草业学报 ›› 2023, Vol. 32 ›› Issue (6): 16-29.DOI: 10.11686/cyxb2022291
孙玉1,2(), 杨永胜2(), 何琦1,2, 王军邦3, 张秀娟1(), 李慧婷4, 徐兴良3, 周华坤2, 张宇恒5
收稿日期:
2022-07-24
修回日期:
2022-09-15
出版日期:
2023-06-20
发布日期:
2023-04-21
通讯作者:
杨永胜,张秀娟
作者简介:
zxj510@yangtzeu.edu.cn基金资助:
Yu SUN1,2(), Yong-sheng YANG2(), Qi HE1,2, Jun-bang WANG3, Xiu-juan ZHANG1(), Hui-ting LI4, Xing-liang XU3, Hua-kun ZHOU2, Yu-heng ZHANG5
Received:
2022-07-24
Revised:
2022-09-15
Online:
2023-06-20
Published:
2023-04-21
Contact:
Yong-sheng YANG,Xiu-juan ZHANG
摘要:
土壤持水能力和土壤理化性质是衡量水源涵养功能的重要指标,掌握其变化特征对高寒草甸的生态保护和修复具有重要意义。本研究选择三江源区的果洛藏族自治州玛沁县作为实验区,通过野外调查和室内实验相结合的方法,分析了不同退化程度对高寒草甸土壤持水能力、理化性质影响及两者的相关性。研究结果表明:1) 高寒草甸0~10 cm土层内随退化程度的加剧饱和持水量、毛管持水量、田间持水量呈下降趋势,退化程度对表层0~5 cm土壤的持水能力的影响最为显著,与原生植被相比,重度退化样地0~5 cm土层的饱和持水量、毛管持水量和田间持水量分别显著降低51.99%、56.28%、59.93%(P<0.05)。2)随退化程度的加剧,高寒草甸0~5 cm土壤全氮、全磷、全碳逐渐下降,全钾无显著变化,与原生植被相比,重度退化样地0~5 cm土层的全碳、全氮、全磷分别显著降低41.95%、65.88%、21.82%(P<0.05) ;在0~10 cm的土层内土壤有机碳、总孔隙度呈下降趋势,土壤pH、容重呈显著增加的趋势。3)通过冗余分析得出,饱和持水量、毛管持水量、田间持水量与土壤全氮、毛管孔隙度呈显著相关关系(P<0.05),其中,与毛管孔隙度呈极显著正相关关系(P<0.01);饱和持水量、毛管持水量、田间持水量与土壤容重、pH呈极显著负相关关系(P<0.01);毛管孔隙度、土壤全钾与田间持水量无相关关系,两者是决定饱和导水率的因素。说明高寒草甸退化对表层土壤的影响最为显著,加强表层土壤的保护是维持水源涵养功能的关键所在。
孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29.
Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region[J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29.
退化程度 Degradation degree | 总盖度 Total coverage of vegetation (%) | 平均高度 Average height of vegetation (cm) | 物种数 Species of vegetation(NO.) | 优势物种 Dominant species |
---|---|---|---|---|
原生植被Native vegetation | 97.40±0.51 | 11.96±0.87 | 42 | 紫花针茅 Stipa purpurea, 早熟禾 Poa annua |
轻度退化Light degradation | 76.20±0.97 | 3.20±0.44 | 35 | 紫花针茅 S. purpurea, 早熟禾 P. annua |
中度退化Moderate degradation | 63.60±1.21 | 3.40±0.48 | 33 | 珠芽蓼 Polygonum viviparum, 紫花针茅 S. purpurea |
重度退化Severe degradation | 1.00±3.25 | 2.60±0.60 | 22 | 西伯利亚蓼 Polygonum sibiricum, 细叶亚菊 Ajania tenuifolia |
表1 研究区不同退化程度的植被特征
Table 1 Vegetation characteristics of different degradation plots in research region
退化程度 Degradation degree | 总盖度 Total coverage of vegetation (%) | 平均高度 Average height of vegetation (cm) | 物种数 Species of vegetation(NO.) | 优势物种 Dominant species |
---|---|---|---|---|
原生植被Native vegetation | 97.40±0.51 | 11.96±0.87 | 42 | 紫花针茅 Stipa purpurea, 早熟禾 Poa annua |
轻度退化Light degradation | 76.20±0.97 | 3.20±0.44 | 35 | 紫花针茅 S. purpurea, 早熟禾 P. annua |
中度退化Moderate degradation | 63.60±1.21 | 3.40±0.48 | 33 | 珠芽蓼 Polygonum viviparum, 紫花针茅 S. purpurea |
重度退化Severe degradation | 1.00±3.25 | 2.60±0.60 | 22 | 西伯利亚蓼 Polygonum sibiricum, 细叶亚菊 Ajania tenuifolia |
土壤深度 Soil depth (cm) | 退化程度 Degradation degree | 饱和持水量 Saturated water capacity (%) | 毛管持水量 Capillary water holding capacity (%) | 田间持水量 Field capacity (%) |
---|---|---|---|---|
0~5 | 原生植被Native vegetation | 84.52±6.09a | 78.31±5.16a | 67.80±3.42a |
轻度退化Light degradation | 68.60±7.34ab | 61.36±5.48b | 58.51±5.25a | |
中度退化Moderate degradation | 57.27±5.26b | 48.19±3.36c | 41.08±2.02b | |
重度退化Severe degradation | 40.58±2.09c | 34.24±1.16d | 27.17±0.66c | |
5~10 | 原生植被Native vegetation | 46.87±2.05a | 44.07±1.74a | 37.12±1.39a |
轻度退化Light degradation | 42.78±2.55a | 39.37±2.16ab | 35.10±2.51a | |
中度退化Moderate degradation | 41.29±6.07a | 37.68±5.42ab | 32.90±4.93ab | |
重度退化Severe degradation | 37.20±0.50a | 33.09±0.88b | 25.13±0.72b | |
10~20 | 原生植被Native vegetation | 44.50±2.19a | 41.98±2.08a | 34.36±1.29a |
轻度退化Light degradation | 40.82±4.84a | 40.56±3.25a | 30.84±0.65ab | |
中度退化Moderate degradation | 39.74±1.55a | 37.11±1.97a | 29.68±1.80b | |
重度退化Severe degradation | 41.93±2.88a | 37.09±1.60a | 25.07±0.80c | |
20~30 | 原生植被Native vegetation | 39.17±2.62ab | 37.21±2.73ab | 32.56±1.96a |
轻度退化Light degradation | 42.70±1.46a | 38.48±0.86a | 31.07±0.93a | |
中度退化Moderate degradation | 35.66±1.33b | 32.42±1.27b | 27.10±0.92b | |
重度退化Severe degradation | 39.62±2.05ab | 35.04±1.83ab | 24.00±0.91b | |
30~50 | 原生植被Native vegetation | 34.74±3.14a | 31.33±2.72a | 27.40±0.63a |
轻度退化Light degradation | 37.75±0.80a | 30.52±3.58a | 27.28±0.46a | |
中度退化Moderate degradation | 35.40±3.34a | 31.63±2.76a | 26.50±2.32a | |
重度退化Severe degradation | 41.75±1.68a | 36.76±1.50a | 24.82±0.95a |
表2 不同退化程度高寒草甸土壤持水能力的变化
Table 2 Changes of soil water holding capacity of alpine meadow with different degradation degrees
土壤深度 Soil depth (cm) | 退化程度 Degradation degree | 饱和持水量 Saturated water capacity (%) | 毛管持水量 Capillary water holding capacity (%) | 田间持水量 Field capacity (%) |
---|---|---|---|---|
0~5 | 原生植被Native vegetation | 84.52±6.09a | 78.31±5.16a | 67.80±3.42a |
轻度退化Light degradation | 68.60±7.34ab | 61.36±5.48b | 58.51±5.25a | |
中度退化Moderate degradation | 57.27±5.26b | 48.19±3.36c | 41.08±2.02b | |
重度退化Severe degradation | 40.58±2.09c | 34.24±1.16d | 27.17±0.66c | |
5~10 | 原生植被Native vegetation | 46.87±2.05a | 44.07±1.74a | 37.12±1.39a |
轻度退化Light degradation | 42.78±2.55a | 39.37±2.16ab | 35.10±2.51a | |
中度退化Moderate degradation | 41.29±6.07a | 37.68±5.42ab | 32.90±4.93ab | |
重度退化Severe degradation | 37.20±0.50a | 33.09±0.88b | 25.13±0.72b | |
10~20 | 原生植被Native vegetation | 44.50±2.19a | 41.98±2.08a | 34.36±1.29a |
轻度退化Light degradation | 40.82±4.84a | 40.56±3.25a | 30.84±0.65ab | |
中度退化Moderate degradation | 39.74±1.55a | 37.11±1.97a | 29.68±1.80b | |
重度退化Severe degradation | 41.93±2.88a | 37.09±1.60a | 25.07±0.80c | |
20~30 | 原生植被Native vegetation | 39.17±2.62ab | 37.21±2.73ab | 32.56±1.96a |
轻度退化Light degradation | 42.70±1.46a | 38.48±0.86a | 31.07±0.93a | |
中度退化Moderate degradation | 35.66±1.33b | 32.42±1.27b | 27.10±0.92b | |
重度退化Severe degradation | 39.62±2.05ab | 35.04±1.83ab | 24.00±0.91b | |
30~50 | 原生植被Native vegetation | 34.74±3.14a | 31.33±2.72a | 27.40±0.63a |
轻度退化Light degradation | 37.75±0.80a | 30.52±3.58a | 27.28±0.46a | |
中度退化Moderate degradation | 35.40±3.34a | 31.63±2.76a | 26.50±2.32a | |
重度退化Severe degradation | 41.75±1.68a | 36.76±1.50a | 24.82±0.95a |
图2 不同退化草甸的土壤容重不同小写字母表示同一指标不同退化程度间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among different degrees of degradation for the same index at P<0.05 level. The same below.
Fig.2 Soil bulk density of different degraded meadows
图3 不同退化草甸的土壤非毛管孔隙度(A)、毛管孔隙度(B)和总孔隙度(C)
Fig. 3 Soil porosity of different degraded meadows non-capillary porosity (A), capillary porosity (B) and total porosity (C)
土壤深度 Soil depth (cm) | 退化程度 Degradation degree | 全碳 Total carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|
0~5 | 原生植被Native vegetation | 61.22±7.16a | 4.25±0.19a | 0.55±0.02a | 20.20±0.20a |
轻度退化Light degradation | 59.53±6.39a | 3.00±0.17b | 0.49±0.05ab | 20.60±0.81a | |
中度退化Moderate degradation | 39.72±4.12b | 2.39±0.26c | 0.45±0.02ab | 21.60±0.87a | |
重度退化Severe degradation | 35.54±1.83b | 1.45±0.09d | 0.43±0.04b | 19.60±0.51a | |
5~10 | 原生植被Native vegetation | 40.85±4.77a | 2.42±0.09b | 0.44±0.01a | 20.80±0.20ab |
轻度退化Light degradation | 42.31±0.74a | 2.94±0.04a | 0.43±0.02a | 21.00±0.32ab | |
中度退化Moderate degradation | 30.63±5.08a | 2.09±0.28b | 0.38±0.02a | 21.60±0.68a | |
重度退化Severe degradation | 29.33±7.20a | 1.47±0.08c | 0.40±0.03a | 20.20±0.20b | |
10~20 | 原生植被Native vegetation | 33.53±7.56a | 1.89±0.08ab | 0.53±0.12a | 20.60±0.24a |
轻度退化Light degradation | 36.75±1.34a | 2.20±0.30a | 0.40±0.02a | 21.00±0.63a | |
中度退化Moderate degradation | 34.53±5.54a | 1.55±0.13bc | 0.40±0.02a | 21.40±0.40a | |
重度退化Severe degradation | 27.56±7.75a | 1.28±0.16c | 0.42±0.02a | 21.00±0.55a | |
20~30 | 原生植被Native vegetation | 27.78±7.22a | 1.52±0.08a | 0.44±0.02a | 20.75±0.48a |
轻度退化Light degradation | 34.05±1.38a | 1.51±0.44a | 0.38±0.03a | 20.80±0.37a | |
中度退化Moderate degradation | 25.67±1.09a | 1.12±0.11a | 0.47±0.06a | 21.00±0.32a | |
重度退化Severe degradation | 28.70±1.11a | 1.11±0.14a | 0.46±0.03a | 21.40±1.40a | |
30~50 | 原生植被Native vegetation | 45.61±26.33a | 0.84±0.10a | 0.46±0.02a | 20.25±0.75a |
轻度退化Light degradation | 33.55±2.06b | 0.64±0.16a | 0.39±0.03a | 20.40±0.68a | |
中度退化Moderate degradation | 33.13±4.38b | 0.62±0.11a | 0.46±0.05a | 21.80±0.92a | |
重度退化Severe degradation | 19.10±2.55b | 0.54±0.05a | 0.45±0.03a | 22.40±2.68a |
表3 不同退化程度高寒草甸土壤全量养分含量的变化
Table 3 Changes of soil total nutrient contents in alpine meadow with different degradation
土壤深度 Soil depth (cm) | 退化程度 Degradation degree | 全碳 Total carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|
0~5 | 原生植被Native vegetation | 61.22±7.16a | 4.25±0.19a | 0.55±0.02a | 20.20±0.20a |
轻度退化Light degradation | 59.53±6.39a | 3.00±0.17b | 0.49±0.05ab | 20.60±0.81a | |
中度退化Moderate degradation | 39.72±4.12b | 2.39±0.26c | 0.45±0.02ab | 21.60±0.87a | |
重度退化Severe degradation | 35.54±1.83b | 1.45±0.09d | 0.43±0.04b | 19.60±0.51a | |
5~10 | 原生植被Native vegetation | 40.85±4.77a | 2.42±0.09b | 0.44±0.01a | 20.80±0.20ab |
轻度退化Light degradation | 42.31±0.74a | 2.94±0.04a | 0.43±0.02a | 21.00±0.32ab | |
中度退化Moderate degradation | 30.63±5.08a | 2.09±0.28b | 0.38±0.02a | 21.60±0.68a | |
重度退化Severe degradation | 29.33±7.20a | 1.47±0.08c | 0.40±0.03a | 20.20±0.20b | |
10~20 | 原生植被Native vegetation | 33.53±7.56a | 1.89±0.08ab | 0.53±0.12a | 20.60±0.24a |
轻度退化Light degradation | 36.75±1.34a | 2.20±0.30a | 0.40±0.02a | 21.00±0.63a | |
中度退化Moderate degradation | 34.53±5.54a | 1.55±0.13bc | 0.40±0.02a | 21.40±0.40a | |
重度退化Severe degradation | 27.56±7.75a | 1.28±0.16c | 0.42±0.02a | 21.00±0.55a | |
20~30 | 原生植被Native vegetation | 27.78±7.22a | 1.52±0.08a | 0.44±0.02a | 20.75±0.48a |
轻度退化Light degradation | 34.05±1.38a | 1.51±0.44a | 0.38±0.03a | 20.80±0.37a | |
中度退化Moderate degradation | 25.67±1.09a | 1.12±0.11a | 0.47±0.06a | 21.00±0.32a | |
重度退化Severe degradation | 28.70±1.11a | 1.11±0.14a | 0.46±0.03a | 21.40±1.40a | |
30~50 | 原生植被Native vegetation | 45.61±26.33a | 0.84±0.10a | 0.46±0.02a | 20.25±0.75a |
轻度退化Light degradation | 33.55±2.06b | 0.64±0.16a | 0.39±0.03a | 20.40±0.68a | |
中度退化Moderate degradation | 33.13±4.38b | 0.62±0.11a | 0.46±0.05a | 21.80±0.92a | |
重度退化Severe degradation | 19.10±2.55b | 0.54±0.05a | 0.45±0.03a | 22.40±2.68a |
图5 土壤理化性质与土壤持水能力的RDA分析NV:原生植被Native vegetation;LD:轻度退化Light degradation;MD:中度退化Moderate degradation;SD:重度退化Severe degradation;SWC:饱和持水量Saturated water capacity;CWC:毛管持水量Capillary water holding capacity;FC:田间持水量Field capacity; BD:容重Bulk density;CP:毛管孔隙度Capillary porosity; NCP:非毛管孔隙度Non-capillary porosity; TP:总孔隙度Total porosity;STC:土壤全碳Soil total carbon;STN:土壤全氮Soil total nitrogen;STP:土壤全磷Soil total phosphorus;STK:土壤全钾Soil total potassium;SOC: 土壤有机碳Soil organic carbon;SAN:土壤铵态氮Soil ammonium nitrogen;pH: pH值 pH value.
Fig.5 The RDA analysis of soil physical and chemical properties and soil water-holding capacity
土壤理化因子 Soil physicochemical factors | 解释 Explains (%) | 贡献 Contribution (%) | Pseudo-F | P | 土壤理化因子 Soil physicochemical factors | 解释 Explains (%) | 贡献 Contribution (%) | Pseudo-F | P |
---|---|---|---|---|---|---|---|---|---|
容重Soil bulk density | 69.5 | 72.3 | 41.0 | 0.002** | 土壤全钾Soil total potassium | 1.4 | 1.5 | 1.9 | 0.166 |
毛管孔隙度Capillary porosity | 11.2 | 11.7 | 9.9 | 0.008** | 土壤全磷Soil total phosphorus | 1.2 | 1.2 | 2.5 | 0.070 |
pH | 5.2 | 5.5 | 5.9 | 0.018* | 总孔隙度Total porosity | 0.6 | 0.6 | 1.3 | 0.272 |
土壤全氮Soil total nitrogen | 2.3 | 2.4 | 4.3 | 0.040* | 土壤全碳Soil total carbon | 0.4 | 0.5 | 1.0 | 0.368 |
土壤有机碳Soil organic carbon | 2.0 | 2.1 | 3.0 | 0.084 | 非毛管孔隙度Non-capillary porosity | 0.2 | 0.2 | 0.3 | 0.762 |
土壤铵态氮Soil ammonium nitrogen | 2.0 | 2.1 | 2.5 | 0.116 |
表4 土壤理化性质与土壤水力性质的冗余分析(RDA)排序及蒙特卡洛置换检验
Table 4 Redundancy analysis (RDA) sequencing of soil physicochemical properties and soil water holding capacity and Monte- Carlo permutation test
土壤理化因子 Soil physicochemical factors | 解释 Explains (%) | 贡献 Contribution (%) | Pseudo-F | P | 土壤理化因子 Soil physicochemical factors | 解释 Explains (%) | 贡献 Contribution (%) | Pseudo-F | P |
---|---|---|---|---|---|---|---|---|---|
容重Soil bulk density | 69.5 | 72.3 | 41.0 | 0.002** | 土壤全钾Soil total potassium | 1.4 | 1.5 | 1.9 | 0.166 |
毛管孔隙度Capillary porosity | 11.2 | 11.7 | 9.9 | 0.008** | 土壤全磷Soil total phosphorus | 1.2 | 1.2 | 2.5 | 0.070 |
pH | 5.2 | 5.5 | 5.9 | 0.018* | 总孔隙度Total porosity | 0.6 | 0.6 | 1.3 | 0.272 |
土壤全氮Soil total nitrogen | 2.3 | 2.4 | 4.3 | 0.040* | 土壤全碳Soil total carbon | 0.4 | 0.5 | 1.0 | 0.368 |
土壤有机碳Soil organic carbon | 2.0 | 2.1 | 3.0 | 0.084 | 非毛管孔隙度Non-capillary porosity | 0.2 | 0.2 | 0.3 | 0.762 |
土壤铵态氮Soil ammonium nitrogen | 2.0 | 2.1 | 2.5 | 0.116 |
退化程度 Degradation degree | 土壤持水能力 Soil water-holding capacity | 容重 Soil bulk density | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 非毛管孔隙度 Non-capillary porosity | 土壤有机碳 Soil organic carbon | 土壤铵态氮 Soil ammonium nitrogen |
---|---|---|---|---|---|---|---|
原生植被 Native vegetation | SWC | -0.996** | 0.977** | 0.885* | 0.410 | -0.955* | 0.344 |
CWHC | -0.989** | 0.980** | 0.907* | 0.356 | -0.935* | 0.397 | |
FC | -0.945* | 0.996** | 0.941* | 0.332 | -0.894* | 0.278 | |
轻度退化 Light degradation | SWC | -0.997** | 0.909* | 0.249 | 0.634 | 0.696 | 0.640 |
CWHC | -0.946* | 0.995** | 0.581 | 0.312 | 0.472 | 0.489 | |
FC | -0.824 | 0.774 | 0.423 | 0.278 | 0.732 | 0.461 | |
中度退化 Moderate degradation | SWC | -0.859 | 0.883* | 0.533 | 0.960** | -0.203 | -0.909* |
CWHC | -0.828 | 0.901* | 0.603 | 0.916* | -0.096 | -0.882* | |
FC | -0.454 | 0.963** | 0.873 | 0.732 | 0.242 | -0.505 | |
重度退化 Severe degradation | SWC | -0.879* | 0.955* | 0.710 | 0.861 | 0.945* | -0.341 |
CWHC | -0.961** | 0.745 | 0.875 | 0.526 | 0.814 | -0.453 | |
FC | -0.658 | 0.808 | 0.327 | 0.851 | 0.721 | 0.168 | |
退化程度 Degradation degree | 土壤持水能力 Soil water-holding capacity | 土壤全碳 Soil total carbon | 土壤全氮 Soil total nitrogen | 土壤全磷 Soil total phosphorus | 土壤全钾 Soil total potassium | pH | |
原生植被 Native vegetation | SWC | -0.955* | -0.913* | 0.567 | 0.632 | 0.760 | |
CWHC | -0.935* | -0.921* | 0.517 | 0.660 | 0.726 | ||
FC | -0.893* | -0.983** | 0.566 | 0.462 | 0.748 | ||
轻度退化 Light degradation | SWC | 0.701 | 0.572 | 0.873 | -0.295 | -0.423 | |
CWHC | 0.477 | 0.672 | 0.851 | 0.048 | -0.317 | ||
FC | 0.733 | 0.958* | 0.979** | -0.151 | -0.759 | ||
中度退化 Moderate degradation | SWC | -0.213 | 0.044 | -0.044 | 0.541 | -0.385 | |
CWHC | -0.106 | -0.011 | -0.158 | 0.622 | -0.341 | ||
FC | 0.237 | 0.356 | -0.095 | 0.381 | -0.634 | ||
重度退化 Severe degradation | SWC | 0.946* | -0.346 | -0.913* | 0.030 | 0.970** | |
CWHC | 0.820 | 0.019 | -0.803 | -0.204 | 0.946* | ||
FC | 0.726 | -0.739 | -0.690 | 0.555 | 0.697 |
表5 土壤持水量与土壤理化性质的皮尔逊相关系数
Table 5 Pearson correlation coefficients between soil water-holding capacity and soil physicochemical properties
退化程度 Degradation degree | 土壤持水能力 Soil water-holding capacity | 容重 Soil bulk density | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 非毛管孔隙度 Non-capillary porosity | 土壤有机碳 Soil organic carbon | 土壤铵态氮 Soil ammonium nitrogen |
---|---|---|---|---|---|---|---|
原生植被 Native vegetation | SWC | -0.996** | 0.977** | 0.885* | 0.410 | -0.955* | 0.344 |
CWHC | -0.989** | 0.980** | 0.907* | 0.356 | -0.935* | 0.397 | |
FC | -0.945* | 0.996** | 0.941* | 0.332 | -0.894* | 0.278 | |
轻度退化 Light degradation | SWC | -0.997** | 0.909* | 0.249 | 0.634 | 0.696 | 0.640 |
CWHC | -0.946* | 0.995** | 0.581 | 0.312 | 0.472 | 0.489 | |
FC | -0.824 | 0.774 | 0.423 | 0.278 | 0.732 | 0.461 | |
中度退化 Moderate degradation | SWC | -0.859 | 0.883* | 0.533 | 0.960** | -0.203 | -0.909* |
CWHC | -0.828 | 0.901* | 0.603 | 0.916* | -0.096 | -0.882* | |
FC | -0.454 | 0.963** | 0.873 | 0.732 | 0.242 | -0.505 | |
重度退化 Severe degradation | SWC | -0.879* | 0.955* | 0.710 | 0.861 | 0.945* | -0.341 |
CWHC | -0.961** | 0.745 | 0.875 | 0.526 | 0.814 | -0.453 | |
FC | -0.658 | 0.808 | 0.327 | 0.851 | 0.721 | 0.168 | |
退化程度 Degradation degree | 土壤持水能力 Soil water-holding capacity | 土壤全碳 Soil total carbon | 土壤全氮 Soil total nitrogen | 土壤全磷 Soil total phosphorus | 土壤全钾 Soil total potassium | pH | |
原生植被 Native vegetation | SWC | -0.955* | -0.913* | 0.567 | 0.632 | 0.760 | |
CWHC | -0.935* | -0.921* | 0.517 | 0.660 | 0.726 | ||
FC | -0.893* | -0.983** | 0.566 | 0.462 | 0.748 | ||
轻度退化 Light degradation | SWC | 0.701 | 0.572 | 0.873 | -0.295 | -0.423 | |
CWHC | 0.477 | 0.672 | 0.851 | 0.048 | -0.317 | ||
FC | 0.733 | 0.958* | 0.979** | -0.151 | -0.759 | ||
中度退化 Moderate degradation | SWC | -0.213 | 0.044 | -0.044 | 0.541 | -0.385 | |
CWHC | -0.106 | -0.011 | -0.158 | 0.622 | -0.341 | ||
FC | 0.237 | 0.356 | -0.095 | 0.381 | -0.634 | ||
重度退化 Severe degradation | SWC | 0.946* | -0.346 | -0.913* | 0.030 | 0.970** | |
CWHC | 0.820 | 0.019 | -0.803 | -0.204 | 0.946* | ||
FC | 0.726 | -0.739 | -0.690 | 0.555 | 0.697 |
1 | Wang G X, Cheng G D. Characteristics of grassland and ecological changes of vegetations in the source regions of Yangtze and Yellow rivers. Journal of Desert Research, 2001, 21(2): 101-107. |
王根绪, 程国栋. 江河源区的草地资源特征与草地生态变化. 中国沙漠, 2001, 21(2): 101-107. | |
2 | Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 2012, 67(1): 3-12. |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. | |
3 | Li C Y, Lai C M, Peng F, et al. Alpine meadows at different stages of degradation in the Beiluhe Basin of the Qinghai-Tibet Plateau: Productivity and community structure characteristics. Pratacultural Science, 2019, 36(4): 1044-1052. |
李成阳, 赖炽敏, 彭飞, 等. 青藏高原北麓河流域不同退化程度高寒草甸生产力和群落结构特征. 草业科学, 2019, 36(4): 1044-1052. | |
4 | Gao Z Y, Wang Y B, Liu G H, et al. Response of soil moisture within the permafrost active layer to different alpine ecosystems. Journal of Glaciology and Geocryology, 2014, 36(4): 1002-1010. |
高泽永, 王一博, 刘国华, 等. 多年冻土区活动层土壤水分对不同高寒生态系统的响应. 冰川冻土, 2014, 36(4): 1002-1010. | |
5 | Li L, He H D, Wei Y X, et al. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in returning farmland to grassland plots, in the agro-pastoral transitional zone in the Three River Source Region. Pratacultural Science, 2017, 34(10): 1999-2008. |
李令, 贺慧丹, 未亚西, 等. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应. 草业科学, 2017, 34(10): 1999-2008. | |
6 | Costanza R, D’arge R, Groot R D, et al. The value of the world’s ecosystem services and natural capital. Ecological Economics, 1997, 25(1): 3-15. |
7 | Luo Y Y, Meng Q T, Zhang J H, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. |
罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. | |
8 | Wang C T, Long R J, Wang Q L, et al. Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation. Land Degradation & Development, 2009(20): 187-198. |
9 | Peng F, Xue X, Li C. Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation. Science of the Total Environment, 2020, 733: 139048. |
10 | Wei X, Wu P. Responses of soil insect communities to alpine wetland degradation on the eastern Qinghai-Tibetan Plateau, China. European Journal of Soil Biology, 2021, 103: 103276. |
11 | Wu P, Zhang H, Wang Y. The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China. Applied Soil Ecology, 2015, 90: 60-67. |
12 | Ma Y, Zhang D G, Zhou H, et al. Effects of alpine meadow degradation on microbial biomass and enzyme activities in rhizosphere soil of dominant species. Grassland and Turf, 2019, 39(4): 44-52. |
马源, 张德罡, 周恒, 等. 高寒草甸退化对优势物种根际土壤微生物量及酶活性的影响. 草原与草坪, 2019, 39(4): 44-52. | |
13 | Li L, Li Y K, Zhang F W, et al. Principal component analysis on alpine Kobresia humilis meadow degradation succession in Qinghai-Tibetan Plateau. Chinese Journal of Grassland, 2012, 34(1): 24-30. |
林丽, 李以康, 张法伟, 等. 青藏高原高寒矮嵩草草甸退化演替主成分分析. 中国草地学报, 2012, 34(1): 24-30. | |
14 | Chen M F, Zeng H, Wang J. Research progress in the ecological characteristics of soil water in alpine grasslands on the Qinghai-Tibetan Plateau. Chinese Journal of Grassland, 2015, 37(2): 94-101. |
陈玫妃, 曾辉, 王钧. 青藏高原高寒草地土壤水分生态特征研究现状. 中国草地学报, 2015, 37(2): 94-101. | |
15 | Li Y K, Han F, Ran F, et al. Effect of typical alpine meadow degradation on soil enzyme and soil nutrient in Source Region of Three Rivers. Chinese Journal of Grassland, 2008, 30(4): 51-58. |
李以康, 韩发, 冉飞, 等. 三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究. 中国草地学报, 2008, 30(4): 51-58. | |
16 | Yu J L, Shi H X. Changes of microbes population in the different degraded alpine meadows on the Qinghai-Tibetan Plateau. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(11): 77-81. |
于健龙, 石红霄. 高寒草甸不同退化程度土壤微生物数量变化及影响因子. 西北农业学报, 2011, 20(11): 77-81. | |
17 | She Y D, Yang X Y, Ma L, et al. Study on the characteristics and interrelationship of plant community and soil in degraded alpine meadow. Acta Agrestia Sinica, 2021(S1): 62-71. |
佘延娣, 杨晓渊, 马丽, 等. 退化高寒草甸植物群落和土壤特征及其相互关系研究. 草地学报, 2021(S1): 62-71. | |
18 | Han Y L, Chen K L, Wang S P. Study on carbon stack of alpine grassland in the Source Regions of the Yellow River-In case of Guoluo Tibetan Autonomous Prefecture in Qinghai Province. Territory & Natural Resources Study, 2010(5): 93-94. |
韩艳莉, 陈克龙, 汪诗平. 黄河源区高寒草地植被碳储量研究——以果洛藏族自治州为例. 国土与自然资源研究, 2010(5): 93-94. | |
19 | Gao J L, Meng B P, Yang S X, et al. Estimation of nitrogen content of alpine grassland in Maqin and Guinan Counties, Qinghai Province, using remote sensing. Acta Prataculturae Sinica, 2016, 25(10): 11-20. |
高金龙, 孟宝平, 杨淑霞, 等. 基于HJ-1A卫星数据的高寒草地氮素评估——以青海省贵南县及玛沁县高寒草地为例. 草业学报, 2016, 25(10): 11-20. | |
20 | Zhao X Q. Restoration and sustainable management of degraded grassland ecosystems in the Sanjiangyuan Region. Beijing: Science Press, 2010. |
赵新全. 三江源区退化草地生态系统恢复与可持续管理. 北京: 科学出版社, 2010. | |
21 | Yin X, Li D M, Li Y, et al. Effects of shrub encroachment on soil hydraulic properties in alpine meadow. Journal of Soil and Water Conservation, 2022, 36(5): 121-129. |
尹霞, 李冬梅, 李易, 等. 灌丛化对高寒草甸土壤水力性质的影响. 水土保持学报, 2022, 36(5): 121-129. | |
22 | Zha T G. Soil physical and chemical property analysis. Beijing: China Forestry Press, 2017. |
查同刚. 土壤理化性质分析. 北京: 中国林业出版社, 2017. | |
23 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
24 | Li Y J, Liu J, Xu C L, et al. Effect of different grassland degradation levels on inorganic nitrogen and urease activity in alpine meadow soils. Acta Prataculturae Sinica, 2018, 27(10): 45-53. |
李亚娟, 刘静, 徐长林, 等. 不同退化程度对高寒草甸土壤无机氮及脲酶活性的影响. 草业学报, 2018, 27(10): 45-53. | |
25 | Wang Z W, Huang L M, Shao M A, et al. Soil water holding capacity under different land use patterns in the Qinghai alpine region. Arid Zone Research, 2021, 38(6): 1722-1730. |
王紫薇, 黄来明, 邵明安, 等. 青海高寒区不同土地利用方式下土壤持水能力及影响因素. 干旱区研究, 2021, 38(6): 1722-1730. | |
26 | Yi X S, Li G S, Li K, et al. Effect of grassland vegetation degradation on soil water holding capacity in the headwaters area of Yangtze River. Resources and Environment in the Yangtze Basin, 2018, 27(4): 907-918. |
易湘生, 李国胜, 李阔, 等. 长江源区草地植被退化对土壤持水能力影响. 长江流域资源与环境, 2018, 27(4): 907-918. | |
27 | Li X L. A preliminary study on the biodiversity and community characteristics of alpine meadow grassland and its degradation product, the “black soil bank”. Pratacultural Science, 1996, 13(2): 21-23. |
李希来. 高寒草甸草地与其退化产物——“黑土滩”生物多样性和群落特征的初步研究. 草业科学, 1996, 13(2): 21-23. | |
28 | Wang Y B, Wang G X, Zhang C M, et al. Response of soil physicochemical properties to the changes of the vegetation ecosystem on the Tibetan Plateau. Journal of Glaciology and Geocryology, 2007(6): 921-927. |
王一博, 王根绪, 张春敏, 等. 高寒植被生态系统变化对土壤物理化学性状的影响. 冰川冻土, 2007(6): 921-927. | |
29 | Yue G Y, Zhao L, Wang Z W, et al. Relationship between alpine meadow root distribution and active layer temperature variation in permafrost areas. Journal of Glaciology and Geocryology, 2015, 37(5): 1381-1387. |
岳广阳, 赵林, 王志伟, 等. 多年冻土区高寒草甸根系分布与活动层温度变化特征的关系. 冰川冻土, 2015, 37(5): 1381-1387. | |
30 | Zhang Y H, Zhang L, Zhang X J, et al. Effects of degradation degree on plant communities and soil water holding capacity of Maqin alpine meadow. Pratacultural Science, 2022, 39(2): 235-246. |
张宇恒, 张莉, 张秀娟, 等. 退化程度对玛沁高寒草甸植物群落及土壤持水能力的影响. 草业科学, 2022, 39(2): 235-246. | |
31 | Cai X B, Zhang Y Q, Shao W. Degradation and mechanism of grassland of North Tibet alpine prairie. Soils, 2007, 39(6): 855-858. |
蔡晓布, 张永青, 邵伟. 藏北高寒草原草地退化及其驱动力分析. 土壤, 2007, 39(6): 855-858. | |
32 | Zhang F W, Li H Q, Yi L B, et al. Spatial response of topsoil organic carbon, total nitrogen, and total phosphor content of alpine meadows to grassland degradation in the Sanjiangyuan National Park. Acta Ecologica Sinica, 2022, 42(14): 5586-5592. |
张法伟, 李红琴, 仪律北, 等. 草地退化对三江源国家公园高寒草甸表层土壤有机碳、全氮、全磷的空间驱动研究. 生态学报, 2022, 42(14): 5586-5592. | |
33 | Shao J X, Liu Y H, Ma H, et al. Meta-analysis of physical and chemical properties of shallow soils in degraded alpine grasslands. Acta Agrestia Sinica, 2022, 30(6): 1-15. |
邵建翔, 刘育红, 马辉, 等. 退化高寒草地浅层土壤理化性质Meta分析. 草地学报, 2022, 30(6): 1-15. | |
34 | He Y L. Changes of biomass and soil nutrients in the differently degraded alpine Salix paraqplesia shrub meadows. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(7): 184-190. |
贺有龙. 不同退化程度高寒灌丛草甸植物量及土壤养分的变化. 西北农业学报, 2014, 23(7): 184-190. | |
35 | Wen L, Jin L W, Xiao J Z, et al. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 111: 134-142. |
36 | Hu H C, Wang G X, Wang Y B, et al. Response of soil heat-water processes to vegetation cover on the typical perma-frost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers. Chinese Science Bulletin, 2009, 54(2): 242-250. |
胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应. 科学通报, 2009, 54(2): 242-250. | |
37 | Yang Y S, Zhang L, Wei Y X, et al. Effects of degradation degree on soil physicochemical properties and soil water-holding capacity in Zeku alpine meadow in the headwater region of Three Rivers in China. Chinese Journal of Grassland, 2017, 39(5): 54-61. |
杨永胜, 张莉, 未亚西, 等. 退化程度对三江源泽库高寒草甸土壤理化性质及持水能力的影响. 中国草地学报, 2017, 39(5): 54-61. | |
38 | Sun Z, Wang Y B, Liu G H, et al. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory. Journal of Glaciology and Geocryology, 2015, 37(4): 980-990. |
孙哲, 王一博, 刘国华, 等. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析. 冰川冻土, 2015, 37(4): 980-990. | |
39 | Zhan T Y, Hou G, Liu M, et al. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021. |
詹天宇, 侯阁, 刘苗, 等. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021. | |
40 | Xu C, Zhang L B, Du J Q, et al. Impact of alpine meadow degradation on soil water conservation in the source region of three rivers. Acta Ecologica Sinica, 2013, 33(8): 2388-2399. |
徐翠, 张林波, 杜加强, 等. 三江源区高寒草甸退化对土壤水源涵养功能的影响. 生态学报, 2013, 33(8): 2388-2399. | |
41 | Wu X, Li H X, Fu B J, et al. Study on soil characteristics of alpine grassland in different degradation levels in headwater region of Three River in China. Chinese Journal of Grassland, 2013, 35(3): 77-84. |
伍星, 李辉霞, 傅伯杰, 等. 三江源地区高寒草地不同退化程度土壤特征研究. 中国草地学报, 2013, 35(3): 77-84. | |
42 | Li J, Zhang F, Lin L, et al. Response of the plant community and soil water status to alpine Kobresia meadow degradation gradients on the Qinghai-Tibetan Plateau, China. Ecological Research, 2015, 30(4): 589-596. |
43 | Wu Q H, Mao S J, Liu X Q, et al. Analysis of the soil water-holding capacity in alpine forb meadow under grazing gradient and relevant influence factors. Journal of Glaciology and Geocryology, 2014, 36(3): 590-598. |
吴启华, 毛绍娟, 刘晓琴, 等. 牧压梯度下高寒杂草类草甸土壤持水能力及影响因素分析. 冰川冻土, 2014, 36(3): 590-598. | |
44 | Zhu J B, He H D, Li H Q, et al. Characteristics of soil bulk density and soil water-holding capacity in alpine meadows under grazing gradients. Research of Soil and Water Conservation, 2018, 25(5): 66-71. |
祝景彬, 贺慧丹, 李红琴, 等. 牧压梯度下高寒草甸土壤容重及持水能力的变化特征. 水土保持研究, 2018, 25(5): 66-71. | |
45 | Xu C. Impact of alpine meadow degradation on soil water concervation function in Sanjiangyuan region. Beijing: Chinese Research Academy of Environmental Sciences, 2013. |
徐翠. 三江源区高寒草甸退化对土壤水源涵养功能的影响. 北京: 中国环境科学研究院, 2013. | |
46 | Liu X, Cui N J, Tan F C, et al. The soil water holding capacity and its indicative effect on soil organic carbon of Cryptomeria japonica plantations in the rainy area of Western China. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 1-10. |
刘宣, 崔宁洁, 谭飞川, 等. 华西雨屏区柳杉人工林土壤持水能力及其对土壤有机碳的指示作用. 应用与环境生物学报, 2023, 29(2): 1-10. | |
47 | Jiang Y, Zhuang Q L, Liang W J. Soil organic carbon pools in agricultural ecosystems and their influencing factors. Chinese Journal of Ecology, 2007(2): 278-285. |
姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子. 生态学杂志, 2007(2): 278-285. |
[1] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[2] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[3] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[4] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
[5] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[6] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[7] | 曹玉莹, 苏雪萌, 周正朝, 郑群威, 岳佳辉. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究[J]. 草业学报, 2023, 32(5): 94-105. |
[8] | 金媛媛, 陈振江, 王添, 李春杰. 内生真菌和田间管理措施对土壤真菌群落丰度和多样性的影响[J]. 草业学报, 2023, 32(4): 142-152. |
[9] | 史正军, 潘松, 冯世秀, 袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响[J]. 草业学报, 2023, 32(4): 153-160. |
[10] | 马源, 王晓丽, 王彦龙, 马玉寿, 崔海鹏. 生态恢复领域草种丸粒化研究进展[J]. 草业学报, 2023, 32(4): 197-207. |
[11] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
[12] | 王志婷, 刘廷玺, 童新, 段利民, 李东方, 刘小勇. 半干旱草甸草地不同处理下植被特征与土壤酶活性的变化[J]. 草业学报, 2023, 32(3): 41-55. |
[13] | 苏乐乐, 秦燕, 王瞾敏, 张永超, 刘文辉. 氮磷添加对燕麦与箭筈豌豆不同种植方式草地土壤微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2023, 32(3): 56-66. |
[14] | 王博, 张茹, 刘静, 李志刚. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响[J]. 草业学报, 2023, 32(2): 15-25. |
[15] | 常文华, 马维伟, 李广, 徐国荣, 龙永春. 尕海湿地区沼泽草甸退化对土壤氮转化酶活性的影响[J]. 草业学报, 2023, 32(2): 54-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||