草业学报 ›› 2023, Vol. 32 ›› Issue (1): 122-130.DOI: 10.11686/cyxb2021500
• 研究论文 • 上一篇
许浩宇1,2(), 赵颖1,2, 阮倩1,2, 朱晓林1,2, 王宝强1,2, 魏小红1,2()
收稿日期:
2021-12-28
修回日期:
2022-03-28
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
魏小红
作者简介:
E-mail: weixh@gsau.edu.cn基金资助:
Hao-yu XU1,2(), Ying ZHAO1,2, Qian RUAN1,2, Xiao-lin ZHU1,2, Bao-qiang WANG1,2, Xiao-hong WEI1,2()
Received:
2021-12-28
Revised:
2022-03-28
Online:
2023-01-20
Published:
2022-11-07
Contact:
Xiao-hong WEI
摘要:
探究不同混合盐碱下藜麦幼苗的抗性机制,为藜麦品种选育和引种栽培提供参考依据,以期解决西北地区土地盐碱化对藜麦的种植限制。以白藜麦为试验材料,用中性盐NaCl、Na2SO4和碱性盐NaHCO3、Na2CO3按不同比例混合成浓度为200 mmol·L-1 的A(NaCl∶Na2SO4=1∶1)、B(NaCl∶Na2SO4∶NaHCO3=1∶2∶1)、C(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1)、D(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶1∶1∶1)、E(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=9∶1∶1∶9)5种pH逐渐递增的盐碱溶液进行胁迫处理,分析不同盐碱胁迫对白藜麦幼苗生长、渗透调节物质含量、抗氧化酶活性及Na+区隔化相关基因NHX1a和NHX1b表达量的影响。结果表明,随着胁迫时间的增加,藜麦株高受到抑制,根长和根冠比得到促进;与CK相比,E处理下的株高最大降低15.39%,C处理下的根长最高增长35.97%和根冠比最高增加53.10%;叶片中丙二醛(MDA)含量先升高后降低且E处理下保持较低水平,可溶性糖、可溶性蛋白和脯氨酸(Pro)含量在A、B、C处理下先升后降,D和E处理下不断上升;叶片中超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性先升后降,过氧化物酶(POD)活性不断下降,过氧化氢酶(CAT)活性先升后保持不变;叶片中Na+区隔化相关基因NHX1a和NHX1b表达量先降后升,且基因表达量按大小排序均为E>D>B>C>A。说明随着盐碱溶液中碱性盐比例的增加,对藜麦幼苗的损害不断加深,但藜麦仍可通过渗透调节、抗氧化系统和抗盐相关基因表达等耐盐途径提高自身的耐受性。
许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130.
Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels[J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130.
处理组 Treatment | 盐分组成及摩尔比 Salt composition and molar ratio | pH | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
A | 1 | 1 | 0 | 0 | 7.62 |
B | 1 | 2 | 1 | 0 | 8.98 |
C | 1 | 9 | 9 | 1 | 9.18 |
D | 1 | 1 | 1 | 1 | 9.75 |
E | 9 | 1 | 1 | 9 | 10.53 |
表1 各处理盐分组成,摩尔比及pH
Table 1 Salts composition, molar ratio and pH of solutions for mixed salt-alkali treatment
处理组 Treatment | 盐分组成及摩尔比 Salt composition and molar ratio | pH | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
A | 1 | 1 | 0 | 0 | 7.62 |
B | 1 | 2 | 1 | 0 | 8.98 |
C | 1 | 9 | 9 | 1 | 9.18 |
D | 1 | 1 | 1 | 1 | 9.75 |
E | 9 | 1 | 1 | 9 | 10.53 |
基因名称Gene symbol | 正向引物Forward primer sequences (5′-3′) | 反向引物Reverse primer sequences (5′-3′) |
---|---|---|
H2A | GTCAAGAGCACTGCCGGAAGAG | CAGCAGCGAGATACTCAAGGACAG |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
表2 Na+区隔化相关基因的qRT-PCR引物
Table 2 Primers sequences for Na+ compartmentalization related genes of qRT-PCR
基因名称Gene symbol | 正向引物Forward primer sequences (5′-3′) | 反向引物Reverse primer sequences (5′-3′) |
---|---|---|
H2A | GTCAAGAGCACTGCCGGAAGAG | CAGCAGCGAGATACTCAAGGACAG |
CqNHX1a | GCTTATGATGCTTATGGCTTA | GCTTGGAGGTTATTCTTGAG |
CqNHX1b | ATGCTTATGGCTTATCTATCTTAC | TGCTTGGTGGTTACTCTT |
图1 混合盐碱对藜麦幼苗生长参数的影响5组盐组分为A(NaCl∶Na2SO4=1∶l), B(NaCl∶Na2SO4∶NaHCO3=1∶2∶1), C(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1), D(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=l∶l∶l∶l)和E(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=9∶1∶1∶9);不同小写字母表示同一天不同处理间差异显著(P<0.05),下同。The five groups of salt components are A (NaCl∶Na2SO4=1∶l), B (NaCl∶Na2SO4∶NaHCO3=1∶2∶1), C (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1), D (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=l∶l∶l∶l)和E (NaCl∶Na2SO4∶NaHCO3∶Na2CO3=9∶1∶1∶9). Different lowercase letters at the same time indicate significant differences among different treatments (P<0.05), the same below.
Fig.1 Effects of mixed salt-alkali on growth parameters of quinoa seedlings
1 | Yan F, Li Q Q, Dong Y, et al. Industry status and development countermeasures of Chenopodium quinoa. Heilongjiang Agricultural Sciences, 2021(9): 98-100. |
闫锋, 李清泉, 董扬, 等. 藜麦产业现状及发展对策. 黑龙江农业科学, 2021(9): 98-100. | |
2 | Bai L L, Shi J H, Liu M X, et al. Review of research progress on quinoa properties. Plant Doctor, 2020, 33(5): 22-27. |
白丽丽, 史军辉, 刘茂秀, 等. 藜麦特性研究进展综述. 植物医生, 2020, 33(5): 22-27. | |
3 | Wang Z H, Xu Z W, Zhou W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033-1042. |
王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价. 中国生态农业学报, 2020, 28(7): 1033-1042. | |
4 | Lin C, Liu Z J, Dong Y M, et al. Domesticated cultivation and genetic breeding of Chenopodium quinoa. Hereditas, 2019, 41(11): 1009-1022. |
林春, 刘正杰, 董玉梅, 等. 藜麦的驯化栽培与遗传育种. 遗传, 2019, 41(11): 1009-1022. | |
5 | Farinazzi-Machado F, Barbalho S M, Oshiiwa M, et al. Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Science & Technology, 2012, 32(2): 239-244. |
6 | Zhou H T, Liu H, Yao Y, et al. Evaluation of agronomic and quality characters of quinoa cultivated in Zhangjiakou. Journal of Plant Genetic Resources, 2014, 15(1): 222-227. |
周海涛, 刘浩, 么杨, 等. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014, 15(1): 222-227. | |
7 | Ren G X, Yang X S, Yao Y. Current situation of quinoa industry in China. Crops, 2015(5): 1-5. |
任贵兴, 杨修仕, 么杨. 中国藜麦产业现状. 作物杂志, 2015(5): 1-5. | |
8 | Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3): 645-663. |
9 | Wei L Z, Guo X N, Chai W W, et al. Effects of high altitude breeding on the salt tolerance of quinoa. Barley and Cereal Sciences, 2020, 37(5): 8-15. |
韦良贞, 郭晓农, 柴薇薇, 等. 高海拔繁育对藜麦耐盐性的影响. 大麦与谷类科学, 2020, 37(5): 8-15. | |
10 | Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684. |
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684. | |
11 | Chen M, Li H Y, Lv F T. Research advances in mechanisms of plant salinity tolerance. Journal of Liaocheng University, 2011, 24(3): 47-50. |
陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报, 2011, 24(3): 47-50. | |
12 | Yuan F M, Quan Y J, Chen Z G. Effects of sodium stress on seed germination of Chenopodium quinoa Willd. Journal of Arid Land Resources and Environment, 2018, 32(11): 182-187. |
袁飞敏, 权有娟, 陈志国. 不同钠盐胁迫对藜麦种子萌发的影响. 干旱区资源与环境, 2018, 32(11): 182-187. | |
13 | Qiu L. The physiological response of Chenopodium quinoa Willd. to saline alkaline stress in the early stage of growth. Changchun: Northeast Normal University, 2018. |
邱璐. 藜麦生长初期对盐碱胁迫的生理响应. 长春: 东北师范大学, 2018. | |
14 | Cai Z Q, Gao Q. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology, 2020, 20(1): 70. |
15 | Ruiz-Carrasco K, Antognoni F, Coulibaly A K, et al. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology & Biochemistry, 2011, 49: 1333-1341. |
16 | Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 2010, 68(1): 66-74. |
17 | Du X J, Hu S W. Research progress of saline-alkali land at home and abroad over the past 30 years based on bibliometric analysis. Journal of Anhui Agricultural Science, 2021, 49(18): 236-239, 242. |
杜学军, 胡树文. 基于文献计量分析的近30年国内外盐碱地研究进展. 安徽农业科学, 2021, 49(18): 236-239, 242. | |
18 | Läuchli A, Lüttge U. Salinity: Environment-plants-molecules. Dordrecht: Kluwer Academic Publishers, 2002. |
19 | Hu A S, Zhang X D, Guo W J, et al. Ion absorption, transportation and distribution of Malus micromalus strains under salt stress. Plant Physiology Journal, 2021, 57(9): 1829-1838. |
胡爱双, 张小栋, 郭文静, 等. 盐胁迫下八棱海棠株系的离子吸收、运输与分配. 植物生理学报, 2021, 57(9): 1829-1838. | |
20 | Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2): 437-448. |
21 | Zhao Y, Wei X H, He Y L, et al. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa. Acta Prataculturae Sinica, 2019, 28(2): 156-167. |
赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响. 草业学报, 2019, 28(2): 156-167. | |
22 | Chen J X, Wang X F. Guide of plant physiological experiments. Guangzhou: South China University of Technology Press, 2006. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. | |
23 | Bates L S, Waldren R P, Teare I D. Rapid determination of free proline in water stress studies. Plant and Soil, 1973, 39(1): 205-207. |
24 | Hou F L. Plant physiology experiment. Beijing: Science Press, 2015. |
侯福林. 植物生理学实验教程. 北京: 科学出版社, 2015. | |
25 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1980, 22(5): 867-880. |
26 | Shi P B, Wang J, Fei Y Y, et al. Effects of salt stress on the seedling growth and CqNHX1 gene expression of different quinoa varieties. Chinese Agricultural Science Bulletin, 2020, 36(33): 19-24. |
时丕彪, 王军, 费月跃, 等. 盐胁迫对不同藜麦品种幼苗生长及CqNHX1基因表达的影响. 中国农学通报, 2020, 36(33): 19-24. | |
27 | Zhang H B, Cui J Z, Cao T T, et al. Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Acta Ecologica Sinica, 2011, 31(10): 2805-2812. |
张海波, 崔继哲, 曹甜甜, 等. 大豆出苗期和苗期对盐胁迫的响应及耐盐指标评价. 生态学报, 2011, 31(10): 2805-2812. | |
28 | Jia Y, Xiang Y F, Wang L L, et al. Effects of salt stress on the growth and physiological characteristics of Primula forbesii. Acta Prataculturae Sinica, 2020, 29(10): 119-128. |
贾茵, 向元芬, 王琳璐, 等. 盐胁迫对小报春生长及生理特性的影响. 草业学报, 2020, 29(10): 119-128. | |
29 | Tan S X. Research on physiological characteristics of Chenopodium quinoa Willd. under salt-alkali stress. Changchun: Northeast Normal University, 2017. |
谭舒心. 混合盐胁迫下藜麦生理特性的研究. 长春: 东北师范大学, 2017. | |
30 | Shi L X. Study in photosynthetic and stress ecophysiology of Leymus chinensis along the salinity-alkalinity gradients on the Songnen grassland in northeastern China. Changchun: Northeast Normal University, 2017. |
石连旋. 松嫩不同盐碱化羊草草甸草原羊草光合及逆境生理生态特性研究. 长春: 东北师范大学, 2007. | |
31 | Zhao Y, Wei X H, Li T T. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响. 草业学报, 2020, 29(4): 92-101. | |
32 | Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 2005, 16(2): 123-132. |
33 | Shabala L, Mackay A, Tian Y, et al. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 2012, 146(1): 26-38. |
34 | Chen Y Q, Su K Q, Chen T X, et al. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
陈雅琦, 苏楷淇, 陈泰祥, 等. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响. 草业学报, 2021, 30(3): 137-157. | |
35 | Liu W Y. Plant adversity and gene. Beijing: Beijing Institute of Technology Press, 2015. |
刘文英. 植物逆境与基因. 北京: 北京理工大学出版社, 2015. | |
36 | Zheng S Y, Shang X F, Wang J P. Determination of antioxidant enzyme activity and contents of MDA in maize seedlings under salt stress with visible spectrophotometry. Biotechnology Bulletin, 2010(7): 106-109. |
郑世英, 商学芳, 王景平. 可见分光光度法测定盐胁迫下玉米幼苗抗氧化酶活性及丙二醛含量. 生物技术通报, 2010(7): 106-109. | |
37 | Yao Y T, Zhang G X, Ding S P, et al. Effects of salt stress on strawberry seedling growth and antioxidant system. Northern Horticulture, 2021(17): 22-29. |
姚玉涛, 张国新, 丁守鹏, 等. 盐胁迫对草莓苗期生长及氧化还原系统的影响. 北方园艺, 2021(17): 22-29. | |
38 | Hao D F. Introduction of Na+/H+ transporter gene NHX from native halophyte salicornia spp in Xinjiang into Brassica napus and its salt tolerance. Urumqi: Xinjiang University, 2006. |
郝东风. 新疆盐生植物耐盐基因NHX转化甘蓝型油菜及其耐盐性的初步研究. 乌鲁木齐: 新疆大学, 2006. |
[1] | 侯丽媛, 贾举庆, 姜晓东, 王育川, 赵菁, 陈禺怀, 黄胜雄, 吴慎杰, 董艳辉. 藜麦WRKY基因的进化与多胁迫条件下的转录应答[J]. 草业学报, 2022, 31(9): 168-182. |
[2] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[3] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[4] | 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响[J]. 草业学报, 2022, 31(6): 139-149. |
[5] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
[6] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[7] | 张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117. |
[8] | 赵宁, 马晖玲, 张然, 张金青, 史毅. 丁二醇对热胁迫下匍匐翦股颖内源激素及其相关基因表达水平的调控[J]. 草业学报, 2022, 31(12): 118-132. |
[9] | 穆海婷, 王英哲, 苗一凡, 郁伟杰, 徐博. 重金属铜和铅胁迫对东方山羊豆幼苗生长及生理特性的影响[J]. 草业学报, 2022, 31(11): 139-146. |
[10] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[11] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[12] | 余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
[13] | 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93. |
[14] | 王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报, 2021, 30(4): 150-159. |
[15] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||