草业学报 ›› 2023, Vol. 32 ›› Issue (9): 130-142.DOI: 10.11686/cyxb2022424
• 研究论文 • 上一篇
石永红1(), 高鹏1,2(), 方志红1, 赵祥1, 韩伟3, 魏江铭1, 刘琳1, 李锦臻1
收稿日期:
2022-10-27
修回日期:
2023-02-02
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
高鹏
作者简介:
E-mail: zyjt_721@163.com基金资助:
Yong-hong SHI1(), Peng GAO1,2(), Zhi-hong FANG1, Xiang ZHAO1, Wei HAN3, Jiang-ming WEI1, Lin LIU1, Jin-zhen LI1
Received:
2022-10-27
Revised:
2023-02-02
Online:
2023-09-20
Published:
2023-07-12
Contact:
Peng GAO
摘要:
引进国外优质、高产的饲用燕麦品种是促进我国草牧业发展的重要措施,但在使用进口饲用燕麦品种进行大规模商业化连作种植的地区,由禾谷炭疽菌引致的炭疽病呈爆发流行特点。为筛选抗病能力较强的饲用燕麦品种,明确炭疽病造成的危害,本研究选择我国广泛推广种植的15个进口饲用燕麦品种,采用反应型法、病情指数法和聚类分析法评价了其田间抗性,测定了不同发病程度下科纳品种的产量和营养成分含量,分析了对草产量和饲用价值造成的损失。结果表明:3种方法均鉴定出相同的4个抗病品种,分别为太阳神、爱沃、领袖和蒙特;其余品种黑玫克、大富翁、莫妮卡、摄政王、海威、三星、牧乐思和魅力为低感材料,燕王和梦龙为感病材料,科纳为高感材料;科纳品种饲用燕麦病株的叶片干重、茎秆干重、穗干重和株高均随发病程度的增加呈线性下降趋势,草产量损失率(y)为7.5%~28.1%,与病情指数中值(x)的回归方程为y=0.3023x+1.6822(R2=0.9837, P<0.05);与健康植株相比,中度发病植株的粗蛋白、总氨基酸、粗灰分和磷含量分别降低了7.2%、26.5%、9.0%和12.8%(P<0.05),重度发病植株降低了11.1%、44.5%、16.0%、20.8%;与健康植株相比,中度发病植株的酸性洗涤纤维含量显著增加了6.4%(P<0.05),重度发病植株的中性和酸性洗涤纤维含量分别显著增加了11.9%和10.0%(P<0.05);发病植株的饲用价值损失率(y)为3.2%~15.9%,与病情指数中值(x)的回归方程为y=0.1812x+0.5032(R2=0.9963, P<0.05)。建议在使用进口饲用燕麦品种进行大规模商业化种植的地区要高度重视炭疽病的问题,在发病严重的地区优先选择太阳神、爱沃、领袖和蒙特品种种植,及时采取科学有效的防治措施,下一步亟需从我国地方品种中挖掘抗病能力强的优异种质。
石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析[J]. 草业学报, 2023, 32(9): 130-142.
Yong-hong SHI, Peng GAO, Zhi-hong FANG, Xiang ZHAO, Wei HAN, Jiang-ming WEI, Lin LIU, Jin-zhen LI. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars[J]. Acta Prataculturae Sinica, 2023, 32(9): 130-142.
土层深度 Soil depth (cm) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH |
---|---|---|---|---|---|
0~20 | 34.71 | 6.87 | 64.42 | 8.82 | 7.71 |
表1 田间试验地的土壤基本理化性质
Table 1 Primary physical and chemical properties of experimental field
土层深度 Soil depth (cm) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH |
---|---|---|---|---|---|
0~20 | 34.71 | 6.87 | 64.42 | 8.82 | 7.71 |
品种名及代码 Varieties and code | 原产地 Country of origin | 来源 Sources |
---|---|---|
太阳神Titan (OV1) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
爱沃Everleaf (OV2) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
领袖Souris (OV3) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
黑玫克Haymaker (OV4) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
大富翁Midas (OV5) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
燕王Forage plus (OV6) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
莫妮卡Monica (OV7) | 加拿大Canada | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
摄政王Regent (OV8) | 美国America | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
梦龙Magnum (OV9) | 美国America | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
海威Haywire (OV10) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecological Technology Limited Company |
三星Three stars (OV11) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecological Technology Limited Company |
牧乐思Molasses (OV12) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecotechnology Limited Company |
蒙特Monte (OV13) | 美国America | 北京佰青源畜牧业科技发展有限公司Beijing Baiqingyuan Animal Husbandry Technology Development Limited Company |
魅力Charisma (OV14) | 美国America | 百绿(天津)国际草业有限公司 Barenbrug China Internation Grass Industry Limited Company |
科纳Kona (OV15) | 美国America | 北京猛犸种业有限公司Beijing Mammoth Seed Limited Company |
表2 燕麦品种及来源
Table 2 Name and sources of oat varieties
品种名及代码 Varieties and code | 原产地 Country of origin | 来源 Sources |
---|---|---|
太阳神Titan (OV1) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
爱沃Everleaf (OV2) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
领袖Souris (OV3) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
黑玫克Haymaker (OV4) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
大富翁Midas (OV5) | 加拿大Canada | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
燕王Forage plus (OV6) | 美国America | 北京正道生态科技有限公司Beijing Rytway Ecotechnology Limited Company |
莫妮卡Monica (OV7) | 加拿大Canada | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
摄政王Regent (OV8) | 美国America | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
梦龙Magnum (OV9) | 美国America | 北京百斯特草业有限公司Beijing Best Grass Industry Limited Company |
海威Haywire (OV10) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecological Technology Limited Company |
三星Three stars (OV11) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecological Technology Limited Company |
牧乐思Molasses (OV12) | 加拿大Canada | 克劳沃(北京)生态科技有限公司Beijing Clover Ecotechnology Limited Company |
蒙特Monte (OV13) | 美国America | 北京佰青源畜牧业科技发展有限公司Beijing Baiqingyuan Animal Husbandry Technology Development Limited Company |
魅力Charisma (OV14) | 美国America | 百绿(天津)国际草业有限公司 Barenbrug China Internation Grass Industry Limited Company |
科纳Kona (OV15) | 美国America | 北京猛犸种业有限公司Beijing Mammoth Seed Limited Company |
指标 Index | 抗性Resistance | ||||||
---|---|---|---|---|---|---|---|
免疫 Immunity (I) | 高抗 High resistant (HR) | 中抗 Moderate resistant (MR) | 抗病 Resistant (R) | 低感 Light susceptible (LS) | 感病 Susceptible (S) | 高感 High susceptible (HS) | |
反应型(赋值)Reaction type (value) | 无症状No symptom (0) | 病斑小型水渍状,紫色Watery lesions on leaves appeared as small circular, purple (1) | 病斑梭形,边缘呈紫色Necrotic spots surrounded by purple, fusiform (2) | 病斑梭形,边缘有狭窄黄晕Necrotic spots surrounded by yellowish halo, fusiform (3) | 病斑大梭形或长条形,边缘有明显枯黄症状Necrotic spots surrounded by dry yellow, fusiform or strip (4) | 病斑大梭形或长条形,多数相互融合Spots coalesced, fusiform or strip (5) | 病斑大梭形或不规则形,密集,常相互融合导致叶片枯死Serried spots coalesced, fusiform or strip, leaves withered (6) |
病情指数 Disease index | 0 | <0.1 | 0.1~1.0 | 1.1~5.0 | 5.1~10.0 | 10.1~15.0 | >15.0 |
表3 饲用燕麦炭疽病抗性分级标准
Table 3 Score of resistance to anthracnose of oat
指标 Index | 抗性Resistance | ||||||
---|---|---|---|---|---|---|---|
免疫 Immunity (I) | 高抗 High resistant (HR) | 中抗 Moderate resistant (MR) | 抗病 Resistant (R) | 低感 Light susceptible (LS) | 感病 Susceptible (S) | 高感 High susceptible (HS) | |
反应型(赋值)Reaction type (value) | 无症状No symptom (0) | 病斑小型水渍状,紫色Watery lesions on leaves appeared as small circular, purple (1) | 病斑梭形,边缘呈紫色Necrotic spots surrounded by purple, fusiform (2) | 病斑梭形,边缘有狭窄黄晕Necrotic spots surrounded by yellowish halo, fusiform (3) | 病斑大梭形或长条形,边缘有明显枯黄症状Necrotic spots surrounded by dry yellow, fusiform or strip (4) | 病斑大梭形或长条形,多数相互融合Spots coalesced, fusiform or strip (5) | 病斑大梭形或不规则形,密集,常相互融合导致叶片枯死Serried spots coalesced, fusiform or strip, leaves withered (6) |
病情指数 Disease index | 0 | <0.1 | 0.1~1.0 | 1.1~5.0 | 5.1~10.0 | 10.1~15.0 | >15.0 |
指标Index | 健康Health | 轻度发病Light disease | 中度发病Moderate disease | 重度发病Severe disease |
---|---|---|---|---|
病情指数Disease index | 0 | 0~25.0 | 25.1~75.0 | 75.1~100.0 |
中值Middle value | 0 | 12.5 | 50.0 | 87.5 |
表4 饲用燕麦炭疽病发病程度分级
Table 4 Score of occurrence degree to anthracnose of oat
指标Index | 健康Health | 轻度发病Light disease | 中度发病Moderate disease | 重度发病Severe disease |
---|---|---|---|---|
病情指数Disease index | 0 | 0~25.0 | 25.1~75.0 | 75.1~100.0 |
中值Middle value | 0 | 12.5 | 50.0 | 87.5 |
图1 进口饲用燕麦品种炭疽病的田间典型症状及最高级反应型OV1~OV15代表15份进口饲用燕麦的品种。1~6代表反应型的赋值,下同。OV1-OV15 mean the code of oat varieties. 1-6 mean the value of reaction type, the same below.
Fig.1 Typical symptom and infection type to anthracnose of oat varieties in field
图2 进口饲用燕麦品种炭疽病的田间发病率和病情指数不同小写字母表示差异显著(P<0. 05)。下同。Different lowercase letters indicate significant differences (P<0.05). The same below.
Fig.2 The disease incidence and disease index of anthracnose of oat varieties in field
品种 Varieties | 抗性Resistance | 品种 Varieties | 抗性Resistance | ||||
---|---|---|---|---|---|---|---|
反应型法 Reaction type | 病情指数法 Disease index | 聚类法 Clustering analysis | 反应型法 Reaction type | 病情指数法 Disease index | 聚类法 Clustering analysis | ||
OV1 | R | R | R | OV9 | S | S | S |
OV2 | R | R | R | OV10 | LS | LS | LS |
OV3 | R | R | R | OV11 | LS | LS | LS |
OV4 | LS | LS | S | OV12 | LS | LS | LS |
OV5 | LS | LS | S | OV13 | R | R | R |
OV6 | S | LS | S | OV14 | LS | LS | LS |
OV7 | LS | LS | LS | OV15 | HS | HS | HS |
OV8 | LS | LS | LS |
表5 进口饲用燕麦品种对炭疽病的抗性评价
Table 5 The resistance evaluation of oat varieties against anthracnose
品种 Varieties | 抗性Resistance | 品种 Varieties | 抗性Resistance | ||||
---|---|---|---|---|---|---|---|
反应型法 Reaction type | 病情指数法 Disease index | 聚类法 Clustering analysis | 反应型法 Reaction type | 病情指数法 Disease index | 聚类法 Clustering analysis | ||
OV1 | R | R | R | OV9 | S | S | S |
OV2 | R | R | R | OV10 | LS | LS | LS |
OV3 | R | R | R | OV11 | LS | LS | LS |
OV4 | LS | LS | S | OV12 | LS | LS | LS |
OV5 | LS | LS | S | OV13 | R | R | R |
OV6 | S | LS | S | OV14 | LS | LS | LS |
OV7 | LS | LS | LS | OV15 | HS | HS | HS |
OV8 | LS | LS | LS |
图4 科纳品种饲用燕麦炭疽病不同发病程度植株的干重和株高ND: 健康Health; LD: 轻度发病Light disease; MD: 中度发病Moderate disease; SD: 重度发病Severe disease. 下同The same below.
Fig.4 Dry weight and plant height of Kona oat with different occurrence degree of anthracnose
图5 科纳品种饲用燕麦炭疽病不同发病程度植株的常规营养成分ns: 无显著差异No significant difference.
Fig.5 Nutritional content of Kona oat with different occurrence degree of anthracnose
发病程度 Occurrence degree of anthracnose | 草产量损失率 Loss ratio of dry yield (%) | 饲用价值损失率 Loss ratio of relative feed value (%) |
---|---|---|
LD | 7.5c | 3.2b |
MD | 16.7b | 9.7ab |
SD | 28.1a | 15.9a |
表6 炭疽病对科纳品种饲用燕麦的草产量和饲用价值损失率
Table 6 Loss ratio of dry yield and relative feed value to anthracnose of Kona oat (%)
发病程度 Occurrence degree of anthracnose | 草产量损失率 Loss ratio of dry yield (%) | 饲用价值损失率 Loss ratio of relative feed value (%) |
---|---|---|
LD | 7.5c | 3.2b |
MD | 16.7b | 9.7ab |
SD | 28.1a | 15.9a |
指标Index | 决定系数Decision coefficient (R2) | P | 回归方程Regression equation |
---|---|---|---|
单株叶片干重Leaf weight per plant | 0.9863 | 0.0068 | y=-0.0033x+1.3273 |
单株茎秆干重Stem dry weight per plant | 0.9617 | 0.0194 | y=-0.0044x+1.0636 |
单株籽粒干重Spike dry weight per plant | 0.9851 | 0.0075 | y=-0.0039x+1.3536 |
株高Plant height | 0.9581 | 0.0212 | y=-0.1911x+103.1321 |
粗脂肪Crude fat | 0.9947 | 0.0027 | y=-0.0027x+4.3322 |
粗蛋白Crude protein | 0.9776 | 0.0075 | y=-0.0112x+9.2132 |
总氨基酸Total amino acids | 0.9991 | 0.0004 | y=-1.6701x+326.1011 |
中性洗涤纤维Neutral detergent fiber | 0.9980 | 0.0009 | y=0.0637x+46.3052 |
酸性洗涤纤维Acid detergent fiber | 0.9917 | 0.0041 | y=0.0512x+42.2742 |
粗灰分Crude ash | 0.9738 | 0.0132 | y=-0.2742x+5.3141 |
磷P | 0.9860 | 0.0071 | y=-0.0922x+1.3524 |
钙Ca | 0.9999 | 0.0207 | y=0.0232x2 -1.8845x+5.0763 |
草产量损失率Loss ratio of dry yield | 0.9837 | 0.0082 | y=0.3023x+1.6822 |
饲用价值损失率Loss ratio of relative feed value | 0.9963 | 0.0019 | y=0.1812x+0.5032 |
表7 炭疽病病情指数中值与科纳品种饲用燕麦产量和营养成分等指标的回归方程
Table 7 Regression analysis between the middle value of disease index and the yield and nutrient content of Kona
指标Index | 决定系数Decision coefficient (R2) | P | 回归方程Regression equation |
---|---|---|---|
单株叶片干重Leaf weight per plant | 0.9863 | 0.0068 | y=-0.0033x+1.3273 |
单株茎秆干重Stem dry weight per plant | 0.9617 | 0.0194 | y=-0.0044x+1.0636 |
单株籽粒干重Spike dry weight per plant | 0.9851 | 0.0075 | y=-0.0039x+1.3536 |
株高Plant height | 0.9581 | 0.0212 | y=-0.1911x+103.1321 |
粗脂肪Crude fat | 0.9947 | 0.0027 | y=-0.0027x+4.3322 |
粗蛋白Crude protein | 0.9776 | 0.0075 | y=-0.0112x+9.2132 |
总氨基酸Total amino acids | 0.9991 | 0.0004 | y=-1.6701x+326.1011 |
中性洗涤纤维Neutral detergent fiber | 0.9980 | 0.0009 | y=0.0637x+46.3052 |
酸性洗涤纤维Acid detergent fiber | 0.9917 | 0.0041 | y=0.0512x+42.2742 |
粗灰分Crude ash | 0.9738 | 0.0132 | y=-0.2742x+5.3141 |
磷P | 0.9860 | 0.0071 | y=-0.0922x+1.3524 |
钙Ca | 0.9999 | 0.0207 | y=0.0232x2 -1.8845x+5.0763 |
草产量损失率Loss ratio of dry yield | 0.9837 | 0.0082 | y=0.3023x+1.6822 |
饲用价值损失率Loss ratio of relative feed value | 0.9963 | 0.0019 | y=0.1812x+0.5032 |
1 | Nan M, Zhao G Q, Chai J K. Phenotypic diversity and comprehensive evaluations of Avena sativa L. germplasm in semi-arid area of the plateau. Acta Agrestia Sinica, 2017, 25(6): 1197-1205. |
南铭, 赵桂琴, 柴继宽. 黄土高原半干旱区饲用燕麦种质表型性状遗传多样性分析及综合评价. 草地学报, 2017, 25(6): 1197-1205. | |
2 | Wang J T, Chen Z H. Prataculture statistics of China (2020). Beijing: China Agriculture Press, 2022. |
王加亭, 陈志宏. 中国草业统计(2020). 北京: 中国农业出版社, 2022. | |
3 | Gao S Q, Duan R, Wang H S, et al. Farming-pastoral ecotone of northern China plays important role in ensuring national food security. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 643-651. |
高树琴, 段瑞, 王竑晟, 等. 北方农牧交错带在保障国家大粮食安全中发挥重要作用. 中国科学院院刊, 2021, 36(6): 643-651. | |
4 | Jin J B, Wang T, Cheng Y F, et al. Current situation and prospect of forage breeding in China. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 660-665. |
金京波, 王台, 程佑发, 等. 我国牧草育种现状与展望. 中国科学院院刊, 2021, 36(6): 660-665. | |
5 | Li Y. Identification and occurrence characterization and influencing factors of oat anthracnose in Shuozhou city, Shanxi Province. Jinzhong: Shanxi Agricultural University, 2021. |
李瑶. 山西省朔州市饲用燕麦炭疽病的病原鉴定、发生特征及影响因素分析. 晋中: 山西农业大学, 2021. | |
6 | Li C J, Chen T X, Zhao G Q, et al. Progress in research on diseases of Avena sativa. Acta Prataculturae Sinica, 2017, 26(12): 203-222. |
李春杰, 陈泰祥, 赵桂琴, 等. 燕麦病害研究进展. 草业学报, 2017, 26(12): 203-222. | |
7 | Li S, Du G L, Yin X F, et al. Research advance in forage diseases, insect pests and rodents in China. Chinese Journal of Biological Control, 2020, 36(1): 9-16. |
李霜, 杜桂林, 尹晓飞, 等. 我国饲草重大病虫鼠害研究进展. 中国生物防治学报, 2020, 36(1): 9-16. | |
8 | Savary S, Ficke A, Aubertot J N, et al. Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 2012, 4(4): 519-537. |
9 | James W. Estimated losses of crops from palnt pathogens. Boca Raton: CRC Press, 1981. |
10 | Leyva-Mir S G, Espitia-Rangel E, Villaseñor-Mir H E, et al. Losses caused by Puccinia graminis f. sp. avenae Eriks. and Henn., causative of stem rust in six cultivars of oats (Avena sativa L.) in the high valleys of mexico. Revista Mexicana de Fitopatología, 2004, 22(2): 166-171. |
11 | Bowen K L, Hagan A K, Pegues M, et al. Yield losses due to crown rust in winter oats in Alabama. Plant Health Research, 2016, 17(2): 95-100. |
12 | Roderick H W, Jones I T. The effect of powdery mildew (Erysiphe graminis f.sp. avenae) on yield, yield components and grain quality of spring oats. Annals of Applied Biology, 1988, 113(3): 455-460. |
13 | Hsam S L K, Mohler V, Zeller F J. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. Journal of Applied Genetics, 2014, 55(2): 155-162. |
14 | Cunfer B M. Stagonospora and Septoria diseases of barley, oat, and rye. Canadian Journal of Plant Pathology, 2000, 22(4): 332-348. |
15 | Zhang L L, Shi M, Li Y Z. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin area. Acta Prataculturae Sinica, 2020, 29(6): 117-126. |
张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响. 草业学报, 2020, 29(6): 117-126. | |
16 | Chen X R, Ma J F, Yang C D, et al. Effects of the rust of Stipa bungeana on grass biomass and quality. Acta Prataculturae Sinica, 2008, 17(1): 43-47. |
陈秀蓉, 马静芳, 杨成德, 等. 长芒草锈病对牧草生物量和品质的影响. 草业学报, 2008, 17(1): 43-47. | |
17 | Nan Z B. Effects of rust on the growth and nutritive composition of forage legumes. Acta Prataculturae Sinica, 1990, 1(1): 83-87. |
南志标. 锈病对豆科牧草生长和营养成分的影响. 草业学报, 1990, 1(1): 83-87. | |
18 | Nan Z B. Establishing sustainable management system for diseases of pasture crops in China. Acta Prataculturae Sinica, 2000, 9(2): 1-9. |
南志标. 建立中国的牧草病害可持续管理体系. 草业学报, 2000, 9(2): 1-9. | |
19 | Liu L L, Zhang L J, Ma M C, et al. Current status and developing trend of oat industry in Shanxi. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(12): 905-907. |
刘龙龙, 张丽君, 马名川, 等. 山西省燕麦产业现状及发展趋势. 山西农业大学学报(自然科学版), 2016, 36(12): 905-907. | |
20 | Gao P, Liu L, Li Y, et al. Effects of anthracnose on C, N and P stoichiometry of forage oat aboveground parts in north Shanxi Province. Chinese Journal of Applied Ecology, 2021, 32(7): 2477-2484. |
高鹏, 刘琳, 李瑶, 等. 炭疽病对山西晋北饲用燕麦地上部碳氮磷化学计量学特征的影响. 应用生态学报, 2021, 32(7): 2477-2484. | |
21 | Xu J, Qin P W, Jiang Y, et al. Evaluation of sorghum germplasm resistance to anthracnose by Colletotrichum sublineolum in China. Crop Protection, 2020, 134(8): 105173. |
22 | Li Y Z, Yu J Q, Li M. Preliminary evaluation of 48 alfalfa for resistance to three diseases. Acta Prataculturae Sinica, 2021, 30(9): 62-75. |
李彦忠, 俞军强, 李明. 48个苜蓿品种对3种病害抗性的初步评价. 草业学报, 2021, 30(9): 62-75. | |
23 | Yu J K, Zhang X B. Preliminary studies on the physiological specialization of jute. Journal of Fujian Academy of Agricultural Sciences, 1990, 5(1): 45-50. |
余建坤, 张学博. 黄麻炭疽病菌生理分化的初步研究. 福建农科院学报, 1990, 5(1): 45-50. | |
24 | Playne M J, McDonald P. The buffering constituents of herbage and silage. Journal of the Science of Food and Agriculture, 1966, 17(6): 264-268. |
25 | Van S V P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
26 | Yang S. Analysis and quality detection technology of feed. Beijing: Beijing Agricultural University Press, 1993. |
杨胜. 饲料分析及饲料质量检测技术. 北京: 北京农业大学出版社, 1993. | |
27 | Wang X L, Hu J H, Yao T S, et al. Evaluation of the resistance of fifty-two citrus germplasm to Colletotrichum gloeosporioide. South China Fruits, 2014, 43(3): 1-4, 23. |
王雪莲, 胡军华, 姚廷山, 等. 52份柑桔属种质对胶孢炭疽菌的抗性评价. 中国南方果树, 2014, 43(3): 1-4, 23. | |
28 | Young H M, George S, Narváez D F, et al. Effect of solar radiation on disease severity of soybean rust. Phytopathology, 2012, 102(8): 794-803. |
29 | Li Z Q, Shang H S. Resistance and use of crops in China. Beijing: China Agriculture Press, 2005. |
李振岐, 商鸿生. 中国农作物抗病性及其利用. 北京: 中国农业出版社, 2005. | |
30 | Chang N T, Gao Z G, Wang L H, et al. Lesion type and cell ultrastructure on excised leaf caused by Bipolaris sorokiniana in wheat and its related species. Acta Phytophylacica Sinica, 2008, 35(6): 491-496. |
常迺滔, 高增贵, 王龙华, 等. 小麦及其近缘种叶枯病的病斑型及其细胞超微结构特点. 植物保护学报, 2008, 35(6): 491-496. | |
31 | Fetch T, Steffenson B J. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Disease, 1999, 83(3): 213-217. |
32 | Jia J, Su Q F, Ren Z H, et al. Pathogenic differentiation of corn gray leaf spot pathogen in Jilin Province. Journal of Maize Sciences, 2016, 24(5): 142-146. |
贾娇, 苏前富, 任智惠, 等. 吉林省玉米灰斑病菌的致病性分化研究. 玉米科学, 2016, 24(5): 142-146. | |
33 | Pontier D, Godiard L, Marco Y, et al. hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant Journal, 1994, 5(4): 507-521. |
34 | Tada Y, Hata S, Takata Y, et al. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Molecular Plant-Microbe Interactions, 2001, 14(4): 477-486. |
35 | Okoń S, Kowalczyk K. Deriving isolates of powdery mildew in common oat and using them to identify selected genes of resistance. Acta Agrobotanica, 2012, 65(2): 155-160. |
36 | Stephenson S A, Hatfield J, Rusu A G, et al. CgDN3: An essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Molecular Plant-Microbe Interactions, 2000, 13(9): 929-941. |
37 | Hu W J, Yang Y P, Abudukeyimu A, et al. Evaluation of resistance to Colletotrichum trifolii in seedlings of 40 alfalfa cultivars. Pratacultural Science, 2021, 38(8): 1579-1586. |
胡文静, 杨亚鹏, 阿斯亚姆·阿布都克依木, 等. 40个苜蓿品种对炭疽病的苗期抗性评价. 草业科学, 2021, 38(8): 1579-1586. | |
38 | Wang F, Ma Y, Gao X Y, et al. Study on the identification techniques for determining strawberry cultivar’s resistance to anthracnose. Journal of Fruit Science, 2008, 25(4): 542-547. |
王丰, 马跃, 高秀岩, 等. 草莓品种对炭疽病抗性的鉴定技术研究. 果树学报, 2008, 25(4): 542-547. | |
39 | Moraga J, Gomes W, Pinedo C, et al. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 2019, 18(9): 215-239. |
40 | Münch S, Lingner U, Floss D S, et al. The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant Physiology, 2008, 165(1): 41-51. |
41 | Kiesling R L. Barley: The diseases of barley. Wisconsin: Madison Press, 1985: 269-312. |
42 | Seem R. Disease incidence and severity relationships. Annual Review of Phytopathology, 1984, 22: 133-150. |
43 | Deng D S. The research of relationship between disease incidence and disease index of fir. Forest Pest and Disease, 1992, 9(1): 3-4. |
邓德胜. 杉木炭疽病发病率与病情指数关系的研究. 森林病虫通讯, 1992, 9(1): 3-4. | |
44 | Chen H M, Li J H, Chai Z X, et al. Resistance evaluation of 35 potato varieties to the dominant pathogens of potato Fusarium dry rot. Acta Phytophylacica Sinica, 2012, 39(4): 308-314. |
陈红梅, 李金花, 柴兆祥, 等. 35个马铃薯品种对镰刀菌干腐病优势病原的抗病性评价. 植物保护学报, 2012, 39(4): 308-314. | |
45 | Silva L L D, Moreno H L A, Correia H L N, et al. Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Applied Microbiology and Biotechnology, 2020, 104(1): 1891-1904. |
46 | Zheng D S, Zhang Z W. Introduction and utilization of foreign oat germplasm resources in China. Journal of Plant Genetic Resources, 2017, 18(6): 1001-1005. |
郑殿升, 张宗文. 中国燕麦种质资源国外引种与利用. 植物遗传资源学报, 2017, 18(6): 1001-1005. | |
47 | Yuan J H, Cao L X, Shi B H, et al. Evaluation of main oat cultivars or lines resistance against Drechslera leaf spot in northwest Hebei province. China Plant Protection, 2014, 34(2): 31-34. |
袁军海, 曹丽霞, 石碧红, 等. 冀西北地区燕麦主栽品种(系)对叶斑病抗性鉴定. 中国植保导刊, 2014, 34(2): 31-34. | |
48 | Yuan J H, Cao L X, Zhang L J, et al. Evaluation of 100 oat germplasms for stem rust resistance. Journal of Henan Agricultural Sciences, 2014, 43(1): 89-92. |
袁军海, 曹丽霞, 张立军, 等. 100份燕麦种质资源抗秆锈病鉴定. 河南农业科学, 2014, 43(1): 89-92. | |
49 | Guo B, Guo M K, Guo C, et al. Identification and evaluation of oat germplasm resistance to powdery mildew. Plant Protection, 2012, 38(4): 144-146. |
郭斌, 郭满库, 郭成, 等. 燕麦种质资源抗白粉病鉴定及利用评价. 植物保护, 2012, 38(4): 144-146. | |
50 | Guo C, Wang Y, Zhang X R, et al. Evaluation and identification of oat germplasm resistance to Ustilago segetum var. avenae. Acta Agrestia Sinica, 2017, 25(2): 379-386. |
郭成, 王艳, 张新瑞, 等. 燕麦种质抗坚黑穗病鉴定与评价. 草地学报, 2017, 25(2): 379-386. | |
51 | Hu K J. Evaluation and screening of oat resistence to BYDV. Lanzhou: Gansu Agricultural University, 2010. |
胡凯军. 抗红叶病燕麦种质评价与筛选. 兰州: 甘肃农业大学, 2010. | |
52 | Zhao G Q, Mu P, Wei L M. Research progress in Avena sativa. Acta Prataculturae Sinica, 2007, 16(4): 116-125. |
赵桂琴, 慕平, 魏黎明. 饲用燕麦研究进展. 草业学报, 2007, 16(4): 116-125. | |
53 | Wong S C, Cowan I R, Farquhar G D. Stomatal conductance correlates with photosynthetic capacity. Nature, 1979, 282(11): 424-426. |
54 | Scholes J D. Photosynthesis: Cellular and tissue aspects in diseased leaves. Oxford: BIos Scientific Publishers, 1992. |
55 | Lope D B, Berger R D. The effects of rust and anthrachose on the photosynthetic competence of diseased bean leaves. Phytopathology, 2001, 91(2): 212-220. |
56 | Gao P, Nan Z B, Duan T Y, et al. Effect of spot blight (Septoria apocyni) on photosynthesis of Apocynum venetum and the scale system of the disease severity. Acta Phytophylacica Sinica, 2015, 42(4): 531-537. |
高鹏, 南志标, 段廷玉, 等. 斑枯病对罗布麻光合生理特征的影响及严重度分级. 植物保护学报, 2015, 42(4): 531-537. | |
57 | Hong M, Gao M, Lu D X, et al. New forage grading index: its establishment and comparative study on the evaluation of forage quality with the grading index-2001(GI2001)and relative feed value (RFV). Chinese Journal of Animal Nutrition, 2011, 23(8): 1296-1302. |
红敏, 高民, 卢德勋, 等. 粗饲料品质评定指数新一代分级指数的建立及与分级指数(GI2001)和饲料相对值(RFV)的比较研究. 动物营养学报, 2011, 23(8): 1296-1302. | |
58 | Kim J, Shim S H. The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research, 2019, 42(3): 735-753. |
59 | Chen T X, Yang X L, Chen X R, et al. A study of outbreak occurrence and economic threshold of downy mildew on Astragalus membranaceus. Acta Prataculturae Sinica, 2015, 24(9): 113-120. |
陈泰祥, 杨小利, 陈秀蓉, 等. 甘肃省黄芪霜霉病发病规律及防治经济阈值研究. 草业学报, 2015, 24(9): 113-120. | |
60 | Wang S Y, Nan Z B, Liu F. Studies on the damage of broad bean chocolate spot, annular spot and its economic threshold in Gansu Province. Acta Prataculturae Sinica, 1997, 24(4): 371-372. |
王淑英, 南志标, 刘福. 甘肃蚕豆赤斑病及轮斑病的为害分析及经济阈值研究. 草业学报, 1997, 24(4): 371-372. |
[1] | 任春燕, 梁国玲, 刘文辉, 刘凯强, 段嘉蕾. 青藏高原高寒地区早熟燕麦资源筛选和适应性评价[J]. 草业学报, 2023, 32(9): 116-129. |
[2] | 蒋丛泽, 受娜, 高玮, 马仁诗, 沈禹颖, 杨宪龙. 陇东旱塬区不同青贮玉米品种生产性能和营养品质综合评价[J]. 草业学报, 2023, 32(7): 216-228. |
[3] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
[4] | 王梓凡, 张晓庆, 钟志明, 权欣. 燕麦草捆和草块对彭波半细毛羊采食行为及生产性能的影响[J]. 草业学报, 2023, 32(5): 171-179. |
[5] | 严翊丹, 聂莹莹, 徐丽君, 高兴发, 饶彦章, 饶雄, 张洪志, 赵查书, 竺艳萍, 朱玉波. 西南山区冬闲田功能型燕麦品种潜力挖掘评价[J]. 草业学报, 2023, 32(4): 42-53. |
[6] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[7] | 魏露萍, 周青平, 刘芳, 林积圳, 詹圆, 汪辉. 遮穗和去颖下燕麦穗部特征变化和穗部光合贡献率估算[J]. 草业学报, 2023, 32(2): 110-118. |
[8] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
[9] | 叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望[J]. 草业学报, 2023, 32(2): 160-177. |
[10] | 田吉鹏, 刘蓓一, 顾洪如, 丁成龙, 程云辉, 玉柱. 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响[J]. 草业学报, 2022, 31(8): 157-166. |
[11] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[12] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[13] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[14] | 李满有, 杨彦军, 王斌, 沈笑天, 曹立娟, 李小云, 倪旺, 兰剑. 宁夏干旱区滴灌条件下燕麦与光叶紫花苕不同混播模式的生产性能、品质及综合评价研究[J]. 草业学报, 2022, 31(4): 62-71. |
[15] | 吴海艳, 曲尼, 曲珍, 同桑措姆, 达娃卓嘎, 德央, 尼玛卓嘎, 刘昭明, 马玉寿. 6个燕麦品种在昂仁县的生产性能及饲草品质比较[J]. 草业学报, 2022, 31(4): 72-80. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 524
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||