欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2023, Vol. 32 ›› Issue (4): 101-111.DOI: 10.11686/cyxb2022167

• 研究论文 • 上一篇    

全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析

李艳鹏(), 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献()   

  1. 兰州大学草种创新与草地农业生态系统全国重点实验室,兰州大学草地农业教育部工程研究中心,甘肃省西部草业技术创新中心,兰州大学农业农村部草牧业创新重点实验室,兰州大学草地农业科技学院,甘肃 兰州 730020
  • 收稿日期:2022-04-12 修回日期:2022-06-01 出版日期:2023-04-20 发布日期:2023-01-29
  • 通讯作者: 刘文献
  • 作者简介:E-mail: liuwx@lzu.edu.cn
    李艳鹏(2001-),男,内蒙古赤峰人,在读本科。E-mail: liyp19@lzu.edu.cn
  • 基金资助:
    国家自然科学基金-国际(地区)合作与交流项目(32061143035)

Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress

Yan-peng LI(), Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU()   

  1. State Key Laboratory of Grassland Argo-ecosystems,Engineering Research Center of Grassland Industry,Ministry of Education,Western China Technology Innovation Centre for Grassland Industry,Gansu Province,Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs,College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730020,China
  • Received:2022-04-12 Revised:2022-06-01 Online:2023-04-20 Published:2023-01-29
  • Contact: Wen-xian LIU

摘要:

草木樨是我国北方地区重要的饲料与绿肥豆科作物,在我国草牧业发展和生态经济建设中具有重要作用。干旱胁迫是影响草木樨分布和产量的重要因素,筛选和鉴定调控草木樨响应干旱胁迫的基因对解析草木樨抗旱生物学研究具有重要意义。TCP(teosinte branches1/cycloidea/pro-liferating cell factory)是一类植物特有的转录因子,在调控植物响应干旱胁迫过程中具有重要作用,但目前该基因家族在草木樨中的分布以及响应干旱胁迫的生物学功能未见报道。本研究以白花草木樨为对象,利用生物信息学方法在全基因组水平对TCP基因家族进行系统鉴定,并对其基因结构、系统进化、染色体定位以及干旱胁迫下表达模式进行了分析。结果表明,白花草木樨含有18个MaTCP基因,不均匀地分布在6条染色体上。系统进化表明,18个MaTCP基因可以分为TCP-P和TCP-C两大亚家族,其中TCP-P仅包含PCF分支,而TCP-C包含CYC/TB1与CIN两个分支。这些基因都含有高度保守的bHLH结构域,同亚家族中的成员具有相似的保守基序与基因结构,但在bHLH结构域中TCP-P亚家族相较于TCP-C亚家族少4个氨基酸。通过分析白花草木樨响应干旱胁迫的转录组数据,共鉴定出2个可能与干旱胁迫有关的MaTCP基因(MaTCP2MaTCP15)。qRT-PCR结果进一步表明,PEG模拟干旱胁迫处理后,在白花草木樨根部,MaTCP2基因表达量显著上升;在叶片部分,两基因的表达量在第3 h时均出现峰值,进一步确定了两基因在白花草木樨中具有响应干旱胁迫的表达模式。该研究可为后期深入解析草木樨响应干旱胁迫理论以及通过基因工程技术创制高抗旱草木樨新种质奠定基础。

关键词: 白花草木樨, TCP基因, 全基因组鉴定, 干旱胁迫, 表达模式

Abstract:

Melilotus is an important forage and green manure legume crop in northern China. It plays an important role in grass husbandry and ecological and economic construction in this region, and in greater China. Drought stress is an important factor affecting the distribution and yield of Melilotus. It is important to screen and characterize genes that regulate the response of Melilotus to drought stress to understand the drought resistance biology of this genus. The TCP (teosinte branches1, cycloidea, proliferating cell factory) family of transcription factors is specific to plants, and its members are known to play important roles in regulating the response to drought stress. The aim of this study was to identify members of this gene family in Melilotus and explore their biological functions in response to drought stress. In this study, the TCP gene family in Melilotusallbus was systematically identified at the whole-genome level using bioinformatics methods. Further analyses revealed details of TCP gene structures, phylogeny, chromosome locations, and expression patterns under drought stress. The genome of M. albus contained 18 MaTCP genes, which were unevenly distributed on six chromosomes. In a phylogenetic analysis, the 18 MaTCP genes were grouped into two subfamilies: TCP-P and TCP-C. The TCP-P subfamily contained only PCF branches, while the TCP-C subfamily contained CYC/TB1 and CIN branches. All of the 18 MaTCP genes contained a highly conserved bHLH domain and had similar conserved motifs and gene structures within the same subfamily, but members of the TCP-P family had four fewer amino acids in their bHLH domain. Analyses of the transcriptome data obtained for M. albus under drought stress revealed two MaTCP genes (MaTCP2 and MaTCP15) that may be related to the drought stress response. Quantitative reverse-transcription polymerase chain reaction analyses confirmed that, under drought stress simulated by a polyethylene glycol treatment, the transcript levels of MaTCP2 increased significantly in the root of M. albus, while the transcript levels of both genes in the leaf peaked at 3 h of the simulated drought treatment. These results confirmed that both genes are involved in the drought response in M. albus. The results of this study lay the foundation for further research on the drought response of Melilotus, and will be useful for generating Melilotus varieties with enhanced drought resistance through genetic engineering.

Key words: Melilotus albus, TCP gene, genome-wide identification, drought stress, expression profiles