 | 0.19 | 0.08 | 0.08 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | -0.10 | 0.05 | 0.03 | 0.22 | -0.07 | 0.07 | 0.12+ | 0.07 | |
营养品质 Nutrition quality | 0.04 | 0.05 | 0.05 | 0.00 | 0.03 | -0.03 | 0.09+ | 0.11+ |
表4 植物群落、优势牧草和杂草的营养品质与生物因子的相关分析
Table 4 Correlation analysis between nutritional quality of plant community, dominant forage and forbs and biotic factors
分组 Group | 变量 Variables | 物种数 Species richness (SR) | 香农多样性指数 Shannon diversity index | 辛普森多样性指数Simpson diversity index | 均匀度 指数 Pielou index | 系统发育多样性 Phylogenetic diversity (PD) | 系统发育距离 Mean nearest taxon distance (MNTD) | β bray距离 β bray distance (βBray) | β系统发育距离 β mean nearest taxon distance (βMNTD) |
---|---|---|---|---|---|---|---|---|---|
群落 Community | 粗蛋白Crude protein (CP) | -0.11 | -0.68*** | -0.73*** | -0.60** | -0.11 | -0.63** | 0.45*** | 0.45*** |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.38+ | -0.16 | -0.26 | -0.43* | 0.40+ | -0.32 | -0.04 | -0.11 | |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.19 | -0.25 | -0.31 | -0.40+ | 0.21 | -0.32 | -0.05 | -0.07 | |
粗脂肪Ether extract (EE) | 0.09 | 0.34 | 0.30 | 0.36+ | 0.12 | 0.36+ | 0.04 | 0.11+ | |
粗灰分Crude ash (Ash) | -0.10 | 0.34 | 0.39+ | 0.40+ | -0.10 | 0.41* | 0.07 | 0.01 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.13 | -0.40+ | -0.47* | -0.43* | 0.15 | -0.61** | 0.49*** | 0.40*** | |
营养品质 Nutrition quality | -0.02 | 0.07 | 0.07 | 0.08 | -0.01 | 0.07 | 0.09 | 0.04 | |
优势牧草 Dominant forage | 粗蛋白Crude protein (CP) | 0.00 | 0.34+ | 0.40+ | 0.34 | 0.01 | 0.01 | -0.12 | -0.15 |
酸性洗涤纤维Acid detergent fiber (ADF) | -0.12 | -0.11 | -0.11 | -0.04 | -0.04 | -0.18 | -0.04 | -0.10 | |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.01 | 0.10 | 0.09 | 0.09 | 0.07 | -0.15 | -0.01 | -0.04 | |
粗脂肪Ether extract (EE) | -0.09 | -0.39+ | -0.41* | -0.37+ | -0.16 | -0.08 | 0.00 | -0.09 | |
粗灰分Crude ash (Ash) | 0.12 | -0.08 | -0.10 | -0.10 | 0.10 | 0.32 | -0.06 | -0.05 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | -0.16 | 0.21 | 0.27 | 0.27 | -0.21 | -0.28 | 0.09 | 0.03 | |
营养品质 Nutrition quality | -0.15 | -0.11 | -0.08 | -0.05 | -0.16 | -0.01 | -0.03 | -0.07 | |
杂草 Forbs | 粗蛋白Crude protein (CP) | -0.25 | -0.16 | -0.17 | 0.02 | -0.25 | -0.02 | 0.03 | 0.01 |
酸性洗涤纤维Acid detergent fiber (ADF) | -0.40+ | -0.25 | -0.19 | 0.04 | -0.36+ | -0.03 | -0.03 | 0.01 | |
中性洗涤纤维Neutral detergent fiber (NDF) | -0.13 | 0.00 | 0.05 | 0.09 | -0.14 | -0.38+ | 0.08 | 0.15* | |
粗脂肪Ether extract (EE) | -0.28 | -0.34 | -0.37+ | -0.42* | -0.25 | 0.00 | 0.06 | 0.12+ | |
粗灰分Crude ash (Ash) | 0.00 | -0.14 | -0.17 | -0.29 | 0.02 | 0.19 | 0.08 | 0.08 | |
水溶性碳水化合物Water-soluble carbohydrate (WSC) | -0.10 | 0.05 | 0.03 | 0.22 | -0.07 | 0.07 | 0.12+ | 0.07 | |
营养品质 Nutrition quality | 0.04 | 0.05 | 0.05 | 0.00 | 0.03 | -0.03 | 0.09+ | 0.11+ |
图8 群落粗蛋白含量(a),酸性洗涤纤维含量(b),中性洗涤纤维含量(c), 粗脂肪含量(d), 粗灰分含量(e), 水溶性碳水化合物含量(f)和营养品质与土壤因子(g)、群落α和β多样性的关系
Fig.8 Relationships between CP (a), ADF (b), NDF (c), EE (d), Ash (e), WSC (f) and nutritional quality (g) of plant community, and soil factors, α and β diversity of plant community
图9 优势牧草粗蛋白含量(a),酸性洗涤纤维含量(b),中性洗涤纤维含量(c), 粗脂肪含量(d),粗灰分含量(e),水溶性碳水化合物含量(f)和营养品质(g)与土壤因子, 优势牧草α和β多样性的关系
Fig.9 Relationships between CP (a), ADF (b), NDF (c), EE (d), Ash (e), WSC (f) and nutritional quality (g) of dominant forage, and soil factors, α and β diversity of dominant forage
图10 杂草粗蛋白含量(a),酸性洗涤纤维含量(b),中性洗涤纤维含量(c),粗脂肪含量(d),粗灰分含量(e), 水溶性碳水化合物含量(f)和营养品质(g)与土壤因子、杂草α和β多样性的关系
Fig.10 Relationships between CP (a), ADF (b), NDF (c), EE (d), Ash (e), WSC (f) and nutritional quality (g) of forbs, and soil factors, α and β diversity of forbs
1 | Yao X X, Wu J P, Gong X Y, et al. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau. Ecological Engineering, 2019, 130: 80-93. |
2 | Cui G X, Yuan F, Degen A A, et al. Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau. International Dairy Journal, 2016, 59: 29-35. |
3 | Sun W, Li S, Zhang Y, et al. Effect of long-term experimental warming on the nutritional quality of alpine meadows in the Northern Tibet. Journal of Resources and Ecology, 2020, 11(5): 516-524. |
4 | Waterman R C, Grings E E, Geary T W, et al. Influence of seasonal forage quality on glucose kinetics of young beef cows. Journal of Animal Science, 2007, 85(10): 2582-2595. |
5 | Zhang Y P, Jiang Y, Liu Q R, et al. Impacts of grazing on herbage quality of the alpine and subalpine meadows within Wutai Mountain. Acta Ecologica Sinica, 2011, 31(13): 3659-3667. |
章异平, 江源, 刘全儒,等. 放牧对五台山高山、亚高山草甸牧草品质的影响. 生态学报, 2011, 31(13): 3659-3667. | |
6 | Zhang C Y, Niu Z, Wang Y Q, et al. Effects of grazing intensity on the aboveground present biomass and dynamic changes of nutrient components in Deyeuxia angustifolia meadow. Chinese Journal of Grassland, 2014, 36(4): 18-23. |
张丞宇, 牛壮, 王彦庆,等. 放牧强度对小叶章草场地上现存量和营养成分动态变化的影响. 中国草地学报, 2014, 36(4): 18-23. | |
7 | Zhang H, Fu G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degradation & Development, 2021, 32(4): 1821-1832. |
8 | Wu J S, Fu G. Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau. Remote Sensing Letters, 2018, 9(2): 150-159. |
9 | Fu G, Shen Z X, Zhang X Z, et al. Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology, 2012, 52: 27-29. |
10 | Tahmasebi P, Manafian N, Ebrahimi A, et al. Managing grazing intensity linked to forage quantity and quality trade-off in semiarid rangelands. Rangeland Ecology & Management, 2020, 73(1): 53-60. |
11 | Ergon A, Kirwan L, Fystro G, et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies. II. Nutritional quality. Grass and Forage Science, 2017, 72(2): 333-342. |
12 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
13 | Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 1954, 57(3): 508-514. |
14 | Lithourgidis A S, Vasilakoglou I B, Dhima K V, et al. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research, 2006, 99(2/3): 106-113. |
15 | Fu G, Shen Z X. Grazing alters soil microbial community in alpine grasslands of Northern Tibet. Acta Prataculturae Sinica, 2017, 26(10): 170-178. |
付刚, 沈振西. 放牧改变了藏北高原高寒草甸土壤微生物群落. 草业学报, 2017, 26(10): 170-178. | |
16 | Fu G, Shen Z X. Response of alpine plants to nitrogen addition on the Tibetan Plateau: A meta-analysis. Journal of Plant Growth Regulation, 2016, 35(4): 974-979. |
17 | Xu W, Zhu M Y, Zhang Z H, et al. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 2018, 55(3): 1486-1497. |
18 | Sun T, Shang Z H, Liu Z Y, et al. Nutrient composition of four species of grasshoppers from alpine grasslands in the Qilian Mountain of the Tibetan Plateau, China. Philippine Agricultural Scientist, 2010, 93(1): 97-103. |
19 | Shen S T, Zhang S J, Fan M, et al. Classification of plant functional types based on the nutrition traits: A case study on alpine meadow community in the Zoige Plateau. Journal of Mountain Science, 2017, 14(10): 2003-2012. |
20 | Roukos C, Papanikolaou K, Karalazos A, et al. Changes in nutritional quality of herbage botanical components on a mountain side grassland in North-West Greece. Animal Feed Science and Technology, 2011, 169(1/2): 24-34. |
21 | Thorvaldsson G, Tremblay G F, Kunelius H T. The effects of growth temperature on digestibility and fibre concentration of seven temperate grass species. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2007, 57(4): 322-328. |
22 | Shi C G, Silva L C R, Zhang H X, et al. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agricultural and Forest Meteorology, 2015, 200: 21-29. |
23 | Scocco P, Piermarteri K, Malfatti A, et al. Increase of drought stress negatively affects the sustainability of extensive sheep farming in sub-Mediterranean climate. Journal of Arid Environments, 2016, 128: 50-58. |
24 | SchÖnbach P, Wan H, Schiborra A, et al. Short-term management and stocking rate effects of grazing sheep on herbage quality and productivity of Inner Mongolia steppe. Crop & Pasture Science, 2009, 60(10): 963-974. |
25 | Miao F H, Guo Z G, Xue R, et al. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and yak performance in an alpine meadow on the Qinghai-Tibetan Plateau. PLoS ONE, 2015, 10(6): e0127275. |
26 | Yao X X, Wu J P, Gong X Y. Precipitation and seasonality affect grazing impacts on herbage nutritive values in alpine meadows on the Qinghai-Tibet Plateau. Journal of Plant Ecology, 2019, 12(6): 993-1008. |
27 | SchÖnbach P, Wan H, Gierus M, et al. Effects of grazing and precipitation on herbage production, herbage nutritive value and performance of sheep in continental steppe. Grass and Forage Science, 2012, 67(4): 535-545. |
28 | Dong S K, Long R J, Hu Z Z, et al. Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan Plateau. Grass and Forage Science, 2003, 58(3): 302-308. |
29 | Yu C Q, Han F S, Fu G. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment, 2019, 655: 814-822. |
[1] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[2] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[3] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[4] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[5] | 侯蒙京, 高金龙, 葛静, 李元春, 刘洁, 殷建鹏, 冯琦胜, 梁天刚. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究[J]. 草业学报, 2020, 29(1): 13-27. |
[6] | 李重阳, 樊文涛, 李国梅, 高晶, 唐增, 宋仁德. 基于NDVI的2000-2016年青藏高原牧户草场覆盖度变化驱动力分析[J]. 草业学报, 2019, 28(10): 25-32. |
[7] | 李亚婷, 宜树华, 侯扶江, 常生华, 王召锋, 秦彧, 陈建军. 高寒草甸生长盛期CO2交换特征对欧拉羊短期放牧的响应[J]. 草业学报, 2017, 26(4): 24-32. |
[8] | 黄泽, 田福平, 刘玉, 张静鸽, 苗海涛, 武高林. 黄土高原不同草地类型对水稳性团聚体粒径分布及稳定性的影响[J]. 草业学报, 2017, 26(11): 216-221. |
[9] | 付刚, 沈振西. 放牧改变了藏北高原高寒草甸土壤微生物群落[J]. 草业学报, 2017, 26(10): 170-178. |
[10] | 鲍根生, 李春杰. 青藏高原高寒草地优势禾草-紫花针茅内生真菌分离和鉴定[J]. 草业学报, 2016, 25(3): 32-42. |
[11] | 孙亚男, 李茜, 李以康, 林丽, 杜岩功, 曹广民. 氮、磷养分添加对高寒草甸土壤酶活性的影响[J]. 草业学报, 2016, 25(2): 18-26. |
[12] | 马晓芳, 陈思宇, 邓婕, 冯琦胜, 黄晓东. 青藏高原植被物候监测及其对气候变化的响应[J]. 草业学报, 2016, 25(1): 13-21. |
[13] | 芦光新, 李宗仁, 李希来, 王军邦, 吴楚, 李欣, 张更兄, 孙乾, 李峰科, 郑慧美. 三江源区高寒草地不同生境土壤可培养纤维素分解真菌群落结构特征研究[J]. 草业学报, 2016, 25(1): 76-87. |
[14] | 何贵永,孙浩智,史小明,齐威,杜国祯. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应[J]. 草业学报, 2015, 24(4): 12-20. |
[15] | 岳鹏鹏,卢学峰,叶润蓉,周玉碧,杨仕兵,彭敏. 青海湖地区紫花针茅草原群落特征[J]. 草业学报, 2014, 23(4): 10-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||