草业学报 ›› 2022, Vol. 31 ›› Issue (7): 197-208.DOI: 10.11686/cyxb2021198
• 研究论文 • 上一篇
王雪萌(), 何欣(), 张涵, 宋瑞, 毛培胜, 贾善刚()
收稿日期:
2021-05-11
修回日期:
2021-08-30
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
贾善刚
作者简介:
E-mail: shangang.jia@cau.edu.cn基金资助:
Xue-meng WANG(), Xin HE(), Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA()
Received:
2021-05-11
Revised:
2021-08-30
Online:
2022-07-20
Published:
2022-06-01
Contact:
Shan-gang JIA
摘要:
种子老化是影响种子生产和储藏的重要因素,给农业生产带来了严重的经济损失,已成为影响种子活力中最具威胁性的因素之一。老化种子的检测以及种子老化后发芽情况的鉴定对种子生产具有重要意义,但目前常用的检测手段都是一次性、破坏性的。因此,一种快速、无损的种子老化和发芽检测方法不仅是研究的需要,也是种子行业进行种子检测分选所急需的。利用多光谱成像技术,采集紫花苜蓿种子的形态和光谱特征数据,利用LDA(线性判别分析)、SVM(支持向量机)和nCDA(归一化标准判别分析)3种多元分析方法,对不同老化程度苜蓿种子及其发芽情况分别进行分类和预测。结果表明,不同老化程度种子平均光谱反射率在470~660 nm处出现了明显的区别。LDA可以区分老化种子和未老化种子(准确度93.0%~97.7%),也可以区分不同老化程度的种子(准确度75.3%~91.7%),且均高于SVM的分类结果(准确度分别为92.4%~94.9%和68.7%~78.8%);nCDA对老化种子进行区分的准确度高达88%~98%。同时,LDA可以准确预测发芽种子和不发芽种子,准确度可达98.7%,高于SVM的92.1%;nCDA预测老化种子发芽准确度达到了90%~99%。本研究证明了多光谱成像与分析技术不仅可以区分老化种子,也可以预测种子的发芽。上述结果证实多光谱成像技术结合多元分析为高效无损检测苜蓿种子活力提供了新途径,具有良好的应用前景。
王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208.
Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis[J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208.
特征 Feature | CK | A3 | A6 | A14 |
---|---|---|---|---|
面积 Area (mm2) | 3.05±0.43 | 3.40±0.50** | 3.54±0.56** | 3.48±0.54** |
长度 Length (mm) | 2.49±0.24 | 2.64±0.25** | 2.70±0.26** | 2.68±0.29** |
宽度 Width (mm) | 1.62±0.12 | 1.70±0.14** | 1.73±0.16** | 1.71±0.14** |
长宽比 Ratio of width and length | 0.66±0.07 | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.63±0.06 | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01** | 0.99±0.01 | 0.99±0.01** |
形状参数a Beta shape_a | 1.51±0.12 | 1.47±0.15* | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.44±0.12 | 1.40±0.13* | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 48.50±4.99 | 46.65±4.25** | 45.98±4.55** | 45.46±4.90** |
颜色参数A* CIELab A* | 9.50±2.00 | 11.90±2.82** | 12.79±2.87** | 13.38±3.18** |
颜色参数B* CIELab B* | 30.39±3.44 | 29.14±2.83** | 28.85±2.53** | 29.21±2.82* |
饱和度 Saturation | 31.73±2.92 | 31.46±2.29 | 31.55±1.97 | 32.26±1.87 |
色调 Hue | 1.26±0.09 | 1.18±0.10** | 1.15±0.10** | 1.14±0.11** |
表1 老化种子和未老化种子的形态特征比较分析
Table 1 Morphological features of aged seeds and non-aged seeds
特征 Feature | CK | A3 | A6 | A14 |
---|---|---|---|---|
面积 Area (mm2) | 3.05±0.43 | 3.40±0.50** | 3.54±0.56** | 3.48±0.54** |
长度 Length (mm) | 2.49±0.24 | 2.64±0.25** | 2.70±0.26** | 2.68±0.29** |
宽度 Width (mm) | 1.62±0.12 | 1.70±0.14** | 1.73±0.16** | 1.71±0.14** |
长宽比 Ratio of width and length | 0.66±0.07 | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.63±0.06 | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01** | 0.99±0.01 | 0.99±0.01** |
形状参数a Beta shape_a | 1.51±0.12 | 1.47±0.15* | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.44±0.12 | 1.40±0.13* | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 48.50±4.99 | 46.65±4.25** | 45.98±4.55** | 45.46±4.90** |
颜色参数A* CIELab A* | 9.50±2.00 | 11.90±2.82** | 12.79±2.87** | 13.38±3.18** |
颜色参数B* CIELab B* | 30.39±3.44 | 29.14±2.83** | 28.85±2.53** | 29.21±2.82* |
饱和度 Saturation | 31.73±2.92 | 31.46±2.29 | 31.55±1.97 | 32.26±1.87 |
色调 Hue | 1.26±0.09 | 1.18±0.10** | 1.15±0.10** | 1.14±0.11** |
特征 Feature | A3 | A6 | A14 |
---|---|---|---|
面积 Area (mm2) | 3.40±0.50 | 3.54±0.56 | 3.48±0.54 |
长度 Length (mm) | 2.64±0.25 | 2.70±0.26 | 2.68±0.29 |
宽度 Width (mm) | 1.70±0.14 | 1.73±0.16 | 1.71±0.14 |
长宽比 Ratio of width and length | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01 | 0.99±0.01 |
形状参数a Beta shape_a | 1.47±0.15 | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.40±0.13 | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 46.65±4.25 | 45.98±4.55 | 45.46±4.90* |
颜色参数A* CIELab A* | 11.90±2.82 | 12.79±2.87* | 13.38±3.18** |
颜色参数B* CIELab B* | 29.14±2.83 | 28.85±2.53 | 29.21±2.82 |
饱和度 Saturation | 31.46±2.29 | 31.55±1.97 | 32.26±1.87** |
色调 Hue | 1.18±0.10 | 1.15±0.10 | 1.14±0.11** |
表2 不同老化程度种子的形态特征比较分析
Table 2 Morphological features of aged seeds for different days
特征 Feature | A3 | A6 | A14 |
---|---|---|---|
面积 Area (mm2) | 3.40±0.50 | 3.54±0.56 | 3.48±0.54 |
长度 Length (mm) | 2.64±0.25 | 2.70±0.26 | 2.68±0.29 |
宽度 Width (mm) | 1.70±0.14 | 1.73±0.16 | 1.71±0.14 |
长宽比 Ratio of width and length | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01 | 0.99±0.01 |
形状参数a Beta shape_a | 1.47±0.15 | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.40±0.13 | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 46.65±4.25 | 45.98±4.55 | 45.46±4.90* |
颜色参数A* CIELab A* | 11.90±2.82 | 12.79±2.87* | 13.38±3.18** |
颜色参数B* CIELab B* | 29.14±2.83 | 28.85±2.53 | 29.21±2.82 |
饱和度 Saturation | 31.46±2.29 | 31.55±1.97 | 32.26±1.87** |
色调 Hue | 1.18±0.10 | 1.15±0.10 | 1.14±0.11** |
图4 老化种子的像素直方图红色柱:未老化的种子(CK);蓝色柱:老化3 d的种子(A3);黄色柱:老化6 d的种子(A6);绿色柱:老化14 d的种子(A14)。像素直方图的横坐标表示图像像素的种类;纵坐标表示每一种颜色在各像素种类下的像素总数。Red column represents non-aged seeds (CK); Blue column represents aged seeds for three days (A3); Yellow column represents aged seeds for six days (A6); Green column represents aged seeds for fourteen days (A14). The X-axis of the histogram represents the type of pixels; The Y-axis represents the total number of pixels in each pixel type for each color.
Fig.4 Pixel histogram of aged seeds
模型 Model | 指标 Index | CK vs A3 | CK vs A6 | CK vs A14 | A3 vs A6 | A3 vs A14 | A6 vs A14 | G vs NG |
---|---|---|---|---|---|---|---|---|
SVM | 准确度Accuracy | 94.9 | 92.4 | 92.4 | 78.8 | 71.1 | 68.7 | 92.1 |
敏感性Sensitivity | 97.0 | 95.2 | 96.0 | 84.6 | 66.5 | 72.4 | 94.8 | |
特异性Specificity | 92.8 | 89.7 | 88.7 | 73.2 | 75.6 | 64.6 | 89.5 | |
LDA | 准确度Accuracy | 97.7 | 93.0 | 97.3 | 91.7 | 82.8 | 75.3 | 98.7 |
敏感性Sensitivity | 99.3 | 95.6 | 98.0 | 94.4 | 79.7 | 73.0 | 98.0 | |
特异性Specificity | 96.1 | 90.5 | 96.8 | 88.3 | 86.0 | 78.2 | 99.3 |
表3 种子老化及发芽情况的多元分析
Table 3 Discrimination of aged and germinated seeds based on multivariate analysis (%)
模型 Model | 指标 Index | CK vs A3 | CK vs A6 | CK vs A14 | A3 vs A6 | A3 vs A14 | A6 vs A14 | G vs NG |
---|---|---|---|---|---|---|---|---|
SVM | 准确度Accuracy | 94.9 | 92.4 | 92.4 | 78.8 | 71.1 | 68.7 | 92.1 |
敏感性Sensitivity | 97.0 | 95.2 | 96.0 | 84.6 | 66.5 | 72.4 | 94.8 | |
特异性Specificity | 92.8 | 89.7 | 88.7 | 73.2 | 75.6 | 64.6 | 89.5 | |
LDA | 准确度Accuracy | 97.7 | 93.0 | 97.3 | 91.7 | 82.8 | 75.3 | 98.7 |
敏感性Sensitivity | 99.3 | 95.6 | 98.0 | 94.4 | 79.7 | 73.0 | 98.0 | |
特异性Specificity | 96.1 | 90.5 | 96.8 | 88.3 | 86.0 | 78.2 | 99.3 |
样品 Sample | 不发芽种子数 Non-germinated seeds (No.) | 预测的不发芽种子数 Non-germinated seeds predicted by nCDA (No.) | 预测正确种子数 Correctly predicted seeds (No.) | 预测不发芽种子准确度 Accuracy of predicting non-germinated seeds (%) | 预测老化种子准确度 Accuracy of predicting aged seeds (%) |
---|---|---|---|---|---|
CK | 5 | 4 | 4 | 99 | / |
A3 | 14 | 16 | 13 | 96 | 94 |
A6 | 34 | 36 | 34 | 98 | 88 |
A14 | 62 | 68 | 60 | 90 | 90 |
表4 老化种子nCDA预测结果对应实际发芽情况统计
Table 4 The prediction of aged and germinated seeds in aged seeds based on nCDA
样品 Sample | 不发芽种子数 Non-germinated seeds (No.) | 预测的不发芽种子数 Non-germinated seeds predicted by nCDA (No.) | 预测正确种子数 Correctly predicted seeds (No.) | 预测不发芽种子准确度 Accuracy of predicting non-germinated seeds (%) | 预测老化种子准确度 Accuracy of predicting aged seeds (%) |
---|---|---|---|---|---|
CK | 5 | 4 | 4 | 99 | / |
A3 | 14 | 16 | 13 | 96 | 94 |
A6 | 34 | 36 | 34 | 98 | 88 |
A14 | 62 | 68 | 60 | 90 | 90 |
图6 种子发芽情况基于形态和光谱数据的PCA分析结果G:发芽种子 Germinated seed;NG:不发芽种子 Non-germinated seed
Fig.6 PCA plot based on morphological and multispectral data in germinated and non-germinated seeds
图7 老化种子的nCDA图像与实际发芽情况比对图A, A6的nCDA图像(左);A6吸水发芽第10天的实际发芽情况(右)。B, A14的nCDA图像(左);A14吸水发芽第10天的实际发芽情况(右)。nCDA图和实际发芽情况图的种子排列顺序一一对应,nCDA图中蓝色的种子被红框圈出,对应在右边试验发芽图中,表现为不发芽。A, nCDA image of A6 (left); Actual germination situation of A6 after ten-day imbibition (right). B, nCDA image of A14 (left); Actual germination situation of A14 after ten-day imbibition (right). The seed order was identical in both nCDA diagram and actual germination picture. The blue seeds in the nCDA diagram (left) correspond to the non-germinated seeds (right), which are highlighted in red box, in germination test.
Fig.7 nCDA image of aged seeds vs actual germination
1 | Yang W M, Liu G, Ou Q H, et al. Infrared spectroscopy of naturally aged legume seeds. Laser and Optoelectronics Progress, 2018, 55(12): 513-522. |
杨卫梅, 刘刚, 欧全宏, 等. 豆类种子自然老化过程的红外光谱研究. 激光与光电子学进展, 2018, 55(12): 513-522. | |
2 | Xia F, Cheng H, Chen L, et al. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biology, 2020, 20(1): 104. |
3 | Neelesh K, Arvind A, Siddiqui M A, et al. Physiological and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.). American Journal of Plant Physiology, 2011, 6(1): 28-35. |
4 | McDonald M B. Seed deterioration: Physiology, repair and assessment. Seed Science and Technology, 1999, 27(1): 177-237. |
5 | Liu J, Liu G, Li S J, et al. Study on artificial aged rice seed based on infrared spectroscopy. Seed, 2021, 40(1): 17-22. |
刘杰, 刘刚, 李姝洁, 等. 人工老化水稻种子的红外光谱研究. 种子, 2021, 40(1): 17-22. | |
6 | Jin T, Liu W, Liu C H. Research on rapid nondestructive detection of moisture content of beef jerky based on multispectral imaging technology. Journal of Anhui Agricultural Sciences, 2021, 49(2): 204-205. |
金涛, 刘伟, 刘长虹. 基于多光谱成像技术的牛肉干水分含量快速无损检测研究. 安徽农业科学, 2021, 49(2): 204-205. | |
7 | ElMasry G, Mandour N, Rejaie S, et al. Recent applications of multispectral imaging in seed phenotyping and quality monitoring-an overview. Sensors, 2019, 19(5): 1-32. |
8 | Xu X, Ma H, Wang Y, et al. Rapid and nondestructive identification of wheat varieties with multispectral imaging technology. Chinese Agricultural Science Bulletin, 2019, 35(15): 14-19. |
许学, 马卉, 王钰, 等. 基于多光谱成像技术的小麦品种快速无损鉴定. 中国农学通报, 2019, 35(15): 14-19. | |
9 | Hu X, Yang L, Zhang Z, et al. Differentiation of alfalfa and sweet clover seeds via multispectral imaging. Seed Science and Technology, 2020, 48(1): 83-99. |
10 | Olesen M H, Nikneshan P, Shrestha S, et al. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging. Sensors, 2015, 15(2): 4592-4604. |
11 | Baek I, Kusumaningrum D, Kandpal L M, et al. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors, 2019, 19(2): 271. |
12 | Rego C H Q, Franca S F, Gomes J F G, et al. Using multispectral imaging for detecting seed-borne fungi in cowpea. Agriculture, 2020, 10(8): 361. |
13 | Vresak M, Olesen M H, Gislum R, et al. The use of image-spectroscopy technology as a diagnostic method for seed health testing and variety identification. PLoS One, 2016, 11(3): 1-10. |
14 | National Animal Husbandry General Station. Regional specialization of forage seed production. Beijing: China Agriculture Press, 2018. |
全国畜牧总站. 牧草种子专业化生产的地域性. 北京: 中国农业出版社, 2018. | |
15 | Shi F L, Shi F L, Gao C P, et al. Vigor change of artificial aging alfalfa seeds and ISSR markers. Chinese Journal of Grassland, 2015, 37(6): 30-34. |
石凤玲, 石凤翎, 高翠萍, 等. 人工老化紫花苜蓿种子活力变化与ISSR标记. 中国草地学报, 2015, 37(6): 30-34. | |
16 | Qu Y Y, Huang X, Xu Q H, et al. Effects of artificial aging on physiological and biochemical characteristics of Brassica alboglabra bailey seeds. Seed, 2020, 39(8): 24-29. |
屈煜莹, 黄鑫, 徐强辉, 等. 人工老化处理对芥蓝种子生理生化特性的影响. 种子, 2020, 39(8): 24-29. | |
17 | Ji J H, Meng C M, He Q F. Influence of different aging times on physiological and biochemical characteristics of cotton. Seed, 2017, 36(11): 14-17. |
姬俊华, 孟超敏, 何庆飞. 不同老化处理时间对棉花种子生理生化的影响. 种子, 2017, 36(11): 14-17. | |
18 | Hu X, Yang L, Zhang Z. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods, 2020, 16(1): 116. |
19 | Yang Z S, Guo L, Luo X, et al. A PCA based band selection algorithm of hyperspectral image. Microelectronics and Computer, 2006, 12(21): 72-74. |
杨诸胜, 郭雷, 罗欣, 等. 一种基于主成分分析的高光谱图像波段选择算法. 微电子学与计算机, 2006, 12(21): 72-74. | |
20 | Hu R, Zhu X, Zhu Y, et al. Robust SVM with adaptive graph learning. World Wide Web, 2020, 23(3SI): 1945-1968. |
21 | Pornpanomchai C, Jongsriwattanaporn S, Pattanakul T, et al. Image analysis on color and texture for chili (Capsicum frutescence) seed germination. Science, Engineering and Health Studies, 2020, 14(3): 169-183. |
22 | Lurstwut B, Pornpanomchai C. Image analysis based on color, shape and texture for rice seed (Oryza sativa L.) germination evaluation. Agriculture and Natural Resources, 2017, 51(5): 383-389. |
23 | Boelt B, Shrestha S, Salimi Z, et al. Multispectral imaging-a new tool in seed quality assessment. Seed Science Research, 2018, 28(3): 222-228. |
24 | Li Z H, Chen Y, Ye D Y, et al. CIELAB colour space quantification-based evaluation of capsule development and seed vigour in Nicotiana tabacum L. Chinese Tobacco Science, 2015, 36(4): 24-28. |
李振华, 陈尧, 叶定勇, 等. 基于CIELAB颜色空间判别烤烟蒴果发育与种子活力变化. 中国烟草科学, 2015, 36(4): 24-28. | |
25 | Cong X X. Study on the determination of seed vigour of perennial ryegrass using multispectral imaging technology. Beijing: China Agricultural University, 2020. |
丛晓翔. 利用多光谱成像技术测定多年生黑麦草种子活力的研究. 北京: 中国农业大学, 2020. | |
26 | Yang L, Zhang Z, Hu X. Cultivar discrimination of single alfalfa (Medicago sativa L.) seed via multispectral imaging combined with multivariate analysis. Sensors, 2020, 20(22): 6575. |
27 | Lei X, Liu W, Zhao J, et al. Comparative physiological and proteomic analysis reveals different involvement of proteins during artificial aging of Siberian wildrye seeds. Plants, 2020, 9(10): 1370. |
28 | Shrestha S, Deleuran L C, Gislum R. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics. Journal of Spectral Imaging, 2016, a1(5): 1-9. |
29 | ElMasry G, Mandour N, Wagner M, et al. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods, 2019, 15(1): 24. |
30 | Salimi Z, Boelt B. Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors, 2019, 19(10): 2360. |
31 | Weng H, Tian Y, Wu N, et al. Development of a low-cost narrow band multispectral imaging system coupled with chemometric analysis for rapid detection of rice false smut in rice seed. Sensors, 2020, 20(4): 1209. |
32 | Martins B V D J, Mascarin G M, Aparecida S S L C, et al. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality. Plant Methods, 2021, 17(1): 1-24. |
33 | Franca S F, Queiroz R C H, Guilhien G J F, et al. Detection of Drechslera avenae (Eidam) sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb) using multispectral imaging. Sensors, 2020, 20(12): 3343-3353. |
34 | Liu C, Liu W, Lu X, et al. Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods. The Journal of Agricultural Science, 2016, 154(1): 1-12. |
35 | Galletti P A, Carvalho M E A, Hirai W Y, et al. Integrating optical imaging tools for rapid and non-invasive characterization of seed quality: Tomato (Solanum lycopersicum L.) and carrot (Daucus carota L.) as study cases. Frontiers in Plant Science, 2020, 11: 577851. |
36 | Witjes H, Rijpkema M, van der Graaf M, et al. Multispectral magnetic resonance image analysis using principal component and linear discriminant analysis. Journal of Agnetic Resonance Imaging, 2003, 17(2): 261-269. |
37 | Mortensen A K, Gislum R, Jørgensen J R, et al. The use of multispectral imaging and single seed and bulk near-infrared spectroscopy to characterize seed covering structures: Methods and applications in seed testing and research. Agriculture, 2021, 11(4): 301. |
38 | Wang X Z, Lu Q, Zhang X D, et al. Non-destructive detection of cucumber seeds vigor based on hyperspectral imaging. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1197-1202. |
王新忠, 卢青, 张晓东, 等. 基于高光谱图像的黄瓜种子活力无损检测. 江苏农业学报, 2019, 35(5): 1197-1202. | |
39 | Rahman A, Cho B. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Science Research, 2016, 26(4): 285-305. |
40 | Wu J Z, Li H, Zhang H D, et al. Nondestructive determination of natural aging stage of wheat seeds using near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2019, 39(3): 751-755. |
吴静珠, 李慧, 张鹤冬, 等. 小麦种子自然老化程度的近红外光谱无损识别. 光谱学与光谱分析, 2019, 39(3): 751-755. | |
41 | Chen L L, Xia F S, Mao P S, et al. Application of near infrared spectroscopy (NIR) technique in hard seed testing research. Infrared Technology, 2015, 37(9): 793-798. |
陈玲玲, 夏方山, 毛培胜, 等. 近红外光谱技术在种子硬实检测中的研究进展. 红外技术, 2015, 37(9): 793-798. | |
42 | Turki A, Baskin C C. Determination of seed viability of eight wild Saudi Arabian species by germination and X-ray tests. Saudi Journal of Biological Sciences, 2017, 24(4): 822-829. |
43 | He X, Feng X, Sun D, et al. Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging. Molecules, 2019, 24(12): 2227. |
44 | Kandpal L M, Lohumi S, Kim M S, et al. Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors and Actuators B: Chemical, 2016, 229: 534-544. |
[1] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[2] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[3] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[4] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[5] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[6] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[7] | 张岳阳, 李芳, 梁维维, 李彦忠. 新疆昌吉32个紫花苜蓿品种的田间抗病性评价[J]. 草业学报, 2022, 31(2): 133-146. |
[8] | 王斌, 杨雨琦, 李满有, 倪旺, 海艺蕊, 张顺香, 董秀, 兰剑. 不同播种量下行距配置对紫花苜蓿产量及品质的影响[J]. 草业学报, 2022, 31(2): 147-158. |
[9] | 张辉辉, 师尚礼, 武蓓, 李自立, 李小龙. 苜蓿与3种多年生禾草混播效应研究[J]. 草业学报, 2022, 31(2): 159-170. |
[10] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[11] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[12] | 徐睿智, 吴晓娟, 杨惠敏. 刈割后追肥对建植当年紫花苜蓿生长和生产性能的影响[J]. 草业学报, 2022, 31(1): 195-204. |
[13] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[14] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[15] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||