草业学报 ›› 2025, Vol. 34 ›› Issue (3): 17-28.DOI: 10.11686/cyxb2024175
李家新1,2,3(
), 景亚泓1,2,3, 张俊1,2,3, 净思璞1,2,3, 杨宇星1,2,3, 范博阳1,2,3, 路文杰1,2,3(
)
收稿日期:2024-05-14
修回日期:2024-07-15
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
路文杰
作者简介:E-mail: luwenjie1231104@126.com基金资助:
Jia-xin LI1,2,3(
), Ya-hong JING1,2,3, Jun ZHANG1,2,3, Si-pu JING1,2,3, Yu-xing YANG1,2,3, Bo-yang FAN1,2,3, Wen-jie LU1,2,3(
)
Received:2024-05-14
Revised:2024-07-15
Online:2025-03-20
Published:2025-01-02
Contact:
Wen-jie LU
摘要:
土壤环境的保护和治理在促进草地健康可持续发展中发挥着关键作用。本研究利用地理信息系统技术,对汾河上游81个草原点的土壤养分状况进行了调查。以土壤化学性质为主要标准的聚类分析将81个地点的表层土壤分为3类。本研究评估了0~10 cm、10~20 cm和20~30 cm这3个深度的土壤养分空间特征。研究发现,研究区草地土壤健康水平较差,自然含水率较低,全磷及碱解氮含量相对匮乏,土壤pH属弱碱性。各类养分相关指标的空间分布特征存在显著差异。不同指标在不同土层中的最佳拟合模型不同,多数指标的空间自相关性较弱,土壤养分空间变异主要受结构因素和随机因素共同影响;各指标在水平方向上存在明显的空间变异规律。土壤养分浓度高的地点周围也有土壤养分含量高的地点,即高-高集聚区,主要分布在汾河源头地区。土壤养分浓度低的地点也被土壤养分低的地点包围,即低-低集聚区,主要分布在汾河流域东部。低-高集聚区域较为分散,高-低集聚区较少,主要分布在汾河上游南部;在垂直方向上,土壤养分含量具有随着土层的加深而逐渐减少的趋势。各指标的集聚特征无明显的变化规律。研究结果可为退化草地修复提供科学合理的指导意见。
李家新, 景亚泓, 张俊, 净思璞, 杨宇星, 范博阳, 路文杰. 基于GIS技术和聚类分析的汾河上游草地土壤养分空间特征分析[J]. 草业学报, 2025, 34(3): 17-28.
Jia-xin LI, Ya-hong JING, Jun ZHANG, Si-pu JING, Yu-xing YANG, Bo-yang FAN, Wen-jie LU. Analysis of spatial characteristics of soil nutrients in grasslands in the Fenhe River upper reaches using GIS technology and cluster analysis[J]. Acta Prataculturae Sinica, 2025, 34(3): 17-28.
图1 研究区地理位置及采样点分布基于自然资源部标准地图服务网站GS(2020)4619号标准地图制作,底图边界无修改。Based on the standard map service website GS(2020)4619 of the Ministry of Natural Resources, the boundary of the base map is not modified.
Fig.1 Location of the study area and the distribution of sampling sites
类别 Type | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 自然含水率 Soil water content (%) |
|---|---|---|---|---|---|---|---|---|---|
| A | 8.39 | 16.9 | 0.89 | 0.37 | 13.25 | 45.44 | 11.40 | 179.95 | 12.5 |
| B | 8.38 | 23.7 | 0.80 | 0.40 | 13.32 | 52.88 | 15.31 | 250.40 | 13.3 |
| C | 7.90 | 23.4 | 1.19 | 0.35 | 14.68 | 66.71 | 16.17 | 202.59 | 12.1 |
表1 各聚类类别相关指标平均含量统计
Table 1 Statistics of average content of relevant indicators for each cluster category
类别 Type | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 自然含水率 Soil water content (%) |
|---|---|---|---|---|---|---|---|---|---|
| A | 8.39 | 16.9 | 0.89 | 0.37 | 13.25 | 45.44 | 11.40 | 179.95 | 12.5 |
| B | 8.38 | 23.7 | 0.80 | 0.40 | 13.32 | 52.88 | 15.31 | 250.40 | 13.3 |
| C | 7.90 | 23.4 | 1.19 | 0.35 | 14.68 | 66.71 | 16.17 | 202.59 | 12.1 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 指数Exponential | 3522.000 | 4982.000 | 0.9660 | 0.827 | 0.707 |
| 全氮Total nitrogen | 指数Exponential | 0.195 | 0.301 | 0.1170 | 0.159 | 0.648 |
| 全磷Total phosphorus | 指数Exponential | 0.014 | 0.027 | 0.3960 | 0.396 | 0.519 |
| 全钾Total potassium | 高斯Gaussian | 6.710 | 9.130 | 0.0282 | 0.842 | 0.735 |
| 速效磷Available phosphorus | 高斯Gaussian | 109.800 | 109.900 | 0.1143 | 0.521 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 11418.000 | 11430.000 | 0.0918 | 0.681 | 0.999 |
| 碱解氮Available nitrogen | 高斯Gaussian | 127.089 | 819.194 | 0.4983 | 0.344 | 0.155 |
表2 0~10 cm土层相关指标半变异函数参数
Table 2 Semivariogram parameters of relevant indicators in 0-10 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 指数Exponential | 3522.000 | 4982.000 | 0.9660 | 0.827 | 0.707 |
| 全氮Total nitrogen | 指数Exponential | 0.195 | 0.301 | 0.1170 | 0.159 | 0.648 |
| 全磷Total phosphorus | 指数Exponential | 0.014 | 0.027 | 0.3960 | 0.396 | 0.519 |
| 全钾Total potassium | 高斯Gaussian | 6.710 | 9.130 | 0.0282 | 0.842 | 0.735 |
| 速效磷Available phosphorus | 高斯Gaussian | 109.800 | 109.900 | 0.1143 | 0.521 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 11418.000 | 11430.000 | 0.0918 | 0.681 | 0.999 |
| 碱解氮Available nitrogen | 高斯Gaussian | 127.089 | 819.194 | 0.4983 | 0.344 | 0.155 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 高斯Gaussian | 95.500 | 100.100 | 0.1160 | 0.720 | 0.954 |
| 全氮Total nitrogen | 球面Spherical | 0.137 | 0.176 | 0.1220 | 0.301 | 0.778 |
| 全磷Total phosphorus | 高斯Gaussian | 0.018 | 0.021 | 0.0237 | 0.168 | 0.857 |
| 全钾Total potassium | 线性Linear | 0.114 | 8.266 | 0.5211 | 0.216 | 0.014 |
| 速效磷Available phosphorus | 高斯Gaussian | 92.800 | 92.900 | 0.1160 | 0.539 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 3753.000 | 3843.000 | 0.1126 | 0.669 | 0.977 |
| 碱解氮Available nitrogen | 高斯Gaussian | 324.812 | 405.809 | 0.0109 | 0.199 | 0.800 |
表3 10~20 cm土层相关指标半变异函数参数
Table 3 Semivariogram parameters of relevant indicators in 10-20 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 高斯Gaussian | 95.500 | 100.100 | 0.1160 | 0.720 | 0.954 |
| 全氮Total nitrogen | 球面Spherical | 0.137 | 0.176 | 0.1220 | 0.301 | 0.778 |
| 全磷Total phosphorus | 高斯Gaussian | 0.018 | 0.021 | 0.0237 | 0.168 | 0.857 |
| 全钾Total potassium | 线性Linear | 0.114 | 8.266 | 0.5211 | 0.216 | 0.014 |
| 速效磷Available phosphorus | 高斯Gaussian | 92.800 | 92.900 | 0.1160 | 0.539 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 3753.000 | 3843.000 | 0.1126 | 0.669 | 0.977 |
| 碱解氮Available nitrogen | 高斯Gaussian | 324.812 | 405.809 | 0.0109 | 0.199 | 0.800 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 高斯Gaussian | 72.000 | 78.100 | 0.1386 | 0.877 | 0.922 |
| 全氮Total nitrogen | 球面Spherical | 0.076 | 0.085 | 0.1130 | 0.344 | 0.894 |
| 全磷Total phosphorus | 高斯Gaussian | 0.002 | 0.019 | 0.8949 | 0.621 | 0.105 |
| 全钾Total potassium | 球面Spherical | 3.491 | 5.211 | 0.1140 | 0.782 | 0.670 |
| 速效磷Available phosphorus | 球面Spherical | 84.300 | 84.400 | 0.1210 | 0.322 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 2323.000 | 2346.000 | 0.1126 | 0.595 | 0.990 |
| 碱解氮Available nitrogen | 线性Linear | 34.177 | 416.029 | 0.5387 | 0.732 | 0.082 |
表4 20~30 cm土层相关指标半变异函数参数
Table 4 Semivariogram parameters of relevant indicators in 20-30 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
|---|---|---|---|---|---|---|
| 有机质Organic matter | 高斯Gaussian | 72.000 | 78.100 | 0.1386 | 0.877 | 0.922 |
| 全氮Total nitrogen | 球面Spherical | 0.076 | 0.085 | 0.1130 | 0.344 | 0.894 |
| 全磷Total phosphorus | 高斯Gaussian | 0.002 | 0.019 | 0.8949 | 0.621 | 0.105 |
| 全钾Total potassium | 球面Spherical | 3.491 | 5.211 | 0.1140 | 0.782 | 0.670 |
| 速效磷Available phosphorus | 球面Spherical | 84.300 | 84.400 | 0.1210 | 0.322 | 0.999 |
| 速效钾Available potassium | 高斯Gaussian | 2323.000 | 2346.000 | 0.1126 | 0.595 | 0.990 |
| 碱解氮Available nitrogen | 线性Linear | 34.177 | 416.029 | 0.5387 | 0.732 | 0.082 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.2658 | 0.4474 | 0.3960 | 0.4362 | 0.1370 | 0.4622 | 0.2828 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 5.2587 | 8.5908 | 7.6456 | 8.3317 | 3.2968 | 8.7899 | 5.6114 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表5 0~10 cm土层相关指标的全局空间自相关
Table 5 Global spatial autocorrelation of relevant indicators in 0-10 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.2658 | 0.4474 | 0.3960 | 0.4362 | 0.1370 | 0.4622 | 0.2828 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 5.2587 | 8.5908 | 7.6456 | 8.3317 | 3.2968 | 8.7899 | 5.6114 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.2833 | 0.4605 | 0.3704 | 0.3920 | 0.1237 | 0.4313 | 0.3225 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 6.0331 | 8.8491 | 7.2553 | 7.5594 | 3.1378 | 8.2096 | 6.5015 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表6 10~20 cm土层相关指标的全局空间自相关
Table 6 Global spatial autocorrelation of relevant indicators in 10-20 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.2833 | 0.4605 | 0.3704 | 0.3920 | 0.1237 | 0.4313 | 0.3225 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 6.0331 | 8.8491 | 7.2553 | 7.5594 | 3.1378 | 8.2096 | 6.5015 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.3583 | 0.4340 | 0.2966 | 0.4214 | 0.1165 | 0.4578 | 0.3123 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 7.1145 | 8.3263 | 5.9307 | 8.0531 | 3.2930 | 8.6996 | 6.3315 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表7 20~30 cm土层相关指标的全局空间自相关
Table 7 Global spatial autocorrelation of relevant indicators in 20-30 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
|---|---|---|---|---|---|---|---|
| 全局Moran’s I Global Moran’s I | 0.3583 | 0.4340 | 0.2966 | 0.4214 | 0.1165 | 0.4578 | 0.3123 |
| 期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
| Z得分Z-score | 7.1145 | 8.3263 | 5.9307 | 8.0531 | 3.2930 | 8.6996 | 6.3315 |
| P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | Dong S K, Zhang Y H, Wang G C. Assessment of grassland health and degradation: Concepts, principles and methods. Pratacultural Science, 2023, 40(12): 2971-2981. |
| 董世魁, 张宇豪, 王冠聪. 草地健康与退化评价:概念、原理及方法. 草业科学, 2023, 40(12): 2971-2981. | |
| 2 | Wang Y F. Evaluation of soil conservation function of regional ecosystem in the upper reaches of Fenhe River. Beijing: China University of Geosciences, 2021. |
| 王怡帆. 汾河上游生态系统土壤保持功能评价. 北京: 中国地质大学, 2021. | |
| 3 | Fu W, Zhao K, Zhang C, et al. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. Journal of Plant Nutrition and Soil Science, 2011, 174(5): 785-798. |
| 4 | Li Q Q, Wang C Q, Zhang W J, et al. Prediction of soil nutrients spatial distribution based on neural network model combined with geostatistics. Chinese Journal of Applied Ecology, 2013, 24(2): 459-466. |
| 李启权, 王昌全, 张文江, 等. 基于神经网络模型和地统计学方法的土壤养分空间分布预测. 应用生态学报, 2013, 24(2): 459-466. | |
| 5 | Wang X Y, Huang Y L, Quan B B, et al. Spatial variation characteristics and influencing factors of available nutrient elements in cultivated soil layers in Rui’an City, Zhejiang Province. Geoscience, 2022, 36(3): 963-971. |
| 王学寅, 黄益灵, 全斌斌, 等. 浙江省瑞安市耕作层土壤养分元素有效态含量空间变异特征及其影响因素. 现代地质, 2022, 36(3): 963-971. | |
| 6 | Chen Q X, Lu X H, Tu C L. Spatial variation and influencing factors of soil pH in Anshun City. Environmental Science, 2022, 43(4): 2124-2132. |
| 陈清霞, 陆晓辉, 涂成龙. 安顺市土壤pH空间变异及影响因素分析. 环境科学, 2022, 43(4): 2124-2132. | |
| 7 | Bei Q C, Thomas R, Beatrix S, et al. Extreme summers impact cropland and grassland soil microbiomes. The ISME Journal, 2023, 17(10): 1589-1600. |
| 8 | Seaton F M, Gaynor B, Annette B, et al. Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 2020, 72(6): 2414-2429. |
| 9 | Fan X L, Lv X, Zhang Z, et al. Soil nutrient evaluation of cotton field based on distance clustering and K-means dynamic clustering. Arid Zone Research, 2021, 38(4): 980-989. |
| 范向龙, 吕新, 张泽, 等. 基于距离聚类与K-means动态聚类的棉田土壤养分评价研究. 干旱区研究, 2021, 38(4): 980-989. | |
| 10 | Jiang X L. Comprehensive evaluation of soil nutrients geochemistry in Yongtai County based on principal component and cluster analysis. Journal of Anhui Agricultural Sciences, 2023, 51(1): 68-71. |
| 江晓龙.基于主成分和聚类分析的永泰县土壤养分地球化学综合评价. 安徽农业科学, 2023, 51(1): 68-71. | |
| 11 | Jin Z L, Chen M S, Shao L J, et al. Yongzhou tobacco-growing soil: Main chemical characteristics and cluster analysis. Journal of Agriculture, 2021, 11(8): 37-41. |
| 靳志丽, 陈梦思, 邵兰军, 等. 永州植烟土壤几种主要化学性状特征及聚类分析. 农学学报, 2021, 11(8): 37-41. | |
| 12 | Tan G J, Zhang S Y, Liu D P, et al. Habitat heterogeneity of grassland community characteristics in the Horchin elm sparse forest. Journal of Inner Mongolia Minzu University (Natural Science Edition), 2023, 38(4): 347-352. |
| 谭国娟, 张淑艳, 刘殿鹏, 等. 科尔沁榆树疏林草原群落特征的生境分异性研究. 内蒙古民族大学学报(自然科学版), 2023, 38(4): 347-352. | |
| 13 | Hou L, Ma Y J, Wang G L, et al. Distribution of soil nutrient and its relationship with mechanical composition of abandoned farmland in the upper reaches of Fenhe River watershed. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1422-1427. |
| 侯丽, 马义娟, 王国玲, 等. 汾河上游流域弃耕地土壤养分及其与机械组成的关系. 山西农业科学, 2019, 47(8): 1422-1427. | |
| 14 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
| 15 | Li J, Zhang J Y, Wang R, et al. Comparison of determinations of available P of calcareous soil. Ningxia Journal of Agriculture and Forestry Science and Technology, 2017, 58(11): 31-33. |
| 李娟, 张静月, 王蓉, 等. 两种石灰性土壤有效磷测定方法比较. 宁夏农林科技, 2017, 58(11): 31-33. | |
| 16 | Shang H Y, Qi J S, Mao S Y, et al. Correlation between two methods for determining soil available phosphorus and available potassium. Gansu Agricultural Science and Technology, 2010(5): 28-29. |
| 尚海英, 祁居仕, 毛森煜, 等. 两种测定土壤有效磷和速效钾方法的相关性. 甘肃农业科技, 2010(5): 28-29. | |
| 17 | Guo H J, Cai Y P, Li B W, et al. An improved approach for evaluating landscape ecological risks and exploring its coupling coordination with ecosystem services. Journal of Environmental Management, 2023, 348: 119277. |
| 18 | Han L L, Lu Y C, Ma W, et al. Spatial patterns of poil organic matter, nitrogen, phosphorus and potassium in a subtropical forest and its implication for forest management. Journal of Resources and Ecology, 2022, 13(3): 417-427. |
| 19 | Qiu M, Zuo Q T, Wu Q S, et al. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Scientific Reports, 2022, 12(1): DOI: 10.1038/S41598-022-07656-9. |
| 20 | Liang Y L, Li J, Lu Y H, et al. Ecosystem service value evaluation and temporal-spatial evolution characteristics in an agro-pastoral ecotone of Gansu Province based on LUCC. Acta Prataculturae Sinica, 2023, 32(5): 13-26. |
| 梁赟亮, 李杰, 陆燕花, 等. 基于LUCC的甘肃省农牧交错带生态系统服务价值评估及时空演变特征研究. 草业学报, 2023, 32(5): 13-26. | |
| 21 | Zhang R T, Chen M. Spatial differentiation and driving mechanism of agricultural multifunctions in economically developed areas: A case study of Jiangsu Province, China. Land, 2022, 11(10): 1728. |
| 22 | Wu H Y, Jin R D, Fan Z W, et al. Assessment of fertility quality of black soil based on principal component and cluster analysis. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 325-334. |
| 吴海燕, 金荣德, 范作伟, 等. 基于主成分和聚类分析的黑土肥力质量评价. 植物营养与肥料学报, 2018, 24(2): 325-334. | |
| 23 | Zuo X H, Lai J X, Liu F, et al. Spatial heterogeneity and zoning of soil organic matter based on geostatistics and spatial autocorrelation: a perspective form land consolidation. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 240-252. |
| 左昕弘, 赖佳鑫, 刘峰, 等. 基于地统计学和空间自相关的土壤有机质空间异质性分析及分区——土地整治视角. 中国农业资源与区划, 2022, 43(3): 240-252. | |
| 24 | Lei J R, Chen Z Z, Wu T T, et al. Spatial autocorrelation pattern analysis of land use and the value of ecosystem service in northeast Hainan island. Acta Ecologica Sinica, 2019, 39(7): 2366-2377. |
| 雷金睿, 陈宗铸, 吴庭天, 等. 海南岛东北部土地利用与生态系统服务价值空间自相关格局分析. 生态学报, 2019, 39(7): 2366-2377. | |
| 25 | Zhao C Y, Liu Y Y, Shi X P, et al. Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants. Environmental Pollution, 2020, 261(C): 113894. |
| 26 | Jiang N W, Tong G P, Ye Z Q, et al. Spatial variability of soil fertility properties and its affecting factors of Qingliangfeng Nature Reserve, Zhejiang. Acta Ecologica Sinica, 2022, 42(6): 2430-2441. |
| 姜霓雯, 童根平, 叶正钱, 等. 浙江清凉峰自然保护区土壤肥力指标空间变异及其影响因素. 生态学报, 2022, 42(6): 2430-2441. | |
| 27 | Tong T, Mei S, Liu Y, et al. Spatial variation of soil nutrient characteristics around Chaohu Lake based on GIS results. Journal of Agro-Environment Science, 2023, 42(7): 1522-1531. |
| 童童, 梅帅, 刘莹, 等. 基于GIS的环巢湖地区土壤养分空间变异特征研究. 农业环境科学学报, 2023, 42(7): 1522-1531. | |
| 28 | Wang T, Kang F F, Cheng X Q, et al. Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. Catena, 2017, 155: 41-52. |
| 29 | Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample. Journal of Geo-information Science, 2020, 22(9): 1799-1813. |
| 刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法. 地球信息科学学报, 2020, 22(9): 1799-1813. | |
| 30 | Yang J H, Liu M Y, Zhang J, et al. Spatial variability of soil nutrients and its affecting factors at small watershed in gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(3): 743-754. |
| 杨静涵, 刘梦云, 张杰, 等. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素. 自然资源学报, 2020, 35(3): 743-754. | |
| 31 | Niu W P, Li Q P, Li C, et al. Multi-scale spatial variability and environmental drivers of soil nutrient distributions in the Pearl River Delta, South China. Ecology and Environmental Sciences, 2021, 30(4): 743-755. |
| 牛文鹏, 李青圃, 李铖, 等. 珠江三角洲土壤养分多尺度空间分异及环境驱动力. 生态环境学报, 2021, 30(4): 743-755. | |
| 32 | Gao G, Tuo D, Han X, et al. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Science of the Total Environment, 2020, 746: 141156. |
| 33 | Rigon G P J, Calonego J C, Capuani S, et al. Soil organic C affected by dry-season management of no-till soybean crop rotations in the tropics. Plant and Soil, 2021, 462(1): 1-14. |
| 34 | Rui Y C, Jackson R D, Francesca M C, et al. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(7): DOI: 10.1073/PNAS.2118931119. |
| 35 | Zhang H, Zhao X M, Ouyang Z C, et al. Spatial disparity features and protection zoning of cultivated land quality based on spatial autocorrelation-A case study of Shanggao County, Jiangxi Province. Research of Soil and Water Conservation, 2018, 25(1): 304-312. |
| 张晗, 赵小敏, 欧阳真程, 等. 基于空间自相关的耕地质量空间差异特征及耕地保护分区——以江西省上高县为例. 水土保持研究, 2018, 25(1): 304-312. | |
| 36 | Wu Y G, Ulan T Y, Zhang W Q, et al. Analysis of the evolution of the grassland degradation evaluation index system in China based on CiteSpace. Chinese Journal of Grassland, 2023, 45(5): 125-136. |
| 乌云嘎, 乌兰图雅, 张卫青, 等. 基于CiteSpace的中国草地退化评价指标体系演进分析. 中国草地学报, 2023, 45(5): 125-136. |
| [1] | 余万洋, 陈怡帆, 方发永, 张金鑫, 李舟, 赵龙山. 1980-2020年贵州省草地空间分布格局演变及驱动力分析[J]. 草业学报, 2024, 33(1): 1-18. |
| [2] | 李春艳, 王艳, 李欣瑞, 李英主, 李明峰, 陈丽丽, 雷雄, 闫利军, 游明鸿, 季晓菲, 张昌兵, 吴婍, 苟文龙, 李达旭, 鄢家俊, 白史且. 中国野生老芒麦形态多样性研究与种质利用潜力分析[J]. 草业学报, 2023, 32(3): 67-79. |
| [3] | 孙禄娟, 何建军, 汪军成, 姚立蓉, 司二静, 杨轲, 李葆春, 马小乐, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析[J]. 草业学报, 2022, 31(8): 199-210. |
| [4] | 任文静, 吕玉虎, 周国朋, 常单娜, 向春阳, 曹卫东. 一个紫云英F4重组自交系群体的农艺性状与养分吸收评价[J]. 草业学报, 2022, 31(2): 101-110. |
| [5] | 陈子英, 常单娜, 韩梅, 李正鹏, 严清彪, 张久东, 周国朋, 孙小凤, 曹卫东. 47份箭筈豌豆品种(系)在青海作秋绿肥的能力评价[J]. 草业学报, 2022, 31(2): 39-51. |
| [6] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
| [7] | 蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
| [8] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
| [9] | 郭志鹏, 冯长松, 张靖雪, 王苗利, 曲根, 刘建宇, 管永卓, 张晓婷, 郭玉霞, 严学兵. 30个紫花苜蓿品种对苜蓿花叶病毒病的田间抗性初步研究[J]. 草业学报, 2019, 28(4): 157-167. |
| [10] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
| [11] | 柴艳, 孙宗玖, 李培英, 巴德木其其格, 张向向, 杨静. 新疆狗牙根种质芽期耐盐性综合评价[J]. 草业学报, 2017, 26(8): 154-167. |
| [12] | 涂明月, 李杰, 何亚丽, 李醒, 李俊, 袁晓君. 利用RAPD标记鉴定草地早熟禾种质资源的遗传多样性[J]. 草业学报, 2017, 26(7): 71-81. |
| [13] | 耿帆, 周青平, 梁国玲, 贾志锋, 刘文辉, 丁成翔, 刘勇, 颜红波. 8个大粒裸燕麦品种核型研究[J]. 草业学报, 2016, 25(3): 120-125. |
| [14] | 孟丽娟,赵桂琴. 国外引进红三叶种质在甘肃中部地区的生长特性及生产性能初步评价[J]. 草业学报, 2015, 24(9): 30-42. |
| [15] | 周青平, 颜红波, 梁国玲, 贾志峰, 刘文辉, 田莉华, 陈有军, 陈仕勇. 不同燕麦品种饲草和籽粒生产性能分析[J]. 草业学报, 2015, 24(10): 120-130. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||