[1] Zhang L, Wang J M, Bai Z K, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, 2015, 128: 44-53. [2] Jing Z R, Wang J M, Zhu Y C, et al. Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. Journal of Cleaner Production, 2018, 177: 350-361. [3] Yang X G, Li X L, Jin L Q, et al. Effectiveness of different artificial restoration measures for soil and vegetation recovery on coal mine tailings in an alpine area. Acta Prataculturae Sinica, 2019, 28(3): 1-11. 杨鑫光, 李希来, 金立群, 等. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究. 草业学报, 2019, 28(3): 1-11. [4] Zhao T N, Zhang Y X, Cao B, et al. Eco-security technology for coal mining bases in the northwestern arid desert regions in China. Journal of Soil and Water Conservation, 2018, 32(1): 1-5. 赵廷宁, 张玉秀, 曹兵, 等. 西北干旱荒漠区煤炭基地生态安全保障技术. 水土保持学报, 2018, 32(1): 1-5. [5] Li L, Li S Q. Dominant species of herb community on the reclaimed coal gob pile in Yangquan mining area of Shanxi under different vegetations: Interspecific relationship and niche. Chinese Agricultural Science Bulletin, 2019, 35(1): 80-87. 李霖, 李素清. 阳泉矿区煤矸石山复垦地不同植被下草本植物群落优势种种间关系及生态位. 中国农学通报, 2019, 35(1): 80-87. [6] Miao Z, Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. Journal of Environmental Management, 2000, 59(3): 205-215. [7] Anthony B. Restoration of mined lands-using natural processes. Ecological Engineering, 1997, (4): 255-269. [8] Tischew S, Baasch A, Grunert H, et al. How to develop native plant communities in heavily altered ecosystems: Examples from large-scale surface mining in Germany. Applied Vegetation Science, 2014, 17(2): 288-301. [9] Liu X Y, Zhou W, Bai Z K. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990-2015. Ecological Engineering, 2016, 95: 447-451. [10] Swab R M, Lorenz N, Byrd S, et al. Native vegetation in reclamation: Improving habitat and ecosystem function through using prairie species in mine land reclamation. Ecological Engineering, 2017, 108: 525-536. [11] Fu H, Bai Z K, Zhang S L, et al. Ecological damage prediction and restoration of coal mine in Hulun Buir Grassland. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 90-94. 付慧, 白中科, 张树礼, 等. 呼伦贝尔草原矿生态受损预测与修复对策. 农业工程学报, 2008, 24(5): 90-94. [12] Chen Z, Li Y J, Deng N R, et al. Effect of coal mining subsidence on soil physical properties of rice field in mountain region of Southwest China. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 276-285. 陈朝, 李妍均, 邓南荣, 等. 西南山区采煤塌陷对水田土壤物理性质的影响. 农业工程学报, 2014, 30(18): 276-285. [13] Li J J, Zhou X M, Yan J X, et al. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 2015, 87: 56-62. [14] Feng J, Hou E K, Wang S J. The prediction of the influence of coal mining on the groundwater in Eastern Ningxia coal production base. Geological Bulletin of China, 2018, 37(12): 2184-2191. 冯洁, 侯恩科, 王苏健. 宁东煤炭基地煤炭开采对地下水的影响预测. 地质通报, 2018, 37(12): 2184-2191. [15] Zhang S H, Xiong K N, Zhang Y, et al. Leaf functional traits characteristics of dominant species and influencing factors in succession of the typical rocky desertification ecosystems. Ecology and Environmental Sciences, 2019, 28(11): 2165-2175. 张仕豪, 熊康宁, 张俞, 等. 典型石漠化生态系统演替过程优势植物种叶片功能性状特征及影响因素. 生态环境学报, 2019, 28(11): 2165-2175. [16] Wang X, Yang L, Zhao Q, et al. Response of grassland community functional traits to soil water in a typical Loess Plateau watershed. Acta Ecologica Sinica, 2020, (8): 1-7. 王鑫, 杨磊, 赵倩, 等. 黄土高原典型小流域草地群落功能性状对土壤水分的响应. 生态学报, 2020, (8): 1-7. [17] Zhou L L, Qian R L, Li S B, et al. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site. Chinese Journal of Applied Ecology, 2019, 30(7): 2320-2328. 周丽丽, 钱瑞玲, 李树斌, 等. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征. 应用生态学报, 2019, 30(7): 2320-2328. [18] Roche P, Díza-Burlinson N, Gachet S. Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecology, 2004, 174(1): 37-48. [19] Westoby M, Wright I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 2003, 135(4): 621-628. [20] Dechaine J M, Brock M T, Iniguezluy F L, et al. Quantitative trait loci×environment interactions for plant morphology vary over ontogeny in Brassica rapa. New Phytologist, 2014, 201(2): 657-669. [21] Zhang J, Zuo X A, Yang Y, et al. Response of plant community functional traits in different grasslands to enclosure and grazing in Horqin Sandy Land. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 261-268. 张晶, 左小安, 杨阳, 等. 科尔沁沙地草地植物群落功能性状对封育和放牧的响应. 农业工程学报, 2017, 33(24): 261-268. [22] Milla R, Castro-Díez P, Maestro-Martínez M, et al. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 2005, 278: 303-313. [23] Van Bodegom P M, Douma J C, Verheijen L M. A fully traits-based approach to modeling global vegetation distribution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 13733-13738. [24] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155-162. [25] Wang C Y, Xiao H G, Liu J, et al. Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia×fraseri and Osmanthus fragrans. Journal of Forestry Research, 2017, 28: 473-479. [26] Milcu A, Roscher C, Gessler A, et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 2014, 17(4): 435-444. [27] Yu H, Zhong Q L, Huang Y B, et al. Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors. Chinese Journal of Applied Ecology, 2018, 29(2): 449-458. 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系. 应用生态学报, 2018, 29(2): 449-458. [28] Luo D D, Bai X M, Sun Y M, et al. Response of physiological characteristics and evaluation of drought tolerance for 10 wild Iris lacteal var. chinensis from Gansu, China. Journal of Desert Research, 2019, 39(5): 210-221. 骆丹丹, 白小明, 孙艳敏, 等. 甘肃野生马蔺(Iris lacteal var. chinensis)对干旱胁迫的生理响应及抗旱性. 中国沙漠, 2019, 39(5): 210-221. [29] Hoover D L, Koriakin K, Albrigtsen J, et al. Comparing water-related plant functional traits among dominant grasses of the Colorado Plateau: Implications for drought resistance. Plant and Soil, 2019, 441: 207-218. [30] Bradbury M. The effect of water stress on growth and dry matter distribution in juvenile Sesbania sesban and Acacia nilotica. Journal of Arid Environments, 1990, 18: 325-333. [31] Shi Q, Bao X W, Hua J F, et al. Effects of drought stress and recovery on photosynthesis and physiological characteristics of Hibiscus hamabo. Chinese Journal of Applied Ecology, 2019, 30(8): 2600-2606. 施钦, 包学文, 华建峰, 等. 干旱胁迫及复水对海滨木槿光合作用和生理特性的影响. 应用生态学报, 2019, 30(8): 2600-2606. [32] Levitt J. Responses of plants to environmental stresses. New York: Academic Press, 1972. [33] Ding L, Zhao H M, Zeng W J, et al. Physiological responses of five plants in Northwest China arid area under drought stress. Chinese Journal of Applied Ecology, 2017, 28(5): 1455-1463. 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应. 应用生态学报, 2017, 28(5): 1455-1463. [34] Song W M, Zhou H Y, Jia R L, et al. Response of photosynthesis function and trehalose content of four desert plants to gradual drought stress. Journal of Desert Research, 2008, (3): 449-454. 宋维民, 周海燕, 贾荣亮, 等. 土壤逐渐干旱对4种荒漠植物光合作用和海藻糖含量的影响. 中国沙漠, 2008, (3): 449-454. [35] Wang Y L, Wang W F, Zhang Y X, et al. Responses of leaf morphological structure and physiological characteristics of Populus euramericana cv. ‘BYu’ to drought stress. Scientia Silvae Sinicae, 2019, 55(4): 42-50. 王怡霖, 王卫锋, 张芸香, 等. 碧玉杨叶形态结构与生理特性对干旱的响应. 林业科学, 2019, 55(4): 42-50. [36] Zou Q. Experimental guidance of plant physiology. Beijing: China Agricultural Press, 2000: 161-175. 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 161-175. [37] Li H S. Expermental principle and technology of plant biology and biochemistry. Beijing: Higher Education Press, 2003: 191-205. 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003: 191-205. [38] Shen S Y, Xu Y X, Ma C L, et al. Effects of physiological characteristics of different tea cultivars under drought treatment and evaluation on their drought resistance. Journal of Tea Science, 2019, 39(2): 171-180. 沈思言, 徐艳霞, 马春雷, 等. 干旱处理对不同品种茶树生理特性影响及抗旱性综合评价. 茶叶科学, 2019, 39(2): 171-180. [39] Tian L, Chen Y P, Liu J, et al. Comprehensive evaluation and selection of rice (Oryza sativa japonica) germplasm for saline tolerance at germination stage. Chinese Journal Rice Science, 2017, 31(6): 631-642. 田蕾, 陈亚萍, 刘俊, 等. 粳稻种质资源芽期耐盐性综合评价与筛选. 中国水稻科学, 2017, 31(6): 631-642. [40] Su T T, Ma H B, Zhou Y, et al. Response of physical and chemical properties of typical steppe soils to ecological restoration measures in Loess Hilly Region. Acta Prataculturae Sinica, 2019, 28(4): 34-46. 宿婷婷, 马红彬, 周瑶, 等. 黄土丘陵典型草原土壤理化性质对生态恢复措施的响应. 草业学报, 2019, 28(4): 34-46. [41] Silvertown J, Araya Y, Gowing. Hydrological niches in terrestrial plant communities: A review. Journal of Ecology, 2015, 103: 93-108. [42] Zhang D K, Wei L Y, Ma Q L, et al. The module characteristics of typical annual plant Agriophyllum squarrosum in Minqin Desert Area. Chinese Agricultural Science Bullentin, 2019, 35(27): 48-53. 张德魁, 魏林源, 马全林, 等. 民勤沙区典型一年生植物沙米构件特征研究. 中国农学通报, 2019, 35(27): 48-53. [43] Ghannoum O, Paul M J, Ward J, et al. The sensitivity of photosynthesis to phosphorus deficiency differs between C3 and C4 tropical grasses. Functional Plant Biology, 2008, 35(3): 213-221. [44] Ao H, Zhang Y. Effects of water stress on photosynthetic characteristics of spruce. Bulletin of Botanical Research, 2007, 27(4): 445-448. [45] Lu G C, Xu J X, Xue L, et al. Comprehensive evaluation on photosynthetic and fluorescence characteristics in seedlings of 4 drought resistance species. Acta Ecologica Sinica, 2013, 33(24): 7872-7881. 卢广超, 许建新, 薛立, 等. 干旱胁迫下4种常用植物幼苗的光合和荧光特性综合评价. 生态学报, 2013, 33(24): 7872-7881. [46] Shan C J, Han R L, Liang Z S. Antioxidant properties of four native grasses in Loess Plateau under drought stress. Acta Ecologica Sinica, 2012, 32(4): 1174-1184. 单长卷, 韩蕊莲, 梁宗锁. 干旱胁迫下黄土高原4种乡土禾草抗氧化特性. 生态学报, 2012, 32(4): 1174-1184. [47] Sun O W, Yang Q Q, Zhang Y, et al. Physiological response mechanism of four kinds of Hydrangea under high temperature and drought stress. Plant Physiology Journal, 2019, 55(10): 1531-1544. 孙欧文, 杨倩倩, 章毅, 等. 四个绣球品种对高温干旱复合胁迫的生理响应机制. 植物生理学报, 2019, 55(10): 1531-1544. |