草业学报 ›› 2023, Vol. 32 ›› Issue (2): 35-43.DOI: 10.11686/cyxb2022045
许爱云(), 张丽华, 王晓佳, 马冲, 李元景, 曹兵()
收稿日期:
2022-01-22
修回日期:
2022-03-17
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
曹兵
作者简介:
E-mail: bingcao2006@126.com基金资助:
Ai-yun XU(), Li-hua ZHANG, Xiao-jia WANG, Chong MA, Yuan-jing LI, Bing CAO()
Received:
2022-01-22
Revised:
2022-03-17
Online:
2023-02-20
Published:
2022-12-01
Contact:
Bing CAO
摘要:
为揭示蒙古冰草对氮添加的响应机制,设置5个氮添加水平(0,0.8,1.6,2.4,4.0 g N·m-2·a-1)对蒙古冰草进行为期2个月处理后,测定根系、叶片中可溶性糖、淀粉、碳(C)、氮(N)、磷(P)的含量,分析氮添加对蒙古冰草叶片、根系非结构性碳水化合物(NSCs)与C、N、P含量及其化学计量特征关系的影响。结果表明:2.4 g N·m-2·a-1的氮素添加显著提高了蒙古冰草叶片、根系NSCs含量与C、N、P含量,且不同器官的响应有显著差异性(P<0.05)。叶片NSCs含量与叶片N、可溶性糖、淀粉含量、C/P及N/P呈显著正相关关系,与叶片P含量、C/N呈显著负相关关系(P<0.05);根系NSCs含量与根系C、N、C/P、N/P、可溶性糖和淀粉含量呈显著正相关(P<0.05)。叶片与根系N/P是影响蒙古冰草体内可溶性糖积累的主要因子;根系N含量与叶片P含量共同影响淀粉含量;叶片P含量、根系N含量及根系N/P综合影响NSCs含量。综上,适量的氮添加会缓解研究区蒙古冰草的N限制,促进NSCs合成,而大量氮添加会导致N、P比例失衡,加剧P限制。因此,未来气候变化背景下蒙古冰草人工草地种植或退化草地恢复管理过程中需要考虑优化氮肥施用量与适当的磷添加。
许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43.
Ai-yun XU, Li-hua ZHANG, Xiao-jia WANG, Chong MA, Yuan-jing LI, Bing CAO. Responses of non-structural carbohydrates and C∶N∶P stoichiometry of Agropyron mongolicum to nitrogen addition[J]. Acta Prataculturae Sinica, 2023, 32(2): 35-43.
图1 不同氮添加下蒙古冰草叶片与根系非结构性碳水化合物含量不同小写字母表示同一器官不同氮添加处理间差异显著(P<0.05)。下同。 Different lowercase letters indicate significant differences among different N addition treatments in same organ at 0.05 level. *: P<0.05; **: P<0.01; ***: P<0.001. The same below.
Fig.1 Accumulation of non-structural carbohydrates in leaf and root of A. mongolicum under different N addition treatments
图2 不同氮添加下蒙古冰草叶片与根系C、N、P含量及其化学计量比
Fig.2 C,N and P contents and stoichiometric ratio in leaf and root of A. mongolicum under different N addition gradients
图3 叶片、根系NSCs含量与C、N、P含量及其化学计量比间的相关系数C为碳含量;N为氮含量;P为磷含量;SS为可溶性糖含量;ST为淀粉含量; NSCs为非结构性碳水化合物;A为叶片; B为根系。C is carbon content; N is nitrogen content; P is phosphorus content; SS is soluble sugar content; ST is starch content; NSCs is non-structural carbohydrates; A is leaf; B is root.
Fig.3 Correlations coefficients of NSCs variables and C, N, P content and stoichiometry in leaf and root
指标 Index | 回归方程 Model | R2 | F | P |
---|---|---|---|---|
SS | 0.817 | 29.260 | <0.001 | |
ST | 0.578 | 14.010 | <0.001 | |
NSCs | 0.765 | 31.848 | <0.001 |
表1 NSCs含量与根系、叶片C、N、P含量及其比例的逐步回归分析
Table 1 Stepwise regression analysis of NSCs variables and C, N, P content and stoichiometry in leaf and root
指标 Index | 回归方程 Model | R2 | F | P |
---|---|---|---|---|
SS | 0.817 | 29.260 | <0.001 | |
ST | 0.578 | 14.010 | <0.001 | |
NSCs | 0.765 | 31.848 | <0.001 |
图4 氮添加影响蒙古冰草非结构性碳水化合物路径的结构方程模型图中的线条表示作用路径,线条粗细表示效应大小,黑色表示正效应,灰色表示负效应。箭头中间的数值为标准化路径系数,R2 表示解释率。*, ** ,*** 分别表示P<0.05, P<0.01和P<0.001。模型拟合系数如下:χ2=0.543, df=3, P=0.909, RMSEA=0.000, GFI=0.991。The lines in the figure represent the path, line thickness indicated relative effect size, black solid arrows indicated positive effect, gray solid arrows indicated negative effect, and the standardized path coefficients are adjacent to the arrows. The R2 indicated variation that can be explained. *, ** and *** indicate statistically significant at P<0.05, P<0.01 and P<0.001, respectively. Results of model fitting: χ2=0.543, df=3, P=0.909, RMSEA=0.000, GFI=0.991.
Fig.4 Structural equation modeling showing the impact path of nitrogen addition on NSCs of A. mongolicum
1 | Ericsson T, Rytter L, Vapaavuori E. Physiology of carbon allocation in trees. Biomass & Bioenergy, 1996, 11(2/3): 115-127. |
2 | Chapin F S, Schulze E D, Mooney H A. The ecology and economics of storage in plants. Annual Review Ecology and Systematics, 1990, 21(1): 423-447. |
3 | Zhang P P, Zhou X H, Fu Y L, et al. Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest. Forest Ecology and Management, 2020, 469: 118159. |
4 | Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 2016, 211(2): 386-403. |
5 | He W, Liu H, Qi Y, et al. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 2020, 26(6): 3627-3638. |
6 | Yu L, Song M, Xia Z. Elevated temperature differently affects growth, photosynthetic capacity, nutrient absorption and leaf ultrastructure of Abies faxoniana and Picea purpurea under intra- and interspecific competition. Tree Physiology, 2019, 39(8): 1342-1357. |
7 | Shi C G, Silva L C R, Zhang H X, et al. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agricultural and Forest Meteorology, 2015, 200: 21-29. |
8 | Xie H, Yu M, Cheng X. Leaf non-structural carbohydrate allocation and C∶N∶P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species. Plant Physiology and Biochemistry, 2018, 124: 146-154. |
9 | Azcón R, Gomez M, Tobar R. Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytologist, 1992, 121(2): 227-234. |
10 | Reich P B, Walters M B, Tjoelker M G, et al. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 1998, 12: 395-405. |
11 | Deng Q, Hui D F, Dennis S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta‐analysis. Global Ecology and Biogeography, 2017, 26(6): 713-728. |
12 | Guo Z W, Hu J J, Yang Q P, et al. Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand. Chinese Journal of Applied Ecology, 2015, 26(4): 1064-1070. |
郭子武, 胡俊靖, 杨清平, 等. 林地覆盖经营对雷竹叶片非结构性碳水化合物与氮、磷关系的影响. 应用生态学报, 2015, 26(4): 1064-1070. | |
13 | Chapin F S. The mineral nutrition of wild plants. Annual Review Ecology and Systematics, 1980, 11(1): 233-260. |
14 | Sun X M, He M Z, Zhou B, et al. Non-structural carbohydrates and C∶N∶P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition. Arid Land Geography, 2021, 44(1): 240-249. |
孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C∶N∶P计量特征对干旱的响应. 干旱区地理, 2021, 44(1): 240-249. | |
15 | Yang Y, Liu B R. Testing relationship between plant productivity and diversity in a desertified steppe in Northwest China.PeerJ, 2019, 7: e7239. |
16 | Hu H, Zhu L, Li H, et al. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China. Journal of Arid Land, 2021, 13(2): 109-122. |
17 | Chen J, Wang F, Xie Y Z, et al. Biomass and available soil nutrient of Agropyron mongolicum + Lespedeza davurica pasture. Pratacultural Science, 2015, 32(4): 492-500. |
陈晶, 王峰, 谢应忠, 等. 沙芦草+胡枝子混播草地的生物量及土壤速效养分. 草业科学, 2015, 32(4): 492-500. | |
18 | Zhao Y, Gao C, Shi F. Transcriptomic and proteomic analyses of drought responsive genes and proteins in Agropyron mongolicum Keng. Current Plant Biology, 2018, 14: 19-29. |
19 | Wang F, Sanz A, Brenner M L, et al. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiology, 1993, 101(1): 321-327. |
20 | He J L, Ma C F, Ma Y L, et al. Cadmium tolerance in six poplar species.Environmental Science and Pollution Research International, 2013, 20: 163-174. |
21 | Bao S D. Analysis of soil and agricultural chemistry (the third edition). Beijing: China Agriculture Press, 2000: 268-272. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 268-272. | |
22 | Nardini A, Casolo V, Dal Borgo A, et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 2016, 39(3): 618-627. |
23 | Li J X, Zhu Y N, Sun X M, et al. Effects of nitrogen and phosphorus addition on non-structural carbohydrate properties of vegetative organs in Lycium ruthenicum. Journal of Desert Research, 2021, 41(2): 200-211. |
李金霞, 朱亚男, 孙小妹, 等. 氮磷添加对黑果枸杞(Lycium ruthenicum)营养器官非结构性碳水化合物特征的影响. 中国沙漠, 2021, 41(2): 200-211. | |
24 | Domingues T F, Meir P, Feldpausch T R. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell & Environment, 2010, 33(6): 959-980. |
25 | Oberhuber W, Swidrak I, Pirkebner D, et al. Temporal dynamics of nonstructural carbohydrates and xylem growth in Pinus sylvestris exposed to drought. Canadian Journal of Forest Research, 2011, 41: 1590-1597. |
26 | Sergio T, Alberto P, Stefano P, et al. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Frontiers in Plant Science, 2015, 6(943): 1-14. |
27 | Ai Z M, Xue S, Wang G L, et al. Responses of non-structural carbohydrates and C∶N∶P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. Journal of Plant Growth Regulation, 2017, 36: 714-722. |
28 | Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2010, 164(2): 243-266. |
29 | Tian D, Yan Z B, Fang J Y. Review on the characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713. |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713. | |
30 | Yuan X, Niu D, Weber-Grullon L, et al. Nitrogen deposition enhances plant-microbe interactions in a semiarid grassland: The role of soil physicochemical properties. Geoderma, 2020, 373: 114446. |
31 | Fu J, She W W, Bai Y X, et al. Effects of nitrogen and water addition on leaf N∶P stoichiometry of the two dominant species in Artemisia ordosica community. Scientia Silvae Sinicae, 2020, 56(5): 12-18. |
傅洁, 佘维维, 白宇轩, 等. 氮水添加对油蒿群落2种优势植物叶片氮磷化学计量比的影响. 林业科学, 2020, 56(5): 12-18. | |
32 | Wang X, Luo W T, Yu Q, et al. Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chinese Journal of Ecology, 2014, 33(7): 1795-1802. |
王雪, 雒文涛, 庾强, 等. 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响. 生态学杂志, 2014, 33(7): 1795-1802. | |
33 | Gao Z B, Wang H Y, Lv X T, et al. Effects of nitrogen and phosphorus addition on C∶N∶P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir. Chinese Journal of Ecology, 2017, 36(1): 80-88. |
高宗宝, 王洪义, 吕晓涛, 等. 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C∶N∶P化学计量特征的影响. 生态学杂志, 2017, 36(1): 80-88. | |
34 | Tian D, Wang H, Sun J, et al. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 2016, 11(2): 024012. |
35 | Li X, Tan N D, Wu T, et al. Plant growth and C∶N∶P stoichiometry characteristics in response to experimental warming in four co-occurring subtropical forest tree seedlings. Acta Ecologica Sinica, 2021, 41(15): 6146-6158. |
李旭, 谭钠丹, 吴婷, 等. 增温对南亚热带常绿阔叶林4种幼树生长和碳氮磷化学计量特征的影响. 生态学报, 2021, 41(15): 6146-6158. | |
36 | Ordoñez J C, Bodegom P, Witte J. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology & Biogeography, 2010, 18(2): 137-149. |
[1] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[2] | 姜瑛, 魏畅, 焦秋娟, 申凤敏, 李鸽子, 张雪海, 杨芳, 柳海涛. 外源硅对镉胁迫下玉米生理参数及根系构型分级的影响[J]. 草业学报, 2022, 31(9): 139-154. |
[3] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[4] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[5] | 杨志新, 郑旭, 陈来宝, 于泳鑫, 张凤华, 李鲁华, 王家平. 干旱区盐碱地食叶草根系形态分布适应策略研究[J]. 草业学报, 2022, 31(7): 15-27. |
[6] | 董梦宇, 王金鑫, 吴萌, 周子瑶, 程顺, 李彦慧. 两种香花芥属植物叶片结构及光合特性研究[J]. 草业学报, 2022, 31(7): 172-184. |
[7] | 甘凤玲, 韦杰, 李沙沙. 紫色土埂坎典型草本根系摩阻特性对土壤含水率的响应[J]. 草业学报, 2022, 31(7): 28-37. |
[8] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[9] | 魏畅, 焦秋娟, 柳海涛, 张静静, 申凤敏, 姜瑛, 张雪海, 孙娈姿, 杨芳, 刘振. 镉暴露条件下玉米生长及根系构型分级特征研究[J]. 草业学报, 2022, 31(3): 101-113. |
[10] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[11] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[12] | 邢强, 秦俊, 胡永红. 不同践踏强度对3种暖季型草坪草的影响[J]. 草业学报, 2022, 31(2): 52-61. |
[13] | 米永伟, 龚成文, 邵武平, 彭云霞. 覆膜对高寒阴湿区土壤水热与当归根系生长的调控效应[J]. 草业学报, 2022, 31(12): 66-75. |
[14] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[15] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||