草业学报 ›› 2023, Vol. 32 ›› Issue (6): 157-166.DOI: 10.11686/cyxb2022271
收稿日期:
2022-06-21
修回日期:
2022-09-14
出版日期:
2023-06-20
发布日期:
2023-04-21
通讯作者:
郭正刚
作者简介:
Corresponding author. E-mail: guozhg@lzu.edu.cn基金资助:
Cai-feng LIU(), Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO()
Received:
2022-06-21
Revised:
2022-09-14
Online:
2023-06-20
Published:
2023-04-21
Contact:
Zheng-gang GUO
摘要:
植物物种多样性和土壤生态化学计量比间的关系,是草地植物群落结构维持的关键。高原鼠兔干扰虽被证实能够影响植物物种多样性、土壤有机碳、全氮和全磷的含量,但是否影响高寒草甸植物物种多样性和土壤生态化学计量比间的关系,尚不清楚。本研究以甘南和青海湖流域为对象,采用配对设置样地的方法,分析了高原鼠兔干扰对高寒草甸植物物种多样性和土壤生态化学计量比间关系的影响。结果表明:高原鼠兔干扰显著增加了物种丰富度指数、土壤有机碳、全氮和全磷含量,以及土壤C∶N和C∶P(P<0.05),但没有显著影响物种多样性指数、物种均匀度指数和土壤N∶P。高原鼠兔干扰增加了物种丰富度指数和物种多样性指数与土壤C∶N间的正相关性(P<0.05),减弱了物种丰富度指数与土壤C∶P间的正相关性(P<0.01);物种多样性指数与土壤C∶P间的关系从高原鼠兔未干扰生境的对数关系转变为干扰生境的二次函数关系(P<0.05),而物种丰富度指数与土壤N∶P间的关系从高原鼠兔未干扰生境的不显著相关,改变为干扰生境的显著负相关二次函数(P<0.01);物种多样性指数与土壤N∶P间的关系从未干扰生境的显著正相关二次函数(P<0.05),变为干扰生境的不显著相关,这确证了高原鼠兔干扰能够改变植物物种多样性与土壤生态化学计量比间的关系,为全面解释高原鼠兔干扰下草地植物群落结构的维持提供了基础信息。
刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166.
Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows[J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166.
图1 高原鼠兔干扰对高寒草甸植物物种多样性的影响“ns”表示无差异,“*”表示在0.05水平存在显著差异,下同。 “ns” means no difference, “*” means difference is significant at 0.05 level, the same below.
Fig.1 Effect of plateau pika disturbance on plant species diversity in alpine meadows
项目 Item | 指标 Index | 未干扰 Un-disturbance | 干扰 Disturbance | ||||
---|---|---|---|---|---|---|---|
拟合方程 Fitting equations | R2 | 相关系数 Correlation coefficient | 拟合方程 Fitting equations | R2 | 相关系数 Correlation coefficient | ||
S | C∶N | y=0.0547x2-0.7449x+19.6670 | 0.482 | 0.685** | y=-0.0274x2+1.9452x-0.8634 | 0.613 | 0.782** |
C∶P | y=2.1837×10-5x2+0.1229x+8.9858 | 0.557 | 0.746** | y=-0.0008x2+0.3151x-1.0087 | 0.345 | 0.570** | |
N∶P | y=-0.4123x2+7.3034x-8.2235 | 0.130 | 0.336 | y=0.5943x2-11.0680x+72.2034 | 0.255 | -0.500** | |
H | C∶N | y=0.0016x2-0.0180x+2.6411 | 0.193 | 0.435* | y=0.0013x2-0.0250x+2.8493 | 0.327 | 0.566** |
C∶P | y=0.5741ln(x)+0.1307 | 0.379 | 0.615** | y=-2.8349×10-5x2+0.0117x+1.8732 | 0.247 | 0.484** | |
N∶P | y=-0.0323x2+0.5653x+0.4771 | 0.241 | 0.454* | y=0.0697x2-0.9999x+6.3859 | 0.095 | -0.203 |
表1 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响
Table 1 Effect of plateau pika disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadow
项目 Item | 指标 Index | 未干扰 Un-disturbance | 干扰 Disturbance | ||||
---|---|---|---|---|---|---|---|
拟合方程 Fitting equations | R2 | 相关系数 Correlation coefficient | 拟合方程 Fitting equations | R2 | 相关系数 Correlation coefficient | ||
S | C∶N | y=0.0547x2-0.7449x+19.6670 | 0.482 | 0.685** | y=-0.0274x2+1.9452x-0.8634 | 0.613 | 0.782** |
C∶P | y=2.1837×10-5x2+0.1229x+8.9858 | 0.557 | 0.746** | y=-0.0008x2+0.3151x-1.0087 | 0.345 | 0.570** | |
N∶P | y=-0.4123x2+7.3034x-8.2235 | 0.130 | 0.336 | y=0.5943x2-11.0680x+72.2034 | 0.255 | -0.500** | |
H | C∶N | y=0.0016x2-0.0180x+2.6411 | 0.193 | 0.435* | y=0.0013x2-0.0250x+2.8493 | 0.327 | 0.566** |
C∶P | y=0.5741ln(x)+0.1307 | 0.379 | 0.615** | y=-2.8349×10-5x2+0.0117x+1.8732 | 0.247 | 0.484** | |
N∶P | y=-0.0323x2+0.5653x+0.4771 | 0.241 | 0.454* | y=0.0697x2-0.9999x+6.3859 | 0.095 | -0.203 |
1 | Harrison K A, Bardgett R D. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 2010, 98(2): 384-395. |
2 | Liu S, Zamanian K, Schleuss P M, et al. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agriculture Ecosystems & Environment, 2018, 252: 93-104. |
3 | Chen J Q, Zhang R, Hou Y C, et al. Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow. Chinese Journal of Plant Ecology, 2013, 37(11): 979-987. |
陈军强, 张蕊, 侯尧宸, 等. 亚高山草甸植物群落物种多样性与群落C、N、P生态化学计量的关系. 植物生态学报, 2013, 37(11): 979-987. | |
4 | Sardans J, Penuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology, 2012, 160(4): 1741-1761. |
5 | Ning Z Y, Li Y L, Yang H L, et al. Stoichiometry and effects of carbon, nitrogen, and phosphorus in soil of desertified grasslands on community productivity and species diversity. Acta Ecologica Sinica, 2019, 39(10): 3537-3546. |
宁志英, 李玉霖, 杨红玲, 等. 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响. 生态学报, 2019, 39(10): 3537-3546. | |
6 | Rajaniemi T K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 2002, 90(2): 316-324. |
7 | Li X P, Li J H, Liu Y G, et al. The vegetation and soil microorganism characteristics of different degraded grassland in Gannan Steppe. Acta Agrestia Sinica, 2020, 28(5): 1252-1259. |
李雪萍, 李建宏, 刘永刚, 等. 甘南草原不同退化草地植被和土壤微生物特性. 草地学报, 2020, 28(5): 1252-1259. | |
8 | Yang X X, Li M Q, He X D, et al. Effects of soil C∶N∶P ratio on species diversity of preliminary plant communities on sandy land. Acta Pedologica Sinica, 2019, 56(1): 242-249. |
杨祥祥, 李梦琦, 何兴东, 等. 沙地土壤C∶N∶P比对早期植物群落物种多样性的影响. 土壤学报, 2019, 56(1): 242-249. | |
9 | Zhao F Z, Kang D, Han X H, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 2015, 74: 415-422. |
10 | Liu W C, Fu S Y, Yan S J, et al. Responses of plant community to the linkages in plant-soil C∶N∶P stoichiometry during secondary succession of abandoned farmlands, China. Journal of Arid Land, 2020, 12(2): 215-226. |
11 | Nie Y Y, Chen J Q, Xin X P, et al. Responses of niche characteristics and species diversity of main plant populations to duration of enclosure in the Hulun Buir meadow steppe. Acta Prataculturae Sinica, 2021, 30(10): 15-25. |
聂莹莹, 陈金强, 辛晓平, 等. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应. 草业学报, 2021, 30(10): 15-25. | |
12 | Zhang Y, Dong S K, Gao Q Z, et al. Responses of alpine vegetation and soils to the disturbance of plateau pika (Ochotona curzoniae) at burrow level on the Qinghai-Tibetan Plateau of China. Ecological Engineering, 2016, 88: 232-236. |
13 | Dobson F S, Smith A T, Gao W X. Social and ecological influences on dispersal and philopatry in the plateau pika (Ochotona curzoniae). Behavioral Ecology, 1998, 9(6): 622-635. |
14 | Davidson A D, Detling J K, Brown J H. Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Frontiers in Ecology and the Environment, 2012, 10(9): 477-486. |
15 | Zhang W N, Wang Q, Zhang J, et al. Clipping by plateau pikas and impacts to plant community. Rangeland Ecology & Management, 2020, 73(3): 368-374. |
16 | Pang X P, Guo Z G. Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China. The Rangeland Journal, 2017, 39(2): 133-144. |
17 | Wang Q, Guo Z G, Pang X P, et al. Effects of small-herbivore disturbance on the clonal growth of two perennial graminoids in alpine meadows. Alpine Botany, 2020, 130(2): 115-127. |
18 | Sun F D, Chen W Y, Liu L, et al. Effects of plateau pika activities on seasonal plant biomass and soil properties in the alpine meadow ecosystems of the Tibetan Plateau. Grassland Science, 2015, 61(4): 195-203. |
19 | Xu H P, Yu C, Shu C C, et al. The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Prataculturae Sinica, 2019, 28(5): 90-99. |
徐海鹏, 于成, 舒朝成, 等. 高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响. 草业学报, 2019, 28(5): 90-99. | |
20 | Jin S H, Liu T, Pang X P, et al. Effects of plateau pika (Ochotona curzoniae) disturbances on plant species diversity and aboveground plant biomass in a Kobresia pygmaea meadow in the Qinghai Lake Region. Acta Prataculturae Sinica, 2017, 26(5): 29-39. |
金少红, 刘彤, 庞晓攀, 等. 高原鼠兔干扰对青海湖流域高山嵩草草甸植物多样性及地上生物量的影响. 草业学报, 2017, 26(5): 29-39. | |
21 | Song X Z, Mi M W D. Study on difference of plant community characteristics between Ochotona curzoniae disturbed and non disturbed in an alpine meadow ecosystem. Heilongjiang Agricultural Sciences, 2021(7): 28-34. |
宋璇紫, 米玛旺堆. 高寒草甸生态系统中高原鼠兔干扰与非干扰的植物群落特征差异研究. 黑龙江农业科学, 2021(7): 28-34. | |
22 | Wei X X, Guo Z G. Effect of plateau pika disturbance on plant aboveground biomass of alpine meadows at two different scales. Plants, 2022, 11(17) : 2266. |
23 | Li Q Q, Zhao X, Guo Z G. Effect of available burrow densities of plateau pika (Ochotona curzoniae) on leaf nitrogen and phosphorus stoichiometry of dominant plants and soil in alpine meadow. Acta Ecologica Sinica, 2014, 34(5): 1212-1223. |
李倩倩, 赵旭, 郭正刚. 高原鼠兔有效洞穴密度对高寒草甸优势植物叶片和土壤氮磷化学计量特征的影响. 生态学报, 2014, 34(5): 1212-1223. | |
24 | Pang X P, Yang H, Wei X X, et al. Effect of plateau pika (Ochotona curzoniae) bioturbation on soil C-N-P stoichiometry in alpine meadows. Geoderma, 2021, 397: 115098. |
25 | Chen J J, Yi S H, Qin Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma, 2017, 297: 1-9. |
26 | Bian J H, Jing Z C, Fan N C, et al. Influence of cover on habitat utilization of plateau pika (Ochotona curzoniae). Acta Theriologica Sinica, 1999, 19(3): 52-60. |
边疆晖, 景增春, 樊乃昌, 等. 地表覆盖物对高原鼠兔栖息地利用的影响. 兽类学报, 1999, 19(3): 52-60. | |
27 | Du J X, Sun Y, Xiang B, et al. Potential distribution of plateau pika and its influence factors in the source region of the Yellow River Basin using BIOMOD. Pratacultural Science, 2019, 36(4): 1074-1083. |
杜嘉星, 孙义, 向波, 等. 基于BIOMOD的黄河源区高原鼠兔潜在分布及其影响因子. 草业科学, 2019, 36(4): 1074-1083. | |
28 | Shi S L. Technical guide for lawn work. Beijing: Golden Shield Press, 2009: 65-71. |
师尚礼. 草地工作技术指南. 北京: 金盾出版社, 2009: 65-71. | |
29 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 228-264. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 228-264. | |
30 | Lara N, Sassi P, Borghi C E. Effect of herbivory and disturbances by tuco-tucos (Ctenomys mendocinus) on a plant community in the southern Puna desert. Arctic, Antarctic, and Alpine Research, 2007, 39(1): 110-116. |
31 | Qin Y, Yi S H, Ding Y J, et al. Effect of plateau pika disturbance and patchiness on ecosystem carbon emissions in alpine meadow in the northeastern part of Qinghai-Tibetan Plateau. Biogeosciences, 2019, 16(6): 1097-1109. |
32 | Smith A T, Foggin J M. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan Plateau. Animal Conservation, 1999, 2(4): 235-240. |
33 | Guo Z G, Wang G X, Shen Y Y, et al. Plant species diversity of grassland plant communities in permafrost regions of the northern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2004, 24(1): 149-155. |
郭正刚, 王根绪, 沈禹颖, 等. 青藏高原北部多年冻土区草地植物多样性. 生态学报, 2004, 24(1): 149-155. | |
34 | Yuan X, Qin W K, Chen Y, et al. Plateau pika offsets the positive effects of warming on soil organic carbon in an alpine swamp meadow on the Tibetan Plateau. Catena, 2021, 204: 105417. |
35 | Yu C, Jia T T, Pang X P, et al. Effects of plateau pika (Ochotona curzoniae) disturbing soil carbon and nitrogen distribution in alpine meadow. Acta Pedologica Sinica, 2016, 53(3): 768-778. |
于成, 贾婷婷, 庞晓攀, 等. 高原鼠兔干扰强度对高寒草甸土壤碳氮分布的影响. 土壤学报, 2016, 53(3): 768-778. | |
36 | Kirschbaum M U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 1995, 27(6): 753-760. |
37 | Yang D X, Song L, Jin G Z. The soil C∶N∶P stoichiometry is more sensitive than the leaf C∶N∶P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 2019, 442(1): 183-198. |
38 | Li Y C, Yu H L, Wang P, et al. Effects of precipitation on plant community diversity and C∶N∶P ecological stoichiometry in a desert steppe of Ningxia, Northwestern China. Chinese Journal of Grassland, 2020, 42(1): 117-126. |
李一春, 余海龙, 王攀, 等. 降水量对荒漠草原植物群落多样性和C∶N∶P生态化学计量特征的影响. 中国草地学报, 2020, 42(1): 117-126. | |
39 | Liu J J, Yin Y L, Li S X, et al. Effects of different regulation measures on vegetation and soil of moderately degraded alpine meadow. Acta Agrestia Sinica, 2021, 29(9): 2074-2080. |
刘晶晶, 尹亚丽, 李世雄, 等. 不同调控措施对中度退化高寒草甸植被及土壤理化性质的影响. 草地学报, 2021, 29(9): 2074-2080. | |
40 | Zhang X Y. Effects of disturbance on aboveground vegetation diversity and soil in tundra zone of Changbai Mountain. Changchun: Jilin University, 2021. |
张相昱. 人为干扰对长白山苔原带地上植物多样性和土壤的影响研究. 长春: 吉林大学, 2021. |
[1] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[2] | 哈雪, 张金青, 白方旭, 马祥荣, 王安琦, 马晖玲. 甘肃野生草地早熟禾种质种子产量相关性状分析及其对矿质元素利用效应评价[J]. 草业学报, 2023, 32(4): 54-67. |
[3] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[4] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[5] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[6] | 齐昊昊, 庞晓攀, 周俗, 郭正刚. 高原鼠兔刈割对青海湖流域高寒草甸植物种间关联的影响[J]. 草业学报, 2022, 31(8): 61-71. |
[7] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[8] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[9] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[10] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[11] | 段媛媛, 张静, 王玲玲, 刘彩凤, 王乙茉, 周俗, 郭正刚. 高原鼠兔对高寒草甸植物物种多样性和功能多样性关系的影响[J]. 草业学报, 2022, 31(11): 25-35. |
[12] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[13] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[14] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[15] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||