欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2023, Vol. 32 ›› Issue (6): 167-185.DOI: 10.11686/cyxb2022278

• 综合评述 • 上一篇    下一篇

草地草种遥感判别技术研究进展

黄梦鸽1,2(), 王新鸿1(), 马灵玲1, 叶学华3, 朱小华1, 孔维平1, 王宁1, 汪琪1, 欧阳光洲1, 郑青川4, 侯晓鑫4, 唐伶俐1   

  1. 1.中国科学院空天信息创新研究院,中国科学院定量遥感信息技术重点实验室,北京 100094
    2.中国科学院大学电子电气与通信工程学院,北京 100049
    3.中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093
    4.内蒙古北方重工业集团有限公司,内蒙古 包头 014033
  • 收稿日期:2022-06-28 修回日期:2022-09-19 出版日期:2023-06-20 发布日期:2023-04-21
  • 通讯作者: 王新鸿
  • 作者简介:Corresponding author. E-mail: xhwang@aoe.ac.cn
    黄梦鸽(1996-),女,河南洛阳人,在读硕士。E-mail: huangmengge20@mails.ucas.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项子课题(XDA26010203);内蒙古自治区科技重大专项(2021ZD0044)

Research progress on remote sensing discrimination techniques for grassland botanical species

Meng-ge HUANG1,2(), Xin-hong WANG1(), Ling-ling MA1, Xue-hua YE3, Xiao-hua ZHU1, Wei-ping KONG1, Ning WANG1, Qi WANG1, Guang-zhou OUYANG1, Qing-chuan ZHENG4, Xiao-xin HOU4, Ling-li TANG1   

  1. 1.Key Laboratory of Quantitative Remote Sensing Information Technology,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
    2.School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
    3.State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
    4.Inner Mongolia North Heavy Industries Group Co. ,Ltd. ,Baotou 014033,China
  • Received:2022-06-28 Revised:2022-09-19 Online:2023-06-20 Published:2023-04-21
  • Contact: Xin-hong WANG

摘要:

草地是促进区域经济发展的重要资源载体,也是中国陆地生态环境安全的重要生态屏障。遥感技术快速、高效、成本较低,是大范围草原监测的主流技术手段。利用遥感技术对草地草种进行判别是监测草地种群动态和群落更替的重要途径,有利于及时准确地发现草地生态环境的变化,为草地生态系统科学管理和生态文明建设提供重要参考。本研究围绕草地草种遥感判别问题,厘清草种判别技术流程,从草种判别主要遥感数据源的特点及其获取技术、重要的草种判别特征及其挖掘技术,以及目前常用的草种判别方法与模型等3个方面介绍了最新研究进展及技术难点。本研究认为,高光谱、激光雷达遥感及其融合技术在草种遥感判别中具有一定的应用前景,多维特征深度挖掘及互补特征有效结合可提升草种判别准确率。本研究指出了当前草种遥感判别技术存在的主要问题,对未来通过遥感技术实现草地草种的精确判别提出了展望,为全面了解草地草种遥感识别领域和深入开展草种判别研究提供了理论借鉴。

关键词: 遥感, 草种判别, 高光谱, 激光雷达, 特征挖掘, 判别模型

Abstract:

Grassland is an important resource bank for regional economic development and a crucial ecological reservoir for the security of China’s land-based ecological environment. Remote sensing technology is rapid, efficient, and low-cost, and therefore provides the mainstream technical means for large-scale grassland monitoring. The use of remote sensing technology to discriminate grassland species is an important way to monitor the population dynamics and botanical community succession in grassland. Such information is conducive to the timely and accurate detection of changes in the grassland ecological environment and provides an important reference for the scientific management of grassland ecosystems and the construction of an ecologically aware civilization. This study focuses on the problem of remote sensing discrimination of grassland species, clarifies the technical process of grassland species discrimination and introduces the latest research progress. Technical difficulties are covered from three perspectives: The characteristics of the main remote sensing data sources for grassland species discrimination and their acquisition techniques, important grassland species discrimination features and their mining techniques and the current commonly used grassland species discrimination methods and models. This study concludes that hyperspectral and LiDAR remote sensing and their fusion technologies have application prospects in the remote sensing discrimination of grassland species, and that the deep mining of multidimensional features and the effective combination of complementary features can improve the accuracy of grassland species discrimination. This study identifies the main problems of the current remote sensing discrimination technology for grassland species, and opens the prospect of the future precise discrimination of grassland species through remote sensing technology and thereby provides a theoretical reference for a thorough understanding of the field of remote sensing identification of grassland species and in-depth research on grassland species discrimination.

Key words: remote sensing, grass species discrimination, hyperspectral, LiDAR, feature mining, discriminative model